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Abstract

Motion correction is a challenging pre-processing problem that arises early in the analysis pipeline of
calcium imaging data sequences. Here we introduce an algorithm for fast Non-Rigid Motion Correction
(NoRMCorre) based on template matching. NoRMCorre operates by splitting the field of view into
overlapping spatial patches that are registered for rigid translation against a continuously updated
template. The estimated alignments are subsequently up-sampled to create a smooth motion field for
each frame that can efficiently approximate non-rigid motion in a piecewise-rigid manner. NoRMCorre
allows for subpixel registration and can be run in an online mode resulting in comparable to or even
faster than real time motion registration on streaming data. We evaluate the performance of the proposed
method with simple yet intuitive metrics and compare against other non-rigid registration methods on
two-photon calcium imaging datasets. Open source Matlab and Python code is also made available.

1 Introduction

Calcium imaging methods enable the monitoring of large neural populations over long periods of time with
single neuron resolution. Before addressing specific scientific questions, the analyst needs to pre-process the
data and extract the neural signals of interest from the fluorescent microscopy time series images/volumes.
The typical calcium imaging pre-processing pipeline consists first of motion correction/image registration of
the time series, followed by source extraction, where the different neurons and processes along with their
neural activity time series are extracted. In this paper we focus on the motion correction pre-processing step:
we introduce an algorithm for Non-Rigid Motion Correction (NoRMCorre), that is suitable for the registration
of large scale planar or volumetric imaging data, and we evaluate its performance against state-of-the-art
algorithms.

The general field of image registration has a long history and is still very active with many different
methods available. In the context of fluorescent microscopy time series data, an algorithm needs to be i)
fast since each experiment typically consists of tens of thousands of frames, ii) robust to noise arising from
measurement noise and neural variability /activity, and iii) able to deal with non-rigid deformations that
occur from natural brain movement and/or slow raster scanning. In several cases rigid translation accounts
for most of the motion and fast methods based on template alignment are often used (Thevenaz et al., [1998;
Guizar-Sicairos et al., [2008; |Dubbs et al., [2016). For dealing with non-rigid motion in the context of calcium
imaging data, available approaches include the work of |Greenberg and Kerr| (2009) which is based on the
Lucas-Kanade method (Lucas et al., [1981), Hidden Markov Models (HMM) (Dombeck et al.l [2007; Kaifosh
et al.l |2014)) approaches, and block rigid registration (Pachitariu et al., [2016).

NoRMCorre is based on template alignment and operates by estimating a smooth non-uniform motion
field that is applied into different parts of each frame. Our goal is not to take a completely new approach to
motion correction, but rather to present and make available a robust alignment method that also combines
two important features:
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e Online processing: The algorithm operates by matching patches of each given frame against a
template that is continuously updated based on previously registered frames. As such, it requires access
only to the current frame to be registered and the running template, plus possibly a small buffer to
store past templates. Consequently it is suitable for online registration of high volume streaming data,
a useful feature that can facilitate fully closed loop optical interrogation experiments (Packer et al.
2015)) or compensate for limited amounts of available memory.

e Fast, non-rigid registration: The brain is a non-rigid, non-uniformly deformable medium. In modern
experimental conditions, with animal preparations locomoting or otherwise moving under fixed or
head-mountable microscopes, the brain is subject to elastic deformations. This phenomenon is even
more evident as equipment allows for the monitoring of increasingly larger brain areas. Therefore, even
when imaging at high speed correction of motion by rigid alignment can be inadequate. NoRMCorre
splits the field of view (FOV) into overlapping patches that are registered separately and then merged
by smooth interpolation. As such it overcomes the shortcomings of rigid motion alignment without
a significant computational cost, thus remaining applicable to large scale datasets. Compared to the
other available non-rigid registration methods that split the FOV only along one axis to capture the
non-rigid motion caused by the finite speed of raster scanning, NoRMCorre treats all axes uniformly
aiming to account for natural brain movement as well.

We present an application to resonant scanning two-photon microscopy data and compare it against other
non-rigid image registration methods in terms of speed and performance. To quantify performance we propose
three custom metrics. Our results indicate that NoRMCorre achieves state of the art results while operating
at a speed not significantly slower compared to template based rigid alignment.

2 Materials and Methods

2.1 Algorithm Description
2.1.1 Registering a frame against a given template

NoRMCorre can operate in a rigid or piecewise-rigid (pw-rigid) fashion. For rigid registration, every frame is
aligned against a calculated template at a subpixel resolution using the method proposed by |Guizar-Sicairos
et al.| (2008); the displacement vector is computed by locating the maximum of the cross-correlation between
the frame and the template. The cross-correlation is efficiently obtained via fast Fourier transform (FFT)
methods, and subpixel registration is achieved at a very moderate computational and memory cost by
upsampling the discrete Fourier transform only around the location of the maximum, and then refining the
translation estimate.

In the piecewise rigid approach, for any given frame we split the FOV into a set of overlapping patches
(Fig. a) according to user determined dimensions and amount of overlap. Each patch is registered against
the corresponding part of the template at a subpixel resolution. Next, each patch is further split into
smaller overlapping subpatches with user-defined dimensions and amount of overlap. Similarly, the computed
displacement vectors for the set of the initial patches are upsampled to create a smooth motion field. This
associates to each of the subpatches a new translation vector that is subsequently rigidly applied to it (Fig. b).
The registered sub-patches are then overlaid to each other and in regions of overlap a weighted average is
taken between all the participating patches. The registered frame is also used to update the template in the
online scenario as discussed in the following section. A block diagram of the registration pipeline is depicted

in Fig. [Tk.

2.1.2 TUpdating the template

The template is updated every b,, frames. Once b,, frames get registered against a fixed template, their
average (e.g., mean/median) is computed. These averages are stored in a buffer that keeps at most the last b,
averages. The new template is generated by averaging (e.g., by taking the mean/median) the buffer content.
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Based on empirical observation, as a default choice, we use the median-of-means to update the template at
the end of each minibatch. The template can initialized by computing the median of the first frames (or just
the median of a random subset of frames).

2.1.3 Online vs Offline

NoRMCorre is in principle an online and one-pass algorithm since each frame is registered based on the
current estimate of the template. However several optimization expedients can be used to improve its
performance when data and memory are available. For example to avoid the influence of slow motion trends,
especially at the beginning of the motion correction process, we can randomly permute the frames order prior
to any registration, or start from the middle time point of the dataset and continue outwards towards the
beginning/end. Moreover, when operating in offline mode, the frames within each minibatch that is registered
with a fixed template can be processed in parallel, leading to potentially significant computational gains,
depending on the available infrastructure.

2.1.4 Application of the shifts

Application of the computed displacement vector (shifts) is trivial when the shifts are integer, since it
corresponds to simple image translation and no interpolation is required. However when fractional shifts
are applied there are multiple interpolation methods, based either on space interpolation (e.g., bilinear,
bicubic) or on frequency domain interpolation (FFT-based). The choice of interpolation methods can lead to
noticeably different results, a fact often overlooked. While frequency domain methods can be slower (since
they require the computation of an inverse FFT), they tend to preserve more structure because they retain
more frequency content of the signal and thus do not introduce any smoothing effects. For example, a rigid
translation corresponds to a simple phase modulation in the frequency domain, which leaves invariant the
power spectrum density of the image. Therefore, frequency interpolation also preserves the original SNR, as
opposed to spatial interpolation methods that smooth the signal and increase the SNR. We discuss this issue
in more detail in Section [3| ( Fig. @, where we show that frequency domain interpolation leads to crisper image
statistics compared to spatial interpolation. Since spatial smoothing can also be achieved post-registration
by default we use frequency domain interpolation. To preserve the dynamic range of the original data, the
registered frame is restricted to take values between the minimum and maximum values of the original frame.

2.2 Evaluation metrics

Typically motion correction algorithms for calcium imaging data are evaluated on artificial datasets where
known shifts are applied to registered data. On real data, evaluation typically occurs by visual inspection,
where users observe the data (or a temporally downsampled version of it) before and after registration to
assess the outcome of the registration. This makes the comparison of different algorithms on real datasets
very hard and biased. In this paper we propose a series of simple metrics that can be used to quantify the
performance of different algorithms. In section [3| we show that such metrics can be important for identifying
locations where pw-rigid motion correction improves significantly upon simple rigid registration, a task very
strenuous to be performed manually.

2.2.1 Correlation with the mean metric

To evaluate the results of the motion correction algorithm across the different frames, we use a metric that
is based on the similarity (pixel-wise, Pearson’s correlation coefficient r) between a reference template and
each frame. For instance, one can compute for both the raw and corrected movie the correlation coefficient
between each frame and the mean image across time, and then compare them. Intuitively, an increase in
the correlation coefficient for a given frame indicates a better alignment with the mearﬂ To account for

11f a static colored channel exists, these coefficients can in principle reach values very close to one, but in practice are limited
by measurement noise. For variable channels their value is also limited by the time varying courses of the underlying neuronal
processes.


https://doi.org/10.1101/108514
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/108514; this version posted February 14, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

boundary effects during registration, a number of pixels around each boundary (e.g., equal to the maximum
shift in each direction over time) is removed when computing the correlation coefficients.

This metric can be used to identify frames where the registration is successful or not, or to compare
different motion correction algorithms at the level of individual frames. However, this metric critically depends
on the smoothness properties of each frame which, as discussed in sectionf3] can be affected by the method
used to apply the computed displacements. When we use this metric in the following, we always compare
algorithms that register frames by the means of applying shifts with the same method.

2.2.2 Crispness and focus measures

An alternative measure is to quantify how crisp is a summary image before and after registration. This can
be done by summing up the norm of the gradient field of the image on each location. If I is the resulting
summary image then this measure of crispness can be defined as

c(l) = [[IVI]|[F, (1)

where V denotes the gradient vector, | - | denotes the magnitude, and || - || denotes the Frobenius norm.
Examples of summary images include the mean image, or the correlation image (Clﬂ) Intuitively, a dataset
with non-registered motion will have a blurred mean image, resulting in a lower value for the total gradient
field norm. In addition to crispness, other measures of focus of the summarizing image can also be used. In
this case as well, we expect that spatial interpolation methods can affect this measure, since introducing
smoothing in each frame gives rise to a smoothed, higher valued correlation image with lower crispness.

2.2.3 Residual motion quantification

To evaluate the performance of the algorithm, we can attempt quantifying motion before and after registration
by using a different algorithm. In Section |3| we use the dense optical flow algorithm of |[Farneback! (2003)
to estimate the residual motion and thus quantitatively evaluate the performance of the registration. The
algorithm is not template based, and for each frame it estimates a motion field that attempts to match the
current frame to the next. To do so, it relies on an efficient polynomial approximation of pixel neighborhoods
to infer locally smooth displacement fields. Since the optical flow algorithm tries to match each frame to the
next it can be particularly sensitive to the low/mid-SNR conditions of typical calcium imaging datasets. To
quantify the residual motion of other registration methods, the optical flow algorithm needs to operate on a
significantly downsampled version of the dataset to ensure robustness (and computational tractability). As
such, we do not consider it as an appropriate method for registering calcium imaging data, but it can be a
useful and unbiased tool for assessing the performance of other methods.

2.3 Technical detalils
2.3.1 Restricting maximum shifts

To avoid potential instabilities from corrupted or very sparse frames, the shifts allowed by the algorithm
can be constrained within a user defined region. In practice, for each frame, NoRMCorre first computes the
rigid displacement vector for the whole frame, with a user defined maximum allowed value, e.g., ||d||cc < M,
where d is the rigid shift, M is the maximum allowed displacement in each direction, and || - || denotes the
loo (max) norm. Then, the displacement vector for each patch is constrained within a given region centered
around the rigid displacement vector, i.e., |[d* — d||s < n, where d*, is the displacement vector for patch 4,
and n is the maximum allowed deviation.

2.3.2 Merging overlapping patches

To apply the shifts on overlapping patches we construct a set of weight interpolating functions that are used
to ensure a smooth transition between registered neighboring patches. Consider the i-th patch, centered

2The image where the value for each pixel is the average of the correlation coefficients between the pixel and its neighbors.
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around the point (z;,y;) with size (s, s,) and overlap (04, 0y), resulting in a total size (s, + 204, 5y + 20y).
We define the trapezoid function

Lo — | <s5./2
20, — 2z — ;
Sz ¥ 20z |x xl|a Sw/lex_x7f|S81/2+om ’ (2)
0, ‘x—$i|>81/2+ox

X(z) = 20,

similarly the function b% () and the 2d function
B'(z,y) = b (2)by (y)- 3)

Then if I',..., I are the reconstructed patches, extended to take values in the whole FOV, the interpolated
registered frame is given by

ZiK:1 Ii(x,y)Bi(l‘,y) )
Zfil Bl(xvy)

I(z,y) = (4)

2.3.3 Avoiding smearing by upsampling

When shifts among neighboring patches differ significantly, the interpolation explained above can introduce
smearing effects. Take the case of two patches overlapping along the z-direction, whose z-shifts differ by
exactly 1 pixel. When interpolating, the registered overlapping region will be simply a weighed average of
two consecutive non-matching pixels along the z-direction, leading to a smeared result. Upsampling to a
finer grid can alleviate this undesirable outcome. For example, if we up-sample the grid by a factor of 2, the
difference in the displacements will be 0.5 pixels, thus inducing less smearing. We empirically observed that
smearing occurs when shifts in overlapping patches differ by more than 0.5 pixels in either direction, and we
suggest further upsampling to prevent it.

In theory, the grid could be upsampled to the point where each pixel has its own displacement vector.
However, this approach can be computationally very slow, therefore introducing a trade-off between com-
putational efficiency and smearing reduction. Hence, the upsampling factor can be chosen so that it fulfills
the no-smearing condition with the following formula. If n denotes the maximum deviation from the rigid
displacement for each patch, then two neighboring patches can have displacements that differ at most 2n
pixels in each direction (an extreme case that in not expected to be encountered often in practice), and an
upsampling factor of 22+1°g2 "1 where [] denotes the minimum integer greater or equal to z, guarantees
the no smearing condition. For computational reasons, in practice we often use a smaller factor, and the
interpolation is avoided for the frames where the smearing condition is not satisfied.

2.3.4 Choosing patch size and amount of overlap

Our algorithm requires a template with strong reference points that facilitates robust matching and alignment.
When splitting into patches to perform pw-rigid motion correction, each patch (together with its overlap)
needs to contain enough signal to produce a clear template. In dark areas, for instance, it is difficult to find
bright reference points and the alignment consequently fails. Empirically, for a typical 512 x 512 FOV with
somatic imaging, an initial patch size of 128 x 128 (with additional 32 pixels of overlap in each direction) is
a good choice. However, if the labelling is sparse then either a larger patch size and/or overlap might be
required to ensure there is enough information for robust template alignment.

The amount of overlap between subpatches ensures a smooth interpolation between neighboring patches
and alleviates boundary effects during the FFT registration. If [ is the size of the initial patch along one
dimension, u is the upsampling factor, and M + n is the allowed maximum displacement (maximum rigid
displacement plus deviation), then we choose the overlap after upsampling to be larger than M + n — /u, to
ensure that each patch is not shifted by an amount larger than its dimension.
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2000 frames Crisp. (mean) (a.u.) | Crisp. (CI) | OF (mean RMS, pixels) | Time (sec) | Interp.
Original 4301 9.87 1.574 £+ 1.502 - -
Rigid 6690 10.98 0.443 £ 0.328 40 FFT
SIMA 6678 9.25 0.244 £ 0.082 530 Integer
Suite2p 6694 9 0.246 + 0.08 86 FFT
Lucas-Kanade 6394 10.36 0.197 £ 0.084 1856 Bilinear
NoRMCorre 7483 10.69 0.154 £0.09 89 Bicubic
NoRMCorre 7531 11.48 0.15+0.09 117 FFT

Table 1: Comparison of NoRMCorre with other non-rigid motion correction algorithm on a 2000 frame,
512 x 512 pixel in vivo mouse cortex dataset.

3 Results

We tested the algorithm on data collected in vivo with a two-photon microscope on a mouse expressing
GCaMP6f in the parietal cortex, courtesy of S.A. Koay and D. Tank (Princeton University). The FOV had
size 512 x 512 pixels and the data was acquired at 30Hz. Fig. [2| provides a demonstration of the performance
of the rigid and piecewise rigid versions of our algorithm with respect to the various proposed metrics on
a 2000 frame segment of the dataset. According to all the considered metrics, pw-rigid motion correction
led to improved registration compared to plain rigid motion correction, which in turn improved significantly
over the non-registered data. Fig. shows a 100 x 100 pixel patch of the resulting mean for raw, rigid and
pw-rigid corrected. By inspection, the pw-rigid correction preserves more fine structure, something that is
also captured by the crispness metric (see eq. ) producing values of 4.3 x 103, 6.69 x 102, and 7.35 x 103
for raw, rigid and piecewise-rigid respectively. The same trend is also observed for the correlation with the
mean metric (Fig. @b) and the average per frame optical flow metrics (Fig. @c), where the scatter plots
demonstrate that the pw-rigid correction improves over the plain rigid correction for nearly all 2000 frames.
Consistently, the optical flow metric shows that the improvement is also global in space (every region of the
FOV exhibits less movement), with most of the remaining movement estimated to be around the boundaries
and due to poorer SNR or other possible border effects (Fig. @e). Fig. shows the displacements along
the z-axis for a small segment of frames (black), plotted against the displacements for each of the different
patches (before upsampling). Connecting with Fig. ,c left, we notice that pw-rigid motion correction brings
the most additional benefits over rigid motion correction when the dispersion of the displacements over the
different patches is high, i.e., NoRMCorre estimates and corrects for a higher amount of non-rigid motion.
The results are better displayed in movie format. Supplemental Movie 1 demonstrates the large variety of
motion field patterns the algorithm estimates during the registration process. Supplemental Movie 2 shows a
downsampled version of the results of rigid and pw-rigid registration, alongside the original data.

Next we compared NoRMCorre in its Python implementation with i) a Hidden Markov Model based
algorithm (Dombeck et al.| [2007), as implemented in the Python package SIMA (Kaifosh et al., 2014)), ii)
the block-rigid approach of the Matlab package Suite2p (Pachitariu et all 2016), and iii) the Lucas-Kanade
approach of |(Greenberg and Kerr| (2009)). These three methods are also suitable for non-rigid motion correction
and have available implementations in Python (SIMA) or Matlab (Suite2p, Lucas-Kanade). We compared the
three methods with respect to the quality metrics and the speed. For reference we also include the metrics of
the non-registered data as well as the performance of rigid motion correction from the Python implementation
of NoRMCorre. The results (Table (1) indicate that NoRMCorre achieves the best performance for crispness
metrics and residual motion at a speed comparable to rigid motion correction, which is unsurprisingly the
fastest method but produces the worst results in terms of residual motion. The residual motion was calculated
with the dense optical flow (OF) algorithm of [Farneback| (2003)) in its OpenCV (v3.2, http://opencv.org)
implementation, after temporal downsampling of the data to increase the SNR (see Section . We note
that for all of the other three different methods, the best and reported results were obtained by taking blocks
along the z-direction which is parallel to the raster scanning direction, demonstrating the fact that the largest
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part of the motion may not be due to raster scanning effect. Details of the various implementations are given
in the supplement.

Table 1] also illustrates the effect of the interpolation method. When applying NoRMCorre with bicubic
interpolation it achieves similar residual motion compared to NoRMCorre with Fourier interpolation albeit at
a faster speed. However, the crispness of the mean and correlation images decreases due to the smoothness
introduced by the bicubic interpolation. This point is highlighted even further in Fig. [3] where the correlation
and mean images are shown for NoRMCorre and the Lucas-Kanade method, emphasizing the effect of different
interpolation methods. Bilinear and bicubic interpolation smooths the data (Fig. @A, left and middle), and
biases upwards the correlation between neighboring pixels, as opposed to Fourier interpolation that retains
the structure displayed by the weak correlations between neighboring pixels (Fig. @A, right). On the other
hand, the effect on the correlation with the mean metric is opposite leading to higher values for bilinear
interpolation with Lucas-Kanade registration (0.499 + 0.033), and bicubic interpolation with NoRMCorre
registration (0.443 4+ 0.017), as opposed to Fourier based interpolation with NoRMCorre which achieves a
significantly lower value (0.399 & 0.014). This highlights the sensitivity of this metric on the interpolation
method, and why it should be used carefully in comparisons.

4 Discussion

Non-rigid motion within a frame can occur not only due to slow raster scanning but also because of relative
brain elastic deformation within the field of view. While faster raster scanning can result in higher imaging
rates for a given FOV and thus reduce the amount of intra frame motion, modern methods enable imaging of
even larger areas and/or volumes (e.g., [Sofroniew et al.| (2016)); [Stirman et al.| (2016))) within which significant
intra-frame motion is still possible. We believe that fast non-rigid motion correction will remain an important
challenge in the future. NoRMCorre provides a simple and online method based on piecewise rigid template
alignment that achieves state of the art results at a speed comparable to real time.

To better quantify the benefits of piecewise registration over rigid registration as well as to compare
NoRMCorre with other non-rigid motion registration algorithms we developed some intuitive metrics that
measure the crispness of the registered images and also used independent algorithms to estimate the amount
of residual motion after registration. These metrics also highlighted the importance of the interpolation
method that is chosen to apply the computed displacement vectors. While the effect of the smoothing
introduced by the spatial interpolation methods might be minimal, and actually create the perception of a
higher SNR, we took the stand that the statistics of the registered data should reflect the original input as
much as possible, spatial smoothing can occur downstream in the analysis when necessary. We argued that
by using the computationally more expensive Fourier based interpolation and avoiding any smoothing, one
can better preserve the statistics of originally acquired data.

The ultimate goal of motion registration is to stabilize the FOV. This is important for segmentation
reasons because several current source extraction methods identify sources by searching for groups of pixels
that behave similarly with each other across time (Pnevmatikakis et al.l [2016)). An alternative to such
approaches would be to track individual neurons over time, an approach that has been taken when imaging
freely moving C. elegans (Nguyen et al.l |2016), where the deformations can be very dramatic. However, these
methods tend to be computationally very expensive and have not yet found applications in registering other
types of data.

The dataset used as an example in this paper pertains to two-photon, two-dimensional, raster scanning
imaging of mostly cell bodies. However, our approach can also be applied to other types of imaging datasets.
For the case of one-photon, microendoscopic data, high pass spatial filtering can be used to remove the bulk
of the smooth background signal created by the large integration volume, and create stark reference points,
prior to applying registration. NoRMCorre can also be readily applied to dense volumetric data (e.g., SCAPE
microscopy (Bouchard et all |2015])), where non-rigid motion can exist in all 3 directions. More details about
such applications will be presented in the future.
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Software

Matlab code (also applicable to 3D volumetric imaging data) is available as a standalone package https:
//github.com/simonsfoundation/NoRMCorre. This package complements and will be integrated with
the CNMF Matlab package for demixing and deconvolution of registered movies (Pnevmatikakis et al.|
2016|) available at https://github.com/epnev/ca_source_extraction. NoRMCorre is also implemented
in Python https://github.com/simonsfoundation/CalmAn|as part of the CalmAn package (Giovannucci
et al., 2017).
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Figures

Dataset description

Data was obtained from the parietal cortex of a transgenic GCaMP6f-expressing mouse during a behavioral
task. Field of view was approximately 500x500 um? (512 by 512 pixels) in size and at depth 125um below
the dura surface. Horizontal scans of the laser were performed using a resonant galvanometer, resulting in a
frame acquisition rate of 30Hz.

Implementation details

All analaysis and simulations was performed on a Dell Precision Tower 7910, 24 cores Intel(R) Xeon(R)
E5-2643 v3 @3.40 GhZ, 128 GB RAM). For the pw-rigid version of the FOV was initially split in patches of
size 128 x 128 pixels with an additional 32 pixels of overlap on each side. Each patch was further upsampled
by a factor of 4. The algorithm was run in its offline mode with template obtained from the rigid registration
of the first 500 frames. For the other three methods (SIMA, Suite2p, Lucas-Kanade), best results were
obtained by taking blocks of size 512 x 16 pixels (excluding overlap), tiled horizontally (in parallel and not
vertical to the raster scanning direction). For computation of the various metrics 12 pixels were removed
from each side along both directions to avoid the boundary effects due to the registration. The optical flow
algorithm was applied to a 5x downsampled version of the registered data to increase SNR and robustness.

Description of Supplemental Movies

Supplemental Movie 1. Depiction of the online pw-rigid motion correction procedure: Each
frame of the original data (top left) is registered against a template (bottom right) in a piecewise rigid manner
by shifting small patches according to the computed and upsampled motion field (bottom left). The resulting
registered frame is shown on top right. Observance of the motion field shows the diverse non-rigid motion
patterns that the algorithm estimates along both direction. The template is updated online during the
registration process every 50 time steps. The movie is reproduced at the original data acquisition rate of 30
Hz. The movie can be downloaded from the following url: https://www.dropbox.com/s/frodgll8uzpitkv/
SA_online_128_32_4x_600frames_30_hz.avi?d1l=0.

Supplemental Movie 2. NoRMCorre corrects for non rigid motion along both directions.
Comparison between the original data (left), corrected with rigid registration (middle) and piecewise rigid
registration with NoRMCorre (right). Original and registered datasets are first downsampled 5x in time and
then reproduced at 3x the original rate to aid the visual perception of the registration results. NoRMCorre
with pw-rigid registration performs significantly better compared to rigid registration as also detail in Figure
The movie can be downloaded from the following url: https://www.dropbox.com/s/kx539q5indx0risb/
3X_speed_128_64_FFT.avi?d1=0.


https://www.dropbox.com/s/frodgll8uzpitkv/SA_online_128_32_4x_600frames_30_hz.avi?dl=0
https://www.dropbox.com/s/frodgll8uzpitkv/SA_online_128_32_4x_600frames_30_hz.avi?dl=0
https://www.dropbox.com/s/kx53q5indx0r1sb/3X_speed_128_64_FFT.avi?dl=0
https://www.dropbox.com/s/kx53q5indx0r1sb/3X_speed_128_64_FFT.avi?dl=0
https://doi.org/10.1101/108514
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/108514; this version posted February 14, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

patch size

Init template Frame

overlap

SUIYS

upsampled patches

or combination of both

— — — — — —
4_

Rolling mean, median

Figure 1: Schematic representation of the proposed algorithm. a: Hlustration of the scheme used to
overlap patches. b: Top. Illustration of the process of upsampling the shifts. Bottom. Visual representation
of the motion estimated field on the original (left) and upsampled (right) patches. The yellow arrow’s length
represent the direction and magnitude of the motion field. ¢: Pipeline for piece-wise rigid registration of a
frame against a given template, and template updating.
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Figure 2: Illustration of performance on in vivo mouse parietal cortex data. a: Mean image of raw
data (focused on a 100 x 100 pixels part of the FOV for clarity). Raw data (left), rigid corrected (middle)
and piecewise-rigid corrected (right). NoRMCorre with pw-rigid correction results in a more structured mean
image as quantified by the crispness of the image (c(raw) = 4.3 x 103, ¢(rigid) = 6.69 x 103, c(piecewise) =
7.53 x 103, measurements in absolute units). b: Quantification of performance based on the correlation with
mean metric. For nearly every frame rigid correction improves over the raw data, and pw-rigid improves over
rigid. Left. Mean correlation metric for a subset of frames. Scatter plot of frame-by-frame mean correlation
metric of raw vs rigid (center) and rigid vs pw-rigid (right). ¢, e: Quantification of performance using the
optical flow measure averaged over space (¢, mean over space RMS value in pixels) and over time (e, mean
over time RMS value of residual motion in pixels). Consistently, pw-rigid correction improves over plain rigid
correction (left, frame by frame; center, scatter rawyys rigid; right, scatter rigid vs pw-rigid) and most of
the remaining motion, as estimated with optical flow, remains on the boundaries of the FOV (e, left). d:
Comparison of the rigid displacement (black) along the x-axis with the displacement of each patch for a
subset of frames. The main benefits from the piecewise rigid correction, as can be seen from b and c¢ (left)
come at frames where the displacements exhibit maximum dispersion.
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Figure 3: Effect of interpolation method on registered data. a: Correlation images for registered
methods with 3 different methods restricted on a 170 x 170 pixels part of the FOV. Lucas-Kanade method with
bilinear interpolation (left), and NoRMCorre with bicubic interpolation (middle) and Fourier interpolation
(right). Fourier interpolation retains the weak correlation structure between neighboring pixels, whereas
spatial interpolation “washes” away this structure by introducing smoothing during the shift application
resulting in higher values for the correlation image. b: Mean images for the three approaches. The differences
are less visible by eye, but quantitatively NoRMCorre with Fourier interpolation produced the crispest mean
image (see Table [1)).
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