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Abstract  

 

Pattern separation is a fundamental function of the brain. Divergent 

feedforward networks separate overlapping activity patterns by mapping them 

onto larger numbers of neurons, aiding learning in downstream circuits. 

However, the relationship between the synaptic connectivity within these 

circuits and their ability to separate patterns is poorly understood. To 

investigate this we built simplified and biologically detailed models of the 

cerebellar input layer and systematically varied the spatial correlation of their 

inputs and their synaptic connectivity. Performance was quantified by the 

learning speed of a classifier trained on either the mossy fiber input or 

granule cell output patterns. Our results establish that the extent of synaptic 

connectivity governs the pattern separation performance of feedforward 

networks by counteracting the beneficial effects of expanding coding space 

and threshold-mediated decorrelation. The sparse synaptic connectivity in the 

cerebellar input layer provides an optimal solution to this trade-off, enabling 

efficient pattern separation and faster learning. 
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The ability to distinguish similar, yet distinct patterns of sensory inputs is a core 

feature of the nervous system. Pattern separation underlies such everyday activity 

as recognizing faces and distinguishing odors. Early theoretical work showed that 

divergent excitatory feedforward networks can separate patterns of neuronal activity 

by projecting them onto a larger population of neurons and by reducing the fraction 

of neurons active, forming a ‘sparse code’ where the likelihood of overlapping 

patterns is low1–6. Divergent feedforward networks, thought to be involved in pattern 

separation, are widespread in the nervous system of both vertebrates and 

invertebrates, including the olfactory bulb7,8, mushroom body9,10, dorsal cochlear 

nucleus11 and hippocampus12,13. But perhaps the most well studied example is the 

input layer of the cerebellar cortex, which combines many different types of sensory 

modalities and motor command signals14. 

 

The input layer of the cerebellar cortex has an evolutionarily conserved network 

structure, in which granule cells receive 2-7 synaptic inputs, with the claw-like ending 

of each of their dendrites innervating a different mossy fibre14. Interestingly, other 

divergent feedforward networks also have relatively few synapses: granule cells in 

the dorsal cochlear nucleus have 2-3 dendrites15 while Kenyon cells in the fly 

olfactory system have around 7 synaptic inputs16. This raises the question of why the 

synaptic connectivity of these networks is so similar. Our recent work has shown that 

having few synaptic inputs per granule cell provides an optimal trade-off between 

sparsening population activity and efficient information transmission3. However, there 

are several other important determinants of pattern separation, including “expansion 

recoding” (i.e., representing information in a higher-dimensional space1,17–19), 
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and reducing correlations in the input patterns9,10. But our limited understanding of 

the relative importance of these properties makes the relationship between pattern 

separation and network structure unclear.  

 

We examined the relationship between network structure and pattern separation in 

the cerebellar input layer by studying how divergent feedforward networks transform 

highly overlapping mossy fiber activation patterns. Using a combination of simplified 

and biologically detailed models, we disentangled the effects of correlations from 

expansion and sparsening of spatially clustered input patterns. Moreover, we 

quantified pattern separation performance by assaying learning speed using a 

machine-learning algorithm. Our results establish that the excitatory synaptic 

connectivity of feedforward networks is a major determinate of pattern separation 

performance. Furthermore, they suggest that the evolutionarily conserved sparse 

synaptic connectivity found in divergent feedforward networks is essential for 

separating spatially correlated input patterns. 

 

Results 

The cerebellar input layer consists of mossy fibers (MFs), which form large en 

passant mossy-type synapses called rosettes, granule cells (GCs) which have ~4 

short dendrites, and inhibitory Golgi cells which form an extensive dense axonal 

arbor that spans the local region. To capture the excitatory synaptic connectivity we 

used an anatomically accurate 3D model of a local region of the cerebellar input 

layer network3. The 80 μm diameter model had experimentally measured densities of 
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MF rosettes (~180 in total) and GCs (~480 in total) and random connectivity, subject 

to the spatial constraint that MF-GC distances were close to 15 μm (Fig. 1a). 

Importantly, this anatomically detailed model reproduced the measured 1:2.9 local 

expansion ratio between MF rosettes and GCs, the 1:12 divergence at the rosette-

GC synapse and the sampling of 4 different rosettes by individual GCs.  

 

To capture spatial correlations in the MF activation patterns conveying sensorimotor 

information to the cerebellar cortex, we used a technique to create spike trains with 

specified firing rates and spike correlations20. A Gaussian correlation function was 

used to describe the distance-dependence of rosette co-activation, which was 

parameterized by its standard deviation σ (Fig. 1b). To explore how synaptic 

connectivity and input correlations affect pattern separation we varied the number of 

synaptic connections per GC (Nsyn) in the model and presented the networks with 

different activity patterns with different values of σ. We first implemented a simplified, 

tractable rectified-linear model of GCs with a high threshold and assayed network 

performance by training a perceptron decoder to classify either MF or GC population 

activity patterns into randomly assigned classes (Fig. 1c). 

 

Sparse connectivity speeds learning and increases robustness 

We first tested whether the evolutionarily conserved connectivity in the cerebellar 

input layer (Nsyn = 4) could separate MF activation patterns and thus aid learning. 

Network performance was assayed with learning ‘speed’ (quantified by the number 

of training epochs required to reach a threshold error level) of a downstream 

perceptron decoder17. Comparison of learning speed when the perceptron was 
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connected to the raw MF input (blue) or the processed GC output (red) confirmed 

that the GC layer network speeds learning (Fig. 1d). However network performance 

depended strongly on input correlations and the density of connectivity (Fig. 1e). 

Indeed, the speed of learning for more densely connected networks (Nsyn = 16, 

dashed red line in Fig. 1e) was worse than raw MF input. 

 

To quantify the relationship between synaptic connectivity and learning speed we 

generated a family of network models with different Nsyn (ranging from 1 to 20) and 

determined their performance across the full range of MF input activity level (i.e. the 

fraction of active MFs). To compare network performance across different conditions 

we normalized the learning speed of the classifier when connected to the GCs by the 

learning speed when connected directly to the MFs, such that a normalized speed >1 

indicated that the GC layer improved learning performance. For independent MF 

activation patterns (σ = 0 μm) the normalized learning speed was substantially 

increased across a wide range of input activity in networks with few synaptic 

connections per GC (Fig. 1f, left). The normalized performance improved for higher 

levels of MF activation because the MF activity was too dense for efficient learning. 

Interestingly, the fastest speed up occurred with ~4 synapses per GC. However, as 

Nsyn increased, the range of MF activity over which the GC layer network sped 

learning decreased.  

 

When spatial correlations were introduced in the MF input, the ranges of MF 

activation and synaptic connectivity over which the GC layer improved learning 

speed increased. However, optimal performance (up to an 8-fold speed up) occurred 
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when synaptic connectivity was sparse (i.e. the number of synaptic connections per 

GC was low; Nsyn  = 2-5; Fig. 1f, right), as for the case with spatially independent 

input. Normalized learning speed increased with the MF correlation radius σ but 

saturated at around 15 μm (Fig. 1g, top). Moreover, the fraction of the parameter 

space in which GC learning outperformed MF learning (a measure we refer to as 

‘Robustness’ of GC learning; see Supplementary Methods) also saturated around 15 

μm (Fig. 1g, bottom). These results suggest that to improve learning performance in 

downstream classifiers, cerebellar-like feedforward networks require sparse synaptic 

connectivity.  

 

Sparsening and expansion in coding space 

To better understand why sparsely connected feedforward networks improve 

learning, while densely connected networks do not, we analyzed how these networks 

transform activity patterns. Marr-Albus theory posits two factors that are necessary 

for pattern separation in cerebellar cortex: sparsening and expansion recoding. We 

first tested whether sparse coding could explain the dependence of learning speed 

on network connectivity by measuring the population (i.e., spatial) sparseness of GC 

and MF activation patterns21. To compare the change in sparseness across 

parameters we normalized the sparseness in the GC population by the sparseness 

of the MF population. Although networks with many synaptic connections result in 

the sparsest activity3, the normalized sparseness was only weakly dependent on 

different numbers of synaptic inputs per GC (Fig. 2a, Fig. 2b, top). Moreover, 

increasing the correlation radius decreased the normalized sparseness and had no 

effect on the robustness of sparsening (cf. Fig. 2b and Fig. 1g). Therefore the 
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change in population sparseness was not able to account for the effect of network 

connectivity and MF correlations on learning speed in our threshold-linear models. 

 

We next considered whether expansion in coding space could explain the trends in 

pattern separation that we have observed. Expansion recoding is thought to speed 

learning by increasing the distance between patterns in coding space. A key property 

of such expansion is the size of the distribution of activity patterns, which can be 

quantified by calculating the total variance in activity across the GC population (i.e., 

the sum of the variances), normalized by the total variance of the MF population. The 

normalized total variance captures both the expansion in dimensionality (i.e., due to 

the 1:2.9 expansion ratio) and any change in the overall size of the population coding 

space. The change in total variance was a better predictor of the change in learning 

speed than the population sparseness alone, as it was increased in the regions of 

parameter space where the expansion in coding space improved learning (left 

panels of Fig. 2c and Fig. 1f). However, the total variance could not fully explain how 

the network structure affected learning (assuming a linear relationship with the 

learning speed), since it tended to underestimate network performance for sparsely 

connected networks and overestimate performance for densely connected ones, 

particularly for correlated MF inputs (right panels of Fig. 2c and Fig. 1f). Moreover, 

the magnitude and robustness of the normalized total variance increased 

approximately linearly with MF correlations (Fig. 2d), unlike the saturation observed 

for learning speed (Fig. 1g). Thus the dependence of pattern separation and learning 

speed on network connectivity and MF input properties cannot be accounted for by 

changes in the sparseness and the size of the coding space alone. 
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Decorrelation of MF activation patterns 

The presence of spatial correlations in MF inputs is expected to reduce the 

dimensionality of activity patterns and slow learning due to increased pattern 

overlap. Mathematically, the shape of the distribution of activity patterns can be 

related to the covariance matrix, since the square roots of its eigenvalues correspond 

to the lengths of the principal directions of activity space (as illustrated for 3 

dimensions in Fig. 3a, top). Independent MF activation results in more uniform 

eigenvalues (e.g. a sphere in 3 dimensions), whereas more correlated distributions 

have a more heterogeneous spread of eigenvalues and hence an elongated 

distribution (Fig. 3a, bottom).  

  

To assay neural co-variability we introduced a population-based measure of 

correlation, calculated using the eigenvalues of the covariance matrix, which 

captured the elongation of the distribution of activity patterns (see Methods). This 

“population correlation” varied from 0 for an uncorrelated Gaussian with identical 

variances (see Supplementary Methods for a discussion on heterogeneous 

variances) to 1 (e.g., if all neurons have identical activity). Networks with dense 

synaptic connectivity exhibited considerably higher normalized population correlation 

(i.e. GC population correlation/MF population correlation) than networks with sparse 

synaptic connectivity irrespective of the correlation radius (Fig. 3b). This occurred 

because networks with higher synaptic connectivity receive a larger number of 

shared inputs from MF rosettes. In the limit of full connectivity, in which each GC is 

connected to all MF rosettes, all GC patterns will be identical, rendering learning of 
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different patterns impossible. Thus sparse synaptic connectivity minimizes unwanted 

correlations being introduced by the network structure.  

 

Network structure was not the only factor governing the GC population correlation. 

Surprisingly, when the activity patterns of MF inputs were spatially correlated, the 

population correlation of GCs in sparsely connected networks was often lower than 

that of the MF inputs, as revealed by plotting the normalized population correlation 

(Fig. 3c, right). Such decorrelation of input patterns has been shown to arise from 

spike thresholding, which attenuates subthreshold correlations22. The robustness of 

pattern decorrelation in our networks saturated when the correlation radius of the 

activity patterns reached ~15 μm, potentially explaining the saturation in learning 

observed previously (Fig. 3b, bottom, cf. Fig. 1g). Moreover, varying the expansion 

ratio (Supplementary Fig. 1) and including adaptive thresholding to model 

feedforward inhibition (Supplementary Fig. 2) produced qualitatively similar results. 

These results suggest that correlations arising from MF input patterns, spike 

thresholding, and network structure all play a key role in pattern separation. 

 

Interestingly, when network correlations were assayed with the average Pearson 

correlation coefficient, rather than normalized population correlation, the ability of 

sparsely connected networks to perform decorrelation was no longer visible (Fig. 

3d). This reveals a fundamental property of the decorrelation performed by sparsely 

connected feedforward networks: the population correlation takes into account the 

shape of the distribution at the full population-level, while the correlation coefficient 

only considers the marginal distributions of pairs of cells, missing how they may work 
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together to shape the full distribution. This has important implications for measuring 

coordinated activity in these networks, as a large fraction of cells are required to 

observe population decorrelation (e.g. >60% of the population for strong input 

correlations; Fig. 3e). Simultaneous recordings from a substantial proportion of MFs 

and GCs will therefore be crucial to measure the extent of decorrelation in the input 

layer of the cerebellar cortex. 

  

Determinants of expansion and decorrelation 

To understand how synaptic connectivity and spike thresholding separately 

contribute to pattern separation, we next analyzed pattern expansion and correlation 

in networks of GCs with linear transfer functions (i.e. zero threshold), since under 

these conditions the changes in total variance and population correlation arise solely 

from the network structure. The total variance of linear GCs was larger than that of 

the MFs over the full range of parameters; however, as the number of synaptic 

inputs increased, the normalized total variance decreased (Fig. 4a). This decrease 

occurs because as Nsyn increases, GCs average the signals across more MFs, 

leading to a reduction in the size of the coding space. Comparison of these results 

with those from networks with GCs with nonlinear spike thresholds (Fig. 2c, left) 

shows that the spike thresholding nonlinearity reduces both the magnitude of the 

coding space and its robustness (Supplementary Fig. 3). Thus, expansion in coding 

space is maximal for linear networks with Nsyn = 1, but this is reduced by increasing 

network connectivity and by GC thresholding. 
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Linear GC networks also revealed that the network structure introduces considerable 

population correlation (Fig. 4b). However, this was markedly reduced in networks of 

nonlinear neurons due to threshold-induced decorrelation (Fig. 3c). Previous work 

has shown that input correlations can be quenched by the presence of intrinsic 

nonlinearities22.  Our results show that for feedforward networks, threshold-induced 

decorrelation of MF input patterns was most pronounced in sparsely connected 

networks (e.g. Nsyn = 2-9). Indeed, increasing the spike threshold increased the 

region of decorrelation in our networks (Fig. 4c, top; see also Supplementary Fig. 3), 

consistent with previous work showing that sparsening of activity patterns 

decorrelates inputs21,23. In contrast, the decorrelating effect of thresholding had little 

effect when Nsyn was large, due to the presence of large network-induced 

correlations in the inputs. Moreover, decorrelation was not observed when Nsyn = 1, 

when the GC transfer function is equivalent to a linear system. Thus GC thresholding 

enables decorrelation of spatially correlated input patterns only when the synaptic 

connectivity of the network is sparse and Nsyn>1. 

 

These simulations reveal a trade-off between expansion of coding space and a 

reduction of input correlations that depends on both the network connectivity and 

spike thresholding. Networks with dense connectivity perform pattern separation 

poorly because they quench coding space and introduce strong spatial correlations. 

By contrast, the sparse synaptic connectivity found in many feedforward networks, 

including the cerebellar input layer, minimizes the correlations introduced by the 

network, thereby enabling both expansion of coding space and decorrelation of input 

patterns by spike thresholding. Moreover, sparsening GC population activity by 
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increasing spike threshold alters the trade-off between decorrelation and expansion 

(Fig. 4c, top). This suggests that extremely sparse codes are not optimal for pattern 

separation and learning due to the quenching of coding space (Fig. 4c, bottom). 

 

Quantifying the contributions of correlation and decorrelation 

To quantify the contribution of spatial correlations to pattern separation, it was 

necessary to isolate their effect on learning speed from those arising from 

sparsening and expansion of coding space. This required ‘clamping’ the population 

correlation of the GC population to the value of the population correlation of the MF 

input. However, this constraint necessitated the removal or addition of correlations, 

while keeping the single-cell statistics (i.e., firing rates and variances) unchanged. To 

achieve this we extended methods that use random “shuffling” of the timing of 

activity patterns to remove all correlations24 by developing an algorithm that shuffled 

activity patterns to a pre-specified (but nonzero) level of population correlation (see 

Methods). The shuffled GC activity distributions had the same population correlation 

as the MFs (Fig. 5a), while the total variance and firing rates remained unchanged 

(Fig. 5b). Importantly, this procedure also maintained the sparseness of the GC 

population (Fig. 5c), allowing us to separate the effect of correlations from expansion 

and sparsening. 

 

Shuffling GC activity patterns to match population correlation in the MF input had a 

strong influence on learning speed when compared to the unshuffled control 

networks, especially for dense synaptic connectivity (Fig. 5d). Unlike the true GC 

responses, shuffled patterns maintained rapid learning across the full range of 
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synaptic connectivity examined. These results confirm that correlations induced by 

network connectivity counteract the positive effects of pattern expansion, sparsening, 

and decorrelation on pattern separation and learning.  

 

We next normalized the GC learning speed by the learning speed using shuffled GC 

spike patterns. This enabled us to quantify the effect correlations have on network 

performance after controlling for the effects of expansion and sparsening. There was 

a strong negative correlation between the normalized population correlation and 

learning (Fig. 5e), showing that population correlation reduces the normalized 

learning speed to as low as 0.05 (corresponding to a 20-fold reduction of learning 

speed). In contrast, learning speed was enhanced (up to a 4-fold increase) in 

sparsely connected networks where the relatively weak network-dependent 

correlations were quenched by spike-threshold mediated decorrelation. Thus in 

networks with sparse synaptic connectivity both the expansion in coding space and 

active decorrelation combined for faster, more robust pattern separation and 

learning.  

 

Pattern separation performed by a biologically detailed spiking model  

To test the validity of the predictions from our simplified analytical models, we 

performed simulations with biologically detailed spiking network models of the 

cerebellar input layer (Fig. 6a). Active MFs were modeled as rate coded Poisson 

spike trains as observed in vivo25–27 and GC integration was modeled as an 

integrate-and-fire neuron with experimentally determined input resistance and 

capacitance, as well as AMPA and NMDA receptor-type excitatory synaptic 
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conductances that included spillover components and short-term plasticity3. The 

tonic GABAA receptor-mediated inhibitory conductance present in GC was also 

included28. This level of description reproduces the measured GC input-output 

relationship29,30. The synaptic connectivity of the experimentally constrained 3D 

network model was identical to the analytical model. A downstream decoder was 

trained to classify MF, GC, or shuffled GC spike counts in a 30 ms time window, 

corresponding to the effective integration time of GCs3,30. Despite the stochastic 

noise introduced by the Poisson input trains, networks with the sparse level of 

synaptic connectivity found in the cerebellar input layer separated MF activation 

patterns and sped up learning by up to 4-fold. Biologically detailed models also 

exhibited the same general trends for pattern separation and learning that were 

present in the analytical model: learning was fastest for sparsely connected 

networks, while densely connected networks performed worse than MFs (Fig. 6b). 

Moreover, the robustness of the normalized learning speed increased with 

increasing input correlations for sparsely connected networks, but did not 

significantly increase for densely connected networks. 

 

To examine how sparsening of population activity and expansion of coding space 

contributed to the speed up in learning in biologically detailed models we first 

examined the normalized sparseness of the spike count patterns. The increase in 

the normalized sparseness with the number of synaptic inputs was more pronounced 

than for the simplified threshold-linear model (Fig. 6c, left).  This is likely to be due to 

the dependence of the shape of the GC input-output function on the number of 

synaptic connections3. However, while the normalized learning speed increased with 
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input correlations in sparsely connected networks (Fig. 6d), the normalized 

sparseness decreased (Fig. 6e). Therefore, sparseness was not able to explain the 

dependence of learning on the MF input correlation. In contrast, the normalized total 

variance had a similar dependence on synaptic connectivity and MF activation as the 

normalized learning speed (Fig. 6c, middle). Moreover, sparsely connected networks 

improved performance with increasing correlations while densely connected 

networks exhibited little change (Fig. 6F). However, the normalized total variance 

was unable to capture the full magnitude of the speedup for sparsely connected 

networks. Interestingly, decorrelation was more robust in the spiking models than in 

the corresponding reduced model (Fig. 6c, right). Like sparseness, this is likely to be 

due to the change in the GC input-output function with increasing numbers of inputs. 

In line with predictions from the analytical models, as the correlation radius 

increased, the normalized population correlation decreased (Fig. 6g). Finally, upon 

shuffling GC spike count patterns, we found a strong negative relationship between 

the population correlation and its impact on learning, with decorrelation speeding 

learning beyond the effects of expansion, as predicted by our analytical model (Fig. 

6h c.f. Fig. 5e). These results show that the network connectivity and biophysical 

mechanisms present in the cerebellar input layer can implement effective pattern 

separation.  Moreover they confirm the predictions from our simplified models, which 

show that sparse connectivity and nonlinear thresholding is essential for effective 

pattern separation and decorrelation in feedforward excitatory networks. 
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Discussion 

We have explored the relationship between the structure of excitatory feedforward 

networks and their ability to perform pattern separation. To do this we examined how 

both simplified and biologically detailed networks models with varying synaptic 

connectivity transform spatially correlated neural activity patterns, and how such a 

transformation affects the learning speed of a downstream classifier. Our results 

reveal that the structure of divergent feedforward networks governs pattern 

separation performance because increasing synaptic connectivity increases 

correlations in the output layer, counteracting the beneficial effects of expansion of 

coding space. Effective pattern separation is restricted to networks with few synaptic 

connections per neuron, since only sparsely connected networks are able to limit 

correlations introduced by the network and actively decorrelate input patterns 

through spike thresholding. Our work suggests that the evolutionarily conserved 

synaptic connectivity found in the input layer of the vertebrate cerebellum is optimal 

for separating spatially correlated input patterns, enabling faster learning in 

downstream circuits.  

 

The idea that divergent feedforward networks separate overlapping activity 

patterns by expanding them into a higher dimensional space has a long history. In 

the cerebellum, pioneering work by Marr and Albus linked the structure of the input 

layer to expansion recoding of activity patterns1,17. Subsequent theoretical work has 

broadened our understanding of how pattern separation, information transfer, and 

learning can arise in cerebellar-like feedforward networks2,3,6,31–33. Our work extends 

these findings by quantifying how the synaptic connectivity within feedforward 
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networks affects their ability to separate spatially correlated input patterns. We 

gained new insight into pattern separation by analyzing how network connectivity 

affects the size of the coding space, population sparseness and correlations, which 

are its key determinants. Moreover, we showed that biologically detailed network 

models with the sparse network connectivity and biophysical mechanisms present in 

the cerebellar input layer can decorrelate spatially correlated synaptic inputs, 

perform pattern separation, and speed up learning by a downstream classifier.  

   

In addition to expansion recoding, classic studies have also highlighted the 

importance of sparse coding for pattern separation1,4,17,31,33. Moreover, our previous 

work showed that the sparse synaptic connectivity in the cerebellar input layer is well 

suited for performing lossless sparse encoding3. Our current findings provide new 

insight into pattern separation by showing that the increase in population sparseness 

from MFs to GCs is not able to explain the dependence of learning speed on MF 

correlation (Fig. 2a,b). While sparsening activity aids pattern separation for 

uncorrelated input patterns4,6,31,33, expansion of coding space and decorrelation of 

activity patterns had a greater impact on learning speed for more biologically realistic 

spatially correlated input patterns (Fig. 6c). Receptive field properties that are 

matched to the statistics of the sensory input could make expansion and sparse 

coding more effective by reducing the variance of sensory evoked activity patterns, 

thereby reducing pattern overlap6. But, excessive sparsening with high thresholds 

quenches the coding space (Fig. 4c) and results in a loss of information3, which are 

detrimental for robust pattern separation. Thus, for the random spatially correlated 

inputs studied here, expansion of coding space and decorrelation, rather than 
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sparsening, are the main determinants of pattern separation in sparsely connected 

feedforward networks. 

 

Inhibition has been shown to sparsen and decorrelate neural activity patterns10,3,34,35. 

Inhibition in the cerebellar input layer is relatively simple with a large fixed tonic 

GABAA receptor-mediated inhibition of GCs (which was implemented in our 

biologically detailed simulations) that is complemented by a weaker activity-

dependent component mediated by phasic release and GABA spillover from Golgi 

cells28,36.  When network-activity dependent thresholding was included to 

approximate feedforward Golgi cell inhibition of GCs3,37, we observed greater 

decorrelation, but the dependence of pattern separation on network connectivity was 

preserved (Supplementary Fig. 2). Increasing the level of inhibition with the 

excitatory drive improves decorrelation because the higher spike threshold ensures 

that a substantial proportion of the correlated input remains subthreshold and is 

therefore filtered out. Dynamic inhibition is even more crucial for decorrelation in 

recurrent networks than simple feedforward networks, since the synaptic connectivity 

supports a finer balance of excitatory and inhibitory conductances, enabling more 

effective canceling out of inputs and stable asynchronous dynamics38–41.  

 

Because pattern separation is essential for a wide range of sensory and motor 

processing, it is not surprising that divergent feedforward excitatory networks are 

found throughout the brain of both vertebrates and invertebrates. Interestingly, the 

connectivity in many of these networks is sparse. In the vertebrate auditory system, 

GCs in the dorsal cochlear nucleus receive only 3 synaptic connections15. GCs have 
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2-5 synapses in the input layer of the cerebellar-like electrosensory lateral line lobe 

of electric fish42. In the insect mushroom body, the numerous Kenyon cells receive 

olfactory information from an average of 7 random projection neurons16. 

Furthermore, the characteristic 2-7 synaptic connections found in the cerebellar input 

layer has been evolutionarily conserved since the appearance of fish43. Our results 

indicate that such sparse connectivity is optimized for decorrelation and pattern 

separation and that this does not depend on the precise expansion ratio employed 

(Supplementary Fig. 1). These results are in agreement with recent analytical 

modeling, which predicts that the levels of sparse connectivity observed for 

cerebellar GCs (and Kenyon cells) are optimal for learning associations (A. Litwin-

Kumar and K. Harris, personal communication). This suggests that the advantage of 

improved pattern separation and learning that sparse synaptic connectivity confers 

has been sufficient to conserve the structure of the cerebellar input layer for 400 

million years. 

 

MFs arise from multiple precerebellar nuclei in the brain stem and often project to 

specific regions in the cerebellar cortex, resulting in a large scale modular structure 

with regional specializations44. Within an individual module the receptive fields of 

MFs form a fractured map45, which at the local level, is likely to lead to spatially 

correlated activation. While single GC recordings suggest multimodal integration, in 

forelimb regions synaptic inputs can convey highly related information46,47, 

suggesting that the activity of MFs projecting to a local region are spatially 

correlated. Our results show that sparsely connected local networks with a 1:2.9 

rosette to GC expansion ratio can decorrelate these input patterns enabling faster 
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learning by downstream networks. Although only 1-2 rosettes are formed by a MF as 

it traverses a local network of 80 μm in diameter48, a complete MF axon forms 20-30 

rosettes as it passes through an entire lobule14. At the level of a lobule the MF-GC 

expansion ratio is therefore substantially larger. Thus the improvement in pattern 

separation and learning conferred by the GC layer across an entire lobule could be 

significantly larger than the local network (e.g., see Supplementary Fig. 1 for a 1:9 

expansion ratio).  

 

Because MF inputs encode both discrete and continuous sensory variables, some 

areas of the cerebellum, such as the whisker system in Crus I/II, are likely to 

experience bouts of intense high frequency MF excitatory drive (100 – 1000 Hz), 

interspersed by quiescence25,49, while other areas such as vestibular and limb areas 

are likely to experience more slowly modulated sustained rate coded input at 10 -100 

Hz26,27. Our findings suggest that the same network structure can perform efficient 

decorrelation and pattern separation for a wide range of MF excitatory drive. While 

there are likely to be region-specific specializations in synaptic properties and 

inhibition, the uniformity of input layer structure suggest that it acts as a generic 

preprocessing unit that decorrelates and separates dense MF activation patterns, 

enabling faster associative learning in the molecular layer. 

  

A core function of the cerebellar cortex is to learn the sensory consequences of 

motor actions, allowing it to predict and refine motor action and to enable animals to 

perform sensory processing in the context of active movement50–52. In Purkinje cells, 

which receive ~200,000 GC inputs, learning is achieved by altering synaptic strength 
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via LTD and LTP, depending on when parallel fiber activity occurs in relation to the 

climbing fiber input53. We used perceptron-based learning to assay pattern 

separation and learning performance, since early work recognized analogies 

between supervised learning in Purkinje cells and perceptrons17. More recent work 

has shown that perceptron learning is consistent with LTD at the parallel fiber-

Purkinje cell synapse54 and that the timing of learning rules can be tuned to account 

for feedback delays in the PF input55. While these factors support our use of 

perceptron-based learning as an assay of learning performance, important functional 

differences with Purkinje cells limit finer-grained insights into cerebellar learning 

using a perceptron-based approach. These include the fact that Purkinje cells fire 

spontaneously at 40-90 Hz, receive strong phasic inhibitory inputs and exhibit 

mGluR7 mediated modulation of intrinsic potassium conductances which introduce 

pauses in their firing rate56,57. Nevertheless, decorrelation of GC activity is expected 

to improve the performance of the conversion of spatial activity into temporal 

sequences via these mechanisms. 

  

While encoding temporal sequences is clearly essential to motor control it is not 

clear whether the plasticity mechanisms that underlie such function fit better within 

an extended classical framework of associative learning33, temporal encoding58, or 

implementing an adaptive filter59. Irrespective of which of these models the 

cerebellar cortex implement, our results highlight the detrimental effect that spatial 

correlations can have on sensorimotor learning and the substantial improvements in 

performance that can be achieved through spatial decorrelation and expansion of 

coding space. Moreover, our results show that the input layer performs effective 
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pattern separation across a wide range of spatial correlations and input activity and 

does not require the exceedingly sparse coding regimes envisioned by Marr1. 

Indeed, the input layer could improve learning when up to 66% of GCs were active 

and could decorrelate inputs when up to 33% of GCs were active. While our study 

focused on the importance of spatial correlations, it will be interesting to investigate 

whether comparable improvements can be obtained in the temporal domain, since 

temporal expansion and sparsening will increase the dimensionality of the system 

further9,60–62.  

 

Our results are consistent with several existing experimental manipulations in the 

cerebellar input layer. Reduction in the number of functional GCs by 90% using a 

genetic manipulation that blocked their output resulted in deficits in the consolidation 

of motor learning63. Our findings suggest that this phenotype arose from deficits in 

pattern separation and learning speed due to the reduced coding space available, 

although concomitant changes in long-term plasticity could also contribute. Another 

prediction is that decreasing the threshold of GCs will affect the expansion-

correlation tradeoff and reduce pattern separation and impair learning. Interestingly, 

lowering the spike threshold by specifically deleting the KCC2 chloride transporter in 

cerebellar GCs, resulted in impaired learning consolidation64. Similarly, inhibiting a 

negative feedback circuit in the drosophila olfactory system increased correlations in 

odor-evoked activity patterns and impaired odor discrimination10. Both these findings 

are consistent with our prediction that lowering threshold or removing feedforward 

inhibition will increase correlations in feedforward networks and impair pattern 

separation and learning. 
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The most direct experimental tests of the predictions of this work is that spiking in 

GCs should have a larger total variance and smaller population correlation than 

spiking in MF inputs. However, our results show that network decorrelation cannot 

be revealed by measuring pairwise correlations, consistent with previous work that 

showed pairwise measurements can underestimate collective activity in larger 

populations65. Our analysis indicates that dense recordings from a large fraction of 

the neurons in the local network are required to measure population correlation in 

MFs and GCs (Fig. 3e).  Recent developments in high speed random access 3D 

two-photon imaging66,67 and sensitive genetically encoded Ca2+ indicators 68 

potentially make this type of challenging measurement feasible for the first time. 

Application of these new technologies would provide direct experimental tests of our 

findings, thereby improving our understanding of how spatially correlated activity 

patterns are transformed and separated in the cerebellar cortex.  
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Methods 

Anatomical network model. Both the analytical and biophysical models used an 

experimentally constrained anatomically realistic network connectivity model of an 80 

μm diameter ball of within the granular layer3. MF rosettes and GCs were positioned 

according to their observed densities. GCs were connected to a fixed number (Nsyn) 

of MFs, which were chosen randomly while constraining the MF-GC distance to be 

as close as possible to 15 μm, the average dendritic length. 

Spatially correlated input patterns. MF activation patterns were created using a 

method based on Dichotomized Gaussian models that generates binary vectors with 

specified mean firing rates (MF activation levels) and correlations20. The correlation 

coefficient between two MF patterns was chosen to be a Gaussian function of 

distance with the correlation radius parameterized by its standard deviation σ. For 

the analytical model, these binary patterns were used directly. For the detailed 

model, activated MFs fired at 50 Hz while inactivated MFs were silent.  

 

Simplified network model. GC activity was given by: 

!!!" = !! 4
!!"#

!!"!!!"!
− !  

where Nsyn is the number of synaptic inputs per GC, Cij is the binary connectivity 

matrix determined by the anatomical network model, and f + is a rectified-linear 

function, i.e., f +(x) = max(0,x). Unless otherwise specified, the threshold was set to θ 

= 3, in line with experimental evidence that three MFs on average are required to 

generate a spike in GC29,69.  
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Biologically detailed network model. MFs were modeled as modified Poisson 

processes with a 2 ms refractory period and firing rate determined by the generated 

binary activity patterns described above (50 Hz if the MF was activated, silent 

otherwise). GCs were based on a previously published model of integrate-and-fire 

neurons with experimentally measured passive properties and experimentally 

constrained AMPA and NMDA conductances, short-term plasticity and spillover 

components as well as constant GABA conductance representing tonic inhibition3 

(see Supplementary Methods). The model was written in NeuroML2 and simulated in 

jLEMS70. For learning and population-level analysis, activity patterns were defined as 

the vector of spike counts in a 30 ms window (after discarding an initial 150 ms 

period to reach steady state). 

  

Implementation of perceptron learning. A perceptron decoder was trained to 

classify 640 input patterns into 10 random classes. Random classification was 

chosen to ensure maximal overlap between patterns. The number of classes was 

chosen to be slightly under the memory capacity for a wide range of parameters, 

allowing comparison of learning in different networks for a relatively complex task. 

Online learning was implemented with backpropagation learning on a single layer 

neural network with sigmoidal nodes and a small fixed learning rate of 0.01. The 

inputs consisted of either the raw MF or the GC activity patterns. Learning took place 

over 5000 epochs, each of which consisted of presentations of all 640 patterns in a 

random order. Learning speed was defined as 1/NE, where NE is the number of 
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training epochs until the root-mean-square error reached a threshold of 0.2. Other 

error thresholds gave qualitatively similar results. 

 

Analysis of activity patterns. Population sparseness was measured as21: 

! − !!! !

!!!!
! − 1  

where N is the number of neurons and xi is the ith neuron’s activity (simplified model) 

or spike count (detailed model). The above quantity was averaged over all activity 

patterns. To quantify pattern expansion, we use the total variance, i.e. the sum of all 

variances: 

!"# !!! . 

 

We defined the population correlation as:  

!
!!!

!"# !!
!!!

−  !!  

where λi are the eigenvalues of the covariance matrix. The first term in this 

expression describes how elongated the distribution is in its principal direction. The 

second term subtracts the value 1/N so that an uncorrelated homogenous Gaussian 

would have a value of zero. A modified version of the population correlation to 

control for heterogeneous variances did not affect the results (see Supplementary 

Methods). Finally, the scaling factor of !
!!! normalizes the expression so that its 

maximum value is 1.  

 

Partial shuffling of spiking activity. We developed a shuffling technique to 

increase or decrease the population correlation to a desired level, while keeping the 
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mean and variance of each neuron fixed. To shuffle patterns to a lower level of 

correlation, for each neuron in the population we swapped the spike counts for 

random pairs of patterns. This was iterated over the full population and over random 

pattern pairs until the resulting activity patterns had the desired population 

correlation. Conversely, to shuffle activity patterns in a way that would increase 

correlations, we took random pairs of patterns and swapped the activity so that each 

cell had a lower spike count for the first pattern and higher activity for the second 

pattern. This procedure modifies the activity patterns so that the population overall 

tends to be more active together. We then tested perceptron learning based on the 

new shuffled activity patterns. See Supplementary Methods for additional details. 

 

Code availability. Models and scripts for running simulations will be made available 

at https://github.com/SilverLabUCL/ upon publication.  
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Figure 1 | Presence of a simple feedforward model of the cerebellar input layer 

with sparse, but not dense, synaptic connectivity speeds learning. (a) Top: 

Anatomically constrained 3D model of cerebellar input layer. Positions of Granule 

Cells (GCs, red) and Mossy Fibers (MFs, blue) within an 80 μm ball. Synaptic 

connections are shown in gray. Bottom: Distribution of dendritic lengths. Arrow 

indicates mean. (b) Example of MF statistics generated with correlation radius of 20 

μm and 30% activated MFs. Left: Histogram of the fraction of active MFs over 

different activity patterns. Right: Correlation between MF pairs as a function of 

distance between them (grey). Black lines indicated the specified average activation 

level (left) and spatial correlations (right). (c) Schematic of feedforward network 

model (blue MFs; red, GCs). The downstream perceptron-based decoder classifies 

either GC patterns (as shown) or else raw MF patterns without the MF-GC layer. 

Inset shows the rectified-linear GC transfer function. (d) Example of root-mean-

square error as a function of the number of training epochs during learning based on 

MF (blue) or GC (red) activity patterns. Dashed line indicates threshold error. For this 

example, Nsyn = 4 and 50% of MFs are activated. (e) Raw learning speed of 

perceptron classifier for different correlation radii, for MFs (blue) or GCs with sparse 

(solid red line, Nsyn = 4) or dense (dashed red line, Nsyn = 16) connectivity. (f) 

Normalized learning speed (GC speed/MF speed) shown for different synaptic 

connectivities and MF activation levels. Blue lines represent double exponential fit of 

the boundary at which the normalized speed equals 1 (i.e., when the perceptron 

learning speed is the same for GC and MF activation patterns). For clarity, only the 

region in which the normalized speed > 1 is shown. Left: independent MF activation 

patterns. Right: Correlated MF inputs with a correlation radius of σ = 20 μm. (g) Top: 
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Median normalized learning speed (over different MF activation levels) for sparse 

(solid line, Nsyn = 4) and dense (dashed line, Nsyn = 16) synaptic connectivities, 

plotted against correlation radius. Bottom: Robustness of rapid GC learning for 

different correlation radii.  

 

Figure 2 | Cerebellar input layer sparsens and expands input patterns. (a) 

Normalized population sparseness (granule cell sparseness/ mossy fiber 

sparseness) for independent mossy fiber (MF) activation patterns (left) and 

correlated MF inputs (right, σ = 20 μm). (b) Top: Median normalized sparseness for 

sparse (solid line, Nsyn = 4) and dense (dashed line, Nsyn = 16) synaptic 

connectivities, plotted against correlation radius. Bottom: Robustness of sparsening 

for different correlation radii. (c-d) Same as A-B plotted for normalized total variance. 

 

Figure 3 | Correlations in activity increase with the extent of excitatory 

synaptic connectivity in feedforward networks. (a) Top: Illustration depicting a 

distribution of neural activity patterns (grey ellipsoid) in activity space. 

Mathematically, principal lengths (black arrows) are equal to the square roots of the 

eigenvalues of the covariance matrix. Bottom: Example of ranked eigenvalues for 

mossy fiber (MF, blue) and granule cell (GC, red) activity patterns. Rank is 

normalized by dimensionality. Note that the MF eigenvalues are far more uniform 

than the GC eigenvalues, indicating that the MF patterns are less correlated. In this 

example, parameters are: Nsyn = 4, 50% activated MFs, σ = 0μm. (b) Top: Median 

normalized population correlation (GC correlation/MF correlation) for sparse (solid 

line, Nsyn = 4) and dense (dashed line, Nsyn = 16) synaptic connectivity plotted 
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against correlation radius. Note the logscale for the population correlation. Bottom: 

Robustness of GC decorrelation for different correlation radii. (c) Log of the 

normalized population correlation for independent MF activation patterns (left) and 

correlated MF inputs (right, σ = 20 μm). Blue region in the right panel indicates 

region of active decorrelation of MF patterns. (d) Log of the normalized Pearson 

correlation coefficient for correlated inputs (σ = 20 μm). (e) Average normalized 

population correlation for subpopulations of increasing size. Grey error snake 

indicates the standard deviation across different samples and observations. For this 

example, Nsyn = 4 and σ = 20 μm. 

 

Figure 4 | Dependence of coding space and correlation on connectivity and 

the role of thresholding in controlling the expansion and decorrelation. (a) 

Normalized total variance and (b) log normalized population correlation  for networks 

of linear granule cells (i.e. those with zero threshold). Correlation radius is σ = 20 

μm. (c) Top: robustness of expansion (green) and decorrelation (purple) for varying 

levels of granule cell (GC) threshold. Dotted line indicates the experimentally 

estimated value of threshold (3 of the 4 mossy fibers, MFs). Bottom: Robustness of 

learning for varying GC threshold. 

 

Figure 5 | Separation of the effects of correlation on learning speed from 

expansion and sparsening. (a) Histograms of the normalized population correlation 

(granule cell correlation/ mossy fiber correlation) for granule cell (GC) patterns (top, 

red) and shuffled GC pattern (bottom, purple). The narrow distribution around 1 

indicates that the shuffled GC patterns have the same population correlation as the 
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mossy fiber (MF) patterns. (b) Normalized total variance (left) and average activity 

(right) for GC patterns (abscissa) versus shuffled GC patterns (ordinate). (c) Two 

measures of sparseness plotted for GC patterns (abscissa) and shuffled GC patterns 

(ordinate). Green indicates the fraction of inactive GCs; black indicates population 

sparseness. (d) Raw learning speed for true GC patterns (left) and shuffled GC 

patterns (right). In both panels, MF inputs are correlated with a correlation radius of σ 

= 20 μm. (e) Change in learning speed due to correlations (i.e., GC speed/shuffled 

GC speed) plotted against the normalized population correlation. Each point 

represents different values of Nsyn and MF activation. Correlation radii were σ = 10 

μm (red) or 20 μm (black).   

 

Figure 6 | Pattern separation and learning speed depend on synaptic 

connectivity in biologically detailed spiking models of the cerebellar input 

layer. (a) Top: Schematic of biologically detailed spiking network model with sample 

spike trains. Bottom: example voltage trace from a granule cell (GC) in network. (b) 

Normalized learning speed for a spiking networks with independent (left) and 

correlated (right, σ = 20 μm) mossy fiber (MF) activation patterns. (c) Normalized 

sparseness (left), normalized total variance (middle), and log normalized population 

correlation (right) for networks with different numbers of synaptic connections 

receiving correlated MF activation patterns (σ = 20 μm). (d) Median normalized 

learning speed plotted against correlation radius for sparse (solid, Nsyn = 4) and 

dense (dashed, Nsyn = 16) synaptic connectivities. (e-g) Same as (d) for normalized 

sparseness (e), normalized total variance (f), and normalized population correlation 

(g). (h) Change in learning speed due to correlations (i.e., GC speed/ speed for 
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shuffled GC spike trains) plotted against the normalized population correlation. Each 

point represents different values of Nsyn and MF activation. Correlation radii were σ = 

10 μm (red) or 20 μm (black).   
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Figure 1 | Presence of a simple feedforward model of the cerebellar input layer with 
sparse, but not dense, synaptic connectivity speeds learning.
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Figure 2 | Cerebellar input layer sparsens and expands input patterns.
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Figure 3 | Correlations in activity increase with the extent of excitatory synaptic 
connectivity in feedforward networks.
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Figure 4 | Dependence of coding space and correlation on connectivity and the role of 
thresholding in controlling the expansion and decorrelation.

Expansion

Decorrelation

Threshold level

c

R
ob

us
tn

es
s

0 2 4

0

0.5

1

0

0.5

1

R
ob

us
tn

es
s

of
 le

ar
ni

ng

0.2 0.4 0.6 0.8
0.1

0.2

0.3

0.4

0.5

0.6

0.2 0.4 0.6 0.8

5

10

15

20

15

20

25

30

35

40

MF activation level MF activation level

N
um

be
r i

np
ut

s

N
orm

. total variance

Log norm
. correlation

a b

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 14, 2017. ; https://doi.org/10.1101/108431doi: bioRxiv preprint 

https://doi.org/10.1101/108431
http://creativecommons.org/licenses/by/4.0/


Figure 5 | Separation of the effects of correlation on learning speed from expansion 
and sparsening.
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Figure 6 | Pattern separation and learning speed depend on the synaptic connectivity 
in biologically detailed spiking models of the cerebellar input layer.
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