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Abstract

The advent of high throughput technologies has led to a wealth of publicly available ‘omics data
coming from different sources, such as transcriptomics, proteomics, metabolomics. Combining such large-
scale biological data sets can lead to the discovery of important biological insights, provided that relevant
information can be extracted in a holistic manner. Current statistical approaches have been focusing on
identifying small subsets of molecules (a ‘molecular signature’) to explain or predict biological conditions,
but mainly for a single type of ‘omics. In addition, commonly used methods are univariate and consider
each biological feature independently.
We introduce mixOmics, an R package dedicated to the multivariate analysis of biological data sets with a
specific focus on data exploration, dimension reduction and visualisation. By adopting a system biology
approach, the toolkit provides a wide range of methods that statistically integrate several data sets at once
to probe relationships between heterogeneous ‘omics data sets. Our recent methods extend Projection
to Latent Structure (PLS) models for discriminant analysis, for data integration across multiple ‘omics
data or across independent studies, and for the identification of molecular signatures. We illustrate our
latest mixOmics integrative frameworks for the multivariate analyses of ‘omics data available from the
package.

Introduction

The advent of novel ‘omics technologies (e.g. transcriptomics for the study of transcripts, proteomics for
proteins, metabolomics for metabolites, etc) has enabled new opportunities for biological and medical re-
search discoveries. Commonly, each feature from each technology (transcripts, proteins, metabolites, etc) is
analysed independently through univariate statistical methods including ANOVA, linear models or t-tests.
However, such analysis ignores relationships between the different features and may miss crucial biological
information. Indeed, biological features act in concert to modulate and influence biological systems and
signalling pathways. Multivariate approaches, which model features as a set, can therefore provide a more
insightful picture of a biological system, and complement the results obtained from univariate methods. Our
package mixOmics proposes multivariate projection-based methodologies for ‘omics data analysis as those
provide several attractive properties to the data analyst (Lê Cao et al., 2017). Firstly, they are computation-
ally efficient to handle large datasets, where the number of biological features (usually thousands) is much
larger than the number of samples (usually less than 50). Secondly, they perform dimension reduction by
projecting the data into a smaller subspace while capturing and highlighting the largest sources of variation
from the data, resulting in powerful visualisation of the biological system under study. Lastly, their relaxed
assumptions about data distribution make them highly flexible to answer topical questions across numerous
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biology-related fields (Boulesteix and Strimmer, 2007; Meng et al., 2016). mixOmics multivariate methods
have been successfully applied to statistically integrate data sets generated from difference biological sources,
and to identify biomarkers in ‘omics studies such as metabolomics, brain imaging and microbiome (Labus
et al., 2015; Cook et al., 2016; Guidi et al., 2016; Mahana et al., 2016; Ramanan et al., 2016; Rollero et al.,
2016).

We introduce mixOmics in the context of supervised analysis, where the aims are to classify or discriminate
sample groups, to identify the most discriminant subset of biological features, and to predict the class of
new samples. We further extended our core method sparse Partial Least Square - Discriminant Analysis
(sPLS-DA Lê Cao et al. 2011) that was originally developed for the supervised analysis of one dataset. Our
two novel frameworks DIABLO and MINT focus on the integration of multiple data sets for different biological
questions (Fig 1). DIABLO enables the integration of the same biological N samples measured on different
‘omics platforms (N -integration, Singh et al. 2016), while MINT enables the integration of several independent
data sets or studies measured on the same P predictors (P -integration, Rohart et al. 2017). To date, very few
statistical methods can perform N - and P -integration in a supervised context. For instance, N -integration
is often performed by concatenating all the different ’omics datasets (Liu et al., 2013), which ignores the
heterogeneity between ‘omics platforms and mainly highlights one single type of ’omics. The other common
type of N -integration is to combine the molecular signatures identified from separate analyses of each ‘omics
(Günther et al., 2012), which disregards the relationships between the different ‘omics functional levels. With
P -integration, statistical methods are often sequentially combined to accommodate or correct for technical
differences (‘batch effects’) among studies before classifying samples with a suitable classification method.
Such sequential approaches are not appropriate for the prediction of new samples as they are prone to
overfitting (Rohart et al., 2017). Our two frameworks model relationships between different types of ‘omics
data (N -integration) or integrate independent ‘omics studies to increase sample size and statistical power
(P -integration). Both frameworks aim at identifying biologically relevant and robust molecular signatures
to suggest novel biological hypotheses.

The present article first introduces the main functionalities of mixOmics, then presents our multivariate
frameworks for the identification of molecular signatures in one and several data sets, and illustrates each
framework in a case study available from the package. Reproducible Sweave code is provided for all analyses.

Design and Implementation

mixOmics is a user-friendly R package dedicated to the exploration, mining, integration and visualisation of
large data sets (Lê Cao et al., 2017). It provides attractive functionalities such as (i) insightful visualisations
with dimension reduction (Fig 1), (ii) identification of molecular signatures and (iii) improved usage with
common calls to all visualisation and performance assessment methods (Fig S2).

Multivariate projection-based methods

mixOmics offers a wide range of multivariate dimension reduction techniques designed to each answer specific
biological questions, via unsupervised or supervised analyses. The mixOmics functions are listed in Table 1.
Unsupervised analyses methods includes Principal Component Analysis (also based on NonLinear Iterative
Partial Least Squares for missing values Wold 1975), Independent Component Analysis (Yao et al., 2012),
Partial Least Squares regression (PLS, also known as Projection to Latent Structures, Wold 1966), multi-
group PLS (Eslami et al., 2013), regularised Canonical Correlation Analysis (rCCA, González et al. 2008)
and regularised Generalised Canonical Correlation Analysis (RGCCA, based on a PLS algorithm Tenenhaus
and Tenenhaus 2011). Supervised analyses methods includes PLS - Discriminant Analysis (PLS-DA, Nguyen
and Rocke 2002b,a; Boulesteix 2004), GCC-DA (Singh et al., 2016) and multi-group PLS-DA (Rohart et al.,
2017). In addition, mixOmics provides novel sparse variants that enable feature selection, the identification
of key predictors (e.g. genes, proteins, metabolites) that constitute a molecular signature. Feature selection
is performed via `1 regularisation (LASSO, Tibshirani 1996), which is implemented into each method’s
statistical criterion to be optimised. For supervised analyses, mixOmics provides functions to assist users
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Figure 1: Overview of the mixOmics multivariate methods for single and integrative ‘omics super-
vised analyses. X denote a predictor ‘omics dataset, and Y a categorical outcome response (e.g. healthy
vs. sick). Integrative analyses include N -integration with DIABLO (the same N samples are measured on dif-
ferent ‘omics platforms), and P -integration with MINT (the same P ‘omics predictors are measured in several
independent studies). Sample plots depicted here use the mixOmics functions (from left to right) plotIndiv,
plotArrow and plotIndiv in 3D; variable plots use the mixOmics functions network, cim, plotLoadings,
plotVar and circosPlot. The graphical output functions are detailed in Supporting Information S2.

with the choice of parameters necessary for the feature selection process (see ‘Choice of parameters’ Section)
to discriminate the outcome of interest (e.g. healthy vs. sick, or tumour subtypes, etc.).

All multivariate approaches listed in Table 1 are projection-based methods whereby samples are sum-
marised by two sets of H latent components (t1, . . . , tH) that are defined as linear combinations of the original
predictors. In the combinations (t1, . . . , tH), the weights of each of the predictors are indicated in the loading
vectors a1, . . . , aH . For instance, if X denotes the data matrix of P predictors, X = (X1, . . . , XP ), then
we define the first latent component t1 = Xa1 = X1a11 + · · · + XPaP1 . Therefore, to each loading vector
ah corresponds a latent component th, and there are as many pairs (th, ah) as the chosen dimension H
in the multivariate model, h = 1, . . . ,H, where H << P . The samples are thus projected into a smaller
interpretable space spanned by the H latent components.
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Table 1: Summary of multivariate projection-based methods available in mixOmics version 6.0.0 or above
for different types of analysis frameworks.

Framework Sparse Function name Predictive model

Single ’omics
unsupervised

- pca -
- ipca -
X spca -

supervised
- plsda X
X splsda X

Two ’omics unsupervised
- rcca -
- pls X
X spls X

N -integration
unsupervised

- wrapper.rgcca -
- block.pls X
X block.spls X

supervised
- block.plsda X
X block.splsda (DIABLO) X

P -integration
unsupervised

- mint.pls X
X mint.spls X

supervised
- mint.plsda X
X mint.splsda X

Implementation

mixOmics is currently fully implemented in the R language and exports more than 30 functions to per-
form statistical analyses, tune the methods parameters and plot insightful visualisations. mixOmics mainly
depends on the R base packages (parallel, methods, grDevices, graphics, stats, utils) and recommended
packages (MASS, lattice), but also imports functions from other R packages (igraph, rgl, ellipse, corpcor,
RColorBrewer, plyr, dplyr, tidyr, reshape2, ggplot2). In mixOmics, we provide generic R/S3 functions to
assess the performance of the methods (predict, plot, print, perf, auroc, etc) and to visualise the
results as depicted in Fig 1 (plotIndiv, plotArrow, plotVar, plotLoadings, etc), see Fig S2 and Sup-
porting Information S2 for an exhaustive list.

Currently, seventeen multivariate projection-based methods are implemented in mixOmics to integrate
large biological datasets, amongst which twelve have similar names (mint).(block).(s)pls(da), see Table
1. To perform either N - or P -integration, we efficiently coded the functions as wrappers of a single main
hidden and generic function that is based on our extension of the SGCCA algorithm (Tenenhaus et al., 2014)
. The remaining five statistical methods are PCA, sparse PCA, IPCA, rCCA and rGCCA. Each statistical
method implemented in mixOmics returns a list of essential outputs which are used in our S3 visualisation
functions (Fig S2).

mixOmics aims to provide insightful and user-friendly graphical outputs to interpret statistical and biolog-
ical results, some of which (correlation circle plots, relevance networks, clustered image maps) were presented
in details in (González et al., 2012). The function calls are identical for all multivariate methods via the use
of R/S3 functions, as we illustrate in the Results Section. mixOmics offers various visualisations, including
sample plots and variable plots, which are based on latent component scores and loading vectors, respectively
(Fig 1). Additional graphical outputs are available in mixOmics to illustrate classification performance of
multivariate models using the generic function plot (see Fig S2).

Class prediction of new samples

The supervised multivariate methods in mixOmics can be applied on an external test set to predict the
outcome of new samples with the predict function (Table 1), or to assess the performance of the statistical
model. The predict function calculates prediction scores for each sample, or predicted coordinates, which
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are equivalent to the latent component scores in the training set.

Prediction distances. Our supervised models work with dummy indicator matrices to indicate the class
membership of each sample (Supplemental Information S1.1 and Fig S3), and result in a prediction score
for each outcome category k, k = 1, . . . ,K. Therefore, the scores across all classes K need to be combined
to obtain the final prediction of a given test sample using a prediction distance. We propose distances
such as ‘maximum distance’, ‘Mahalanobis distance’ and ‘Centroids distance’, as detailed in Supplemental
Information S1.3.

Visualisation of prediction area. To visualise the effect of the prediction distance, we propose a graph-
ical output of the prediction area that overlays the sample plot (example in Fig 2 and more details in
Supplemental Information S2.1).
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Figure 2: Prediction area visualisation on the Small Round Blue Cell Tumors data (SRBCT Khan et al.
2001) data, described in the Results Section, with respect to the prediction distance. From left to right:
‘maximum distance’, ‘centroids distance’ and ‘Mahalanobis distance’. Sample prediction area plots from a
PLS-DA model applied on a microarray data set with the expression levels of 2,308 genes on 63 samples.
Samples are classified into four classes: Burkitt Lymphoma (BL), Ewing Sarcoma (EWS), Neuroblastoma
(NB), and Rhabdomyosarcoma (RMS).

Prediction for N-integration. For N -integration, we obtain a predicted class per ‘omics data set.
The predictions are combined by majority vote (the class that has been predicted the most often across
all data sets) or by weighted vote, where each ‘omics dataset weight is defined as the correlation between
latent components associated to that particular dataset and the outcome, from the training set. The final
prediction is the class that obtains the highest weight across all ‘omics datasets. Therefore the weighted vote
gives more importance to the ‘omics dataset that is best correlated to the outcome and reduces the number
of ties when an even number of data sets are discordant in the case of majority vote. Ties are indicated as
NA in our outputs.

Prediction for P -integration. In that specific case, the external test set can include samples from one
of the independent studies used to fit the model, or samples from external studies, see (Rohart et al., 2017)
for more details.
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Choice of parameters for supervised analyses

For supervised analysis, mixOmics provides tools to help choosing the number of components H and the
`1 penalty on each component for all sparse methods. These parameters are based on the performance
evaluation of the statistical model.

Performance evaluation. For all supervised models, the tuning function tune implements repeated and
stratified cross-validation (CV, see details in Supplemental Information S1.2) to obtain the predicted class
of each sample. Performance is measured via overall misclassification error rate and Balanced Error Rate
(BER). BER is appropriate in case of an unbalanced number of samples per class as it calculates the average
proportion of wrongly classified samples in each class, weighted by the number of samples in each class.
Therefore, BER is less biased towards majority classes during the performance assessment.

The choice of the parameters (described below) is made according to the best prediction accuracy - the
lowest overall error rate or BER. Once the tuning process is completed, the performance of final model can be
estimated using the perf function based on the chosen parameters and repeated CV. Additional evaluation
outputs include the stability of the selected features across all CV runs, which represents a useful measure of
reproducibility of the molecular signature (see example inElectronic Supplemental E1) and receiver operating
characteristic (ROC) curves and Area Under the Curve (AUC) averaged using one-vs-all comparison if K > 2.
Note however that ROC and AUC criteria may not be particularly insightful as the prediction threshold in
our methods is based on a specified distance as described earlier.

Number of components. For each supervised method the tuning function outputs the optimal number
of components that achieve the best performance based on the overall error rate or BER. The assessment
is data-driven and similar to the process detailed in (Rohart et al., 2016), where one-sided t-tests assess
whether there is a gain in performance when adding a component to the model. Note that in practice (see
some of our examples in the Results Section), we found that setting the number of components to K − 1,
where K is the number of classes was sufficient to achieve the best classification performance (Lê Cao et al.,
2011; Shah et al., 2016).

`1 penalty. Contrary to other R packages implementing `1 penalisation methods (e.g. glmnet, Friedman
et al. 2010, PMA, Witten et al. 2013), mixOmics uses soft-thresholding to improve usability by replacing the
`1 parameter by the number keepX of features to select on each dimension. The performance of the model
is assessed for each value of keepX provided as a grid by the user from the first component to the Hth

component, one component at a time. The grid needs to be carefully chosen as it is a trade-off between
resolution and computational time. The tune function returns the keepX value that achieves the best
predictive performance. In case of ties, the lowest keepX value is returned to obtain a minimal molecular
signature. Note that the same grid of keepX values is used to tune each component.

Tuning with a constraint model. To improve performance, a new variant in all tuning functions was
recently added to fit a constraint model (constraint=TRUE). The tuning is performed on the optimal list
of selected features keepX.constraint from the previous components, as opposed to considering only the
number of features keepX. Such strategy was implemented in the sister package bootPLS and successfully
applied in our recent integrative study (Rohart et al., 2016). Our experience has shown that the constraint
tuning and models can substantially improve the performance of the methods. We illustrate some examples
in the Results section.

Special cases with N- and P - integration. For N -integration a grid of keepX needs to be provided for
each type of ‘omics data. Our example (Results section) illustrates the integration of three types of ‘omics, for
which three grids of keepX of length 13 were provided, resulting in a collection of 13×13×13 = 2197 models
to be assessed. For P -integration a Leave-One-Group-Out Cross Validation is performed where each study
defines a subset that is left out once, as described in (Rohart et al., 2017) and in Supporting Information S5.
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Results

Single ‘omics supervised analyses with PLS-DA and sPLS-DA

We illustrate single ‘omics multivariate methods PCA, PLS-DA and sPLS-DA on a microarray data set
available from the package. The PLS-DA and sPLS-DA methods are described in the Supporting Information
S3.

Data description. The study investigates Small Round Blue Cell Tumors (SRBCT, Khan et al. 2001)
of 63 tumour samples with the expression levels of 2,308 genes. Samples are classified into four classes: 8
Burkitt Lymphoma (BL), 23 Ewing Sarcoma (EWS), 12 neuroblastoma (NB), and 20 rhabdomyosarcoma
(RMS).

Unsupervised and supervised analyses. Principal Component Analysis was first applied to assess
similarities between tumour types (Fig. 3A1). This preliminary unsupervised analysis showed no separation
between tumour types, but allows to visualise the more important sources of variation, which are summarised
in the first two principal components (Fig. 3A2). A supervised analysis with PLS-DA focuses on the
discrimination of the four tumour types (Fig. 3B1), and led to a good performance (Fig. 3B2, performance
assessed when adding one component at a time in the model). We then applied sPLS-DA to identify specific
discriminant genes for the four tumour types. The tuning process with the constraint model (see ‘Choice
of parameters’ Section and Electronic Supplemental E1) led to a sPLS-DA model with 3 components and a
molecular signature composed of 10, 40 and 60 genes selected on the three component, respectively.

Results visualisation. The first sPLS-DA component discriminated BL vs the other tumour types (Fig.
3C1). The 10 genes selected on this component all had positive weight in the linear combination, and were
highly expressed in BL (see Electronic Supplemental E1). The second component further discriminated
EWS based on 40 selected genes. The genes with a negative weight were highly expressed in EWS while
the genes with a positive weight were highly expressed in either NB or RMS. Finally, the third component
discriminated both NB and RMS (not shown). The arrow plot displays the relationship between the samples
summarised as a combination of selected genes (start of the arrow) and the categorical outcome (end of the
arrow, Fig. 3C2).

A clustering analysis using a heatmap based on the genes selected on the first three components high-
lighted clusters corresponding to the four tumour types (Fig 3C3). ROC curve and AUC of the final model
were also calculated using one-vs-all comparisons and led to satisfactory results on the first two components
(Fig 3C4). The AUC for the first three components was 1 for all groups. Note that ROC and AUC are
additional measures that may not reflect the performance of a mixOmics multivariate approaches since our
prediction strategy is based on distances (see ‘Performance’ Section).

Summary. We illustrated the mixOmics framework for the supervised analysis of a single ‘omics data set
- here a microarray experiment. The full pipeline, results interpretation, associated R and Sweave codes
are available in Electronic Supplemental E1. Such an analysis suggests novel biological hypotheses to be
further validated in the laboratory, when one is seeking for a signature of a subset of features to explain,
discriminate or predict a categorical outcome. The methods has been applied and validated in several
biological and biomedical studies, including ours in proteomics and microbiome (Shah et al., 2016; Lê Cao
et al., 2016).
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Figure 3: Illustration of a single ‘omics analysis with mixOmics. A) Unsupervised preliminary
analysis with PCA, A1: PCA sample plot, A2: percentage of explained variance per component. B)
Supervised analysis with PLS-DA, B1: PLS-DA sample plot with confidence ellipse plots, B2: classifi-
cation performance per component (overall and BER) for three prediction distances using repeated stratified
cross-validation (50 * 5-fold CV). C) Supervised analysis and feature selection with sparse PLS-DA,
C1: sPLS-DA sample plot with confidence ellipse plots, C2: arrow plot representing each sample point-
ing towards its outcome category, see more details in Supplemental Information S2. C3: Clustered Image
Map (Euclidian Distance, Complete linkage) where samples are represented in rows and selected features in
columns (10, 40 and 60 genes selected on each component respectively), C4: ROC curve and AUC averaged
using one-vs-all comparisons.
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N-integration across multiple ‘omics data sets with DIABLO

N -integration consists in integrating different types of ‘omics data measured on the same N biological
samples. In a supervised context, DIABLO performs N -integration by identifying a multi-‘omics signature
that discriminates the outcome of interest. Contrary to the concatenation and the ensemble approaches
that also perform N -integration, DIABLO identifies a signature composed of highly correlated features across
the different types of ‘omics, by modelling relationships between the ‘omics data sets(Singh et al., 2016).
The DIABLO method is fully described in the Supporting Information S4. We illustrate one analysis on a
multi-‘omics breast cancer study available from the package.

Data description. The multi-‘omics breast cancer study includes 150 samples from three types of ‘omics:
mRNA (P1 = 200), miRNA (P2 = 184) and proteomics (P3 = 142) data. Prior to the analysis with mixOmics,
the data were normalised and filtered for illustrative purpose. Samples are classified into three subgroups:
75 Luminal A, 30 Her2 and 45 Basal.

Choice of parameters and analysis. As we aim to discriminate three breast cancer subtypes we chose
a model with 2 components. The tuning process with the constraint model (see ‘Choice of parameters’
Section and Electronic Supplemental E2) identified a multi-‘omics signature of 5 and 6 mRNA features, 6
and 5 miRNA features and 6 and 18 proteomics features on the two components, respectively. Sample plots
of the final DIABLO model in Figure 4A displayed a better discrimination of breast cancer subgroups with
the mRNA and proteomics data than with the miRNA data. Fig 4B showed that the latent components of
each ‘omics were highly correlated between each others, highlighting the ability of DIABLO to model a good
agreement between the data sets. The breast subtypes colors show that the components are also able to
discriminate the outcome of interest.

Results visualisation. Several visualisation tools are available to help interpretation of the DIABLO results
and to assess relationships between the selected multi-‘omics features (see Supplemental Information S2
and Electronic Supplemental E2). The clustered image map (CIM) displayed a good classification of the
three subtypes of breast cancer based on the 17 multi-‘omics signature identified on the first component
(Fig 4C). The CIM output can be complemented with a circosPlot which displays the different types
of selected features on a circle, with links between or within ‘omics indicating strong positive or negative
correlations (Fig 4D). Those correlation are estimated using the latent components as a proxy, see more
methodological details in (González et al., 2012). We observed strong correlations between miRNA and
mRNA, but only a few correlations between proteomics and the other ‘omics types. Correlation circle plots
(Fig 4E) further highlight correlations between each selected feature and its associated latent component
(see details in González et al. 2012). The 6 miRNA features selected on the first component were highly
negatively correlated with the first component (red triangles close to the (-1,0) coordinates) while 4 of the 5
miRNA features selected on the second component were highly positively correlated to the second component
(red triangles close to the (0,1) coordinates). Contrarily, most of the 24 proteomics features selected on the
first two components were close to the inner circle, which implies a weak contribution of those features to
both components. Finally, a relevance network output highlighted two clusters, both including features from
the three types of ‘omics (Fig 4F). Interactive view and .glm format are also available, see Supplemental
Information S2.

Summary. We illustrated the mixOmics framework for the supervised analysis of a multiple ‘omics study.
The full pipeline, results interpretation and associated R and Sweave codes are available in Electronic
Supplemental E2. Our DIABLO method identifies a discriminant and highly correlated multi-‘omics signature.
Predictive ability of the identified signature can be assessed (see E2) while the graphical visualisation tools
enable a better understanding of the correlation structure of signature. Such method is the first of its kind to
perform multivariate integration and discriminant analysis. DIABLO is useful to pinpoint a subset of different
types of ‘omics features in those large study, posit novel hypotheses, and can be applied as a first filtering
step prior to refined knowledge- and/or data-driven pathway analyses.
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Figure 4: Illustration of N-integrative supervised analysis with DIABLO. A: sample plot per data
set, B: sample scatterplot from plotDiablo displaying the first component in each data set (upper plot)
and Pearson correlation between each component (lower plot). C: Clustered Image Map (Euclidian distance,
Complete linkage) of the multi-omics signature. Samples are represented in rows, selected features on the first
component in columns. D: Circos plot shows the positive (negative) correlation (r > 0.7) between selected
features as indicated by the brown (black) links, feature names appear in the quadrants, E: Correlation
Circle plot representing each type of selected features, F: relevance network visualisation of the selected
features.
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P -integration across independent data sets with MINT

P -integration consists in integrating several independent studies measuring the same P predictors, and,
in a supervised context, in identifying a robust molecular signature across multiple studies to discriminate
biological conditions. The advantages of P - integration is to increase sample size while allowing to benchmark
or compare similar studies. Contrary to usual approaches that sequentially accommodate for technical
differences among the studies before classifying samples, MINT is a single step method that reduces overfitting
and that predicts the class of new samples (Rohart et al., 2017). The MINT method is described in Supporting
Information S5. We illustrate the MINT analysis on a stem cell study available from the package.

Data description. We combined four independent transcriptomics stem cell studies measuring the ex-
pression levels of 400 genes across 125 samples (cells). Prior to the analysis with mixOmics, the data were
normalised and filtered for illustrative purpose. Cells were classified into 30 Fibroblasts, 37 hESC and 58
hiPSC.

Choice of parameters and analysis. As we aim to discriminate three classes, we chose a model with
2 components. The tuning process of a MINT sPLS-DA with a constraint model identified a molecular
signature of 6 and 55 genes on the first two components, respectively (Fig 5A). A MINT model based on these
parameters led to a BER of 0.15 (Fig 5B), which was substantially less than the BER of 0.52 from MINT
PLS-DA when no feature selection was performed (see details in Electronic Supplemental E3).

Results visualisation. Global sample plot (Fig 5C) and study-specific sample plots highlighted a good
agreement between the four studies (Fig 5D). The first component segregated fibroblasts vs. hiPSC and
hESC, and the second component hiPSC vs. hESC. Such observation was confirmed with a Clustered
Image Map based on the 6 genes selected on the first component (Fig 5E). Importantly, the loading plots
depicted in Fig 5F showed consistent weights assigned by the MINT model to each selected genes across
each independent study.

Summary. We illustrated the MINT analysis for the supervised integrative analysis of multiple independent
‘omics studies. The full pipeline, results interpretation and associated R and Sweave codes are available in
Electronic Supplemental E3. Our framework proposes graphical visualisation tools to understand the iden-
tified molecular signature across all independent studies. Our own applications of the method have showed
strong potential of the method to identify reliable and robust biomarkers across independent transcriptomics
studies (Rohart et al., 2016, 2017).
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Figure 5: Illustration of MINT analysis in mixOmics. A: Parameter tuning of a MINT sPLS-DA model
with two components, BER (y-axis) with respect to number of selected features (x-axis) when 1 and 2 compo-
nents are successively added in the model. Full diamond represents the optimal number of features to select
on each component using Leave-One-Group-Out cross-validation and maximum distance, B: Performance of
the final MINT sPLS-DA model including selected features based on BER and classification error rate per
class, C: Global sample plot with confidence ellipse plots, D: Study specific sample plot, E: Clustered Image
Map (Euclidian Distance, Complete linkage). Samples are represented in rows, selected features on the first
component in columns. F: Loading plot of each feature selected on the first component in each study, with
color indicating the class with a maximal mean expression value for each transcript.
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Conclusions and Future Directions

The technological race in high-throughput biology lead to increasingly complex biological problems which
require innovative statistical and analytical tools. Our package mixOmics focuses on data exploration and
data mining, which are crucial steps for a first understanding of large data sets. In this article we presented
our latest methods to answer cutting-edge integrative and multivariate questions in biology.

The sparse version of our methods are particularly insightful to identify molecular signatures across
those multiple data sets. Feature selection resulting from our methods help refine biological hypotheses,
suggest downstream analyses including statistical inference analyses, and may propose biological experimen-
tal validations. Indeed, multivariate methods include appealing properties to mine and analyse large and
complex biological data, as they allow for more relaxed assumptions about data distribution, data size and
data range than univariate methods, and provide insightful visualisations. In addition, the identification of
a combination of discriminative features meet biological assumptions that cannot be addressed with uni-
variate methods. Nonetheless, we believe that combining different types of statistical methods (univariate,
multivariate, machine learning) is the key to answer complex biological questions. However, such questions
must be well stated, in order for those exploratory integrative methods to provide meaningful results, and
especially for the non trivial case of multiple data integration.

While we illustrated our different frameworks on classical ‘omics data in a supervised context, the package
also include their unsupervised counterparts to investigate relationships and associations between features
with no prior phenotypic or response information. Here we applied our multivariate frameworks to transcrip-
tomics, proteomics and miRNA data. However, other types of biological data can be analysed, as well as
data beyond the realm of ‘omics as long as they are expressed as continuous values. The sPLS-DA framework
was recently extended for microbiome 16S data (Lê Cao et al., 2016), and we will further extend DIABLO and
MINT for microbiome - ‘omics integration, as well as for genomic data and time-course experiments. These
two promising integrative frameworks can also be combined for NP-integration, to combine multiple studies
that each include several types of ‘omics data and open new avenues for large scale multiple data integration.

Availability and requirements

The R package mixOmics is available from the CRAN (R Core Team, 2016), with tutorials and newsletter
updates available from our website www.mixOmics.org.
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