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We repurpose a High-Throughput (cell) Imaging (HTI) screen of a glu-
cocorticoid receptor assay to predict target protein activity in multi-
ple other seemingly unrelated assays. In two ongoing drug discov-
ery projects, our repurposing approach increased hit rates by 60- to
250-fold over that of the primary project assays while increasing the
chemical structure diversity of the hits. Our results suggest that data
from available HTI screens are a rich source of information that can
be reused to empower drug discovery efforts.

H igh-throughput (cell) Imaging (HTT) captures the mor-
phology of the cell and its organelles by high-throughput
microscopy and is successfully applied in many areas of current
biological research(1-3). In a pharmacological context, HTI is
applied to screen chemical compounds based on morphologi-
cal changes they induce(4, 5). Currently, most HTI screens
are designed for the single purpose of evaluating one specific
biological process and exploit only a handful of morphological
features from the image(6), see Fig. 1b. These morphological
features are understood to directly reflect that biological pro-
cess. However, any imaged cellular system hosts many more
biochemical processes and thousands of potential drug targets,
all of which are exposed to the screened chemical compounds.
Many of these targets and processes impact cell morphology
and that morphology can to a large extent be extracted from
the images(7). This set of features can be used to describe
chemical compounds and can be considered as an image-based
fingerprint. Wawer et al.(8) proposed the use of image-based
fingerprints to optimize the diversity of medium scale com-
pound sets. Image-based fingerprints can also be used to group
compounds by pharmacological mechanism(9). Thus, images
provide a rich source of biological information that can be
leveraged for a variety of purposes in drug discovery.

Here, we propose the systematic evaluation of image-based
fingerprints from HTI screens for predictivity on a large col-
lection of protein targets, most of which were not considered
during the design of the screen (Fig. 1a). To this end, an
extensive fingerprint of morphological features was extracted
for each compound imaged in a single screen, aiming for max-
imal and unbiased information capture. We then deployed
a machine learning approach to predict the activity across a
broad set of validated target assays (from now referred to as
assay) based on the image-based fingerprint of the compounds,
and evaluated model performance for each assay. In this way,
we hypothesized existing HTT screens can be repurposed to
inform on the activity of untested compounds in assays for
which a high-quality model is available (Fig. 1a).

This procedure is reminiscent of the predictive modeling
approaches used for virtual screening and QSAR, but differs in
that it uses image-based fingerprints rather than chemical fin-
gerprints that encode the structure of compounds. Chemistry-
based models are predictively performant, but only for those
parts of chemical space for which sufficient assay activity data
is available, because chemical fingerprints themselves do not in-
corporate biological or target information. Hence, compounds
that are chemically very different from any known active com-
pound are unlikely to be predicted as active. Image-based
models are expected to be less dependent on the availability of
chemically similar training examples. The model then corre-
lates all imaged biology to the biological activities to predict.
Therefore, image-based models could outperform chemistry-
based models in novel and activity-wise poorly annotated
chemical space.

In our study, we repurposed a high-throughput imaging
screen of 524,371 compounds originally used for the detec-
tion of glucocorticoid receptor (GCR) nuclear translocation.
Each compound was applied in a concentration of 10uM to
H4 brain neuroglioma cells, incubated for one hour, before the
addition of 1uM hydrocortisone to stimulate translocation of
the GCR. After an additional 1 hour of incubation, cells were
fixed and imaged in 3-channel fluorescence, with a nuclear
stain (Hoechst), CellMask Deep Red (Invitrogen) to delineate
cell boundaries, and indirect immunofluorescence detection
of GCR. For repurposing the screen, the images were post-
processed using CellProfiler software. Using a pipeline similar
to that of Gustafsdottir and colleagues(12), we extracted un-
biased maximally-informative features from the images. For
each cell in the image, the pipeline computed an image-based
fingerprint of 842 features. In our machine learning models,
each compound was then represented by the vector of feature
medians across all cells in the image.

We then built a machine-learning model using Bayesian
matrix factorization with the image-based fingerprint as side
information (Online Methods). This model was evaluated for
its predictivity across assays that map to more than 600 drug
targets leveraging more than ten million activity measurements.
We assessed the performance of this model using nested cluster
cross-validation(13). The model was predictive for 37.3% of
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Fig. 1. Repurposing imaging screens. Panel A: Our repurposing approach is depicted. A large number of features are extracted from images of cells which are then used by
machine learning methods to model all available activity data from previously performed assays. Targets with good predictivity on the test data are then selected for in vitro
validation. Panel B: A typical HTI screen approach is depicted (10, 11). Few or single features are extracted from cellular images.

the assays (AUC > 0.7 on 225 assays, Online Methods) and
offered high predictivity for 5.6% of the assays (AUC > 0.9 on
34 assays, Online Methods). Among these 34 assays with high-
quality predictions, two were running in ongoing discovery
projects: one oncology project and one central nervous system
(CNS) project. We used the matrix factorization model to
select compounds for testing by these two projects.

For the oncology project, the target was a kinase with
no known direct relation to the glucocorticoid receptor. Us-
ing our matrix factorization model, we ranked about 60,000
compounds tested in the GR assay but for which no activity
measurement was available in the oncology screen. We then
experimentally validated the 342 compounds ranked highest by
our matrix factorization method, roughly the amount of non-
control wells on a plate. This resulted in 141 submicromolar
hits (41% hit rate), which corresponds to a 60-fold enrichment
over the initial HT'S (0.725% hit rate).

To evaluate the chemical diversity of the hits, we computed
the Tanimoto similarity (based on extended-connectivity fin-
gerprints (ECFP)(14)) of each hit to the nearest hit identified
by the initial HT'S. When compared to that of the initial hits
(red distribution in Fig. 2a), the distribution of these simi-
larities implies a substantially improved chemical structure
diversity (shift to the left) of the image-based hits (green).
As a reference, the figure also depicts the distribution for
randomly selected compounds (blue). Thus, the HTI matrix
factorization model selected candidate compounds with a high
hit rate, and diversified the hit space.

For the CNS project, the target was a non-kinase enzyme
again without obvious relation to the glucocorticoid receptor.
Using our matrix factorization model, activity was predicted
for all 500,000 image-annotated compounds. Compounds
with predicted submicromolar activity were filtered to deplete
for unfavorable properties(15), like autofluorescence and low
predicted central nervous system availability (Online Meth-
ods), and the remaining compounds were grouped in chemical
clusters from which we randomly selected a handful of rep-

resentatives from each cluster (Online Methods). The 141
compounds resulting from this procedure were experimentally
tested, and for 37 of them, submicromolar activity was con-
firmed, resulting in a 22.7% hit rate or a 250-fold enrichment
over the hit rate of the initial HTS (0.088%). Importantly, the
37 hits mapped to 32 Murcko scaffolds(16) that were not rep-
resented in the set of initial hits. The distribution of Tanimoto
similarities to the nearest hit in the initial screen (Fig. 2b)
supports that conclusion. These results again suggested that
an image-empowered compound selection strategy can boost
hit rate and hit diversity.

To check whether the success of our approach arises from
the machine learning method or from the description of chemi-
cal compounds by imaging features, we applied three different
machine learning methods. We used Macau(17), a regression
method based on Bayesian matrix factorization with side infor-
mation (Online Methods), random forest classification(18) and
deep neural networks(13) (Online Methods). These machine
learning models performed similarly in terms of the assays
that could be predicted accurately (Supplementary Fig. S4
and S5). Our cross-validation setup also guarantees that the
predictive performance does not come from the activity data
of the same compound across other targets (Online Methods).
Therefore, we conclude that the description of compounds by
imaging features is the essential contribution to the success of
our approach.

We emphasize that the method is a supervised machine
learning method and hence output labels (in this context, ac-
tivity measurements) are required to train the model. This
requires that activity measurements be acquired for a reason-
ably sized library of compounds.

Our results indicate that images from HTI screening
projects that are conducted in many institutions can be re-
purposed for increasing hit rates in other projects, even those
that seem unrelated to the primary purpose of the HTI screen.
Consequently, it might be possible to replace particular assays
with the potentially more cost- efficient imaging technology
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Fig. 2. For each compound in a set, the ECFP (radius 4) based Tanimoto similarity to the nearest hit from the initial screen was considered. Similarity densities for the
set of initial hits, the set of hits from our biological extension and a randomly selected set of compounds are depicted in red, green and blue, respectively, for the oncology
project in Panel A and for the CNS project in Panel B. Note that in the CNS project, unlike the oncology project, the selection procedure involved an additional step to reduce
representatives from the same chemical- structural class. Overall, the hits discovered by our approach are chemically highly diverse.

together with machine learning models. By accessing rich
morphological features of the cell, imaging screens provide a
view over various cellular processes resulting in a fingerprint
of biological action. This raises an interesting question of the
breadth of targets that could be accessed by imaging screens if
different cell lines, culturing conditions, staining of organelles
and/or incubation times are used.

The focus of this report was to demonstrate that the use
of HTT data enables the identification of diverse hits without
the need to retest the entire library in the target assay. We
note that our models may also support target deconvolution
for phenotypic screens, through the prioritization of targets
with predicted activities that match phenotypic observations.

Moreover, in the light of recent advances of convolutional
neural networks, raw images might be used directly in the
activity prediction pipeline. This would allow the model to
learn the best image features for the specific task at hand and
may strengthen our approach. Furthermore, our results are
based on a single HTI screen and we envision that a collection
of multiple HTT screens could even be more powerful with
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respect to assay activity prediction. Finally, our imaging
features are median values across all cells from an image.
However, models based on the distribution of the feature
values (e.g. quantiles) or even single cell analysis could prove
to have higher predictive power and will be investigated in the
near future.
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In this Online Methods, we provide details on the data set, provide a de-
scription of the used machine learning methods and the method comparison and
evaluation.

Data set

The data set comprises 524,371 samples, 842 features and 1,200 prediction tasks.
The samples correspond to chemical compounds that were administered to cells.
The features are derived from a biological imaging technique together with the
CellProfiler software that calculates morphological features of the imaged cells.
This means that a chemical compound is characterized by its induced morpho-
logical changes of cells. The prediction tasks comprised compound activities
that were measured by multiple independent biological experiments, so-called
assays. Typically, a single compound is measured in one or very few assays, such
that the matrix that has to be predicted is populated by many unknown (“NA”)
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values. In total there are more than 10 million activity values for the 1,200 pre-
diction tasks, resulting in fill rate of about 1.6%. The samples were distributed
across three cross-validation folds to enable the nested cluster cross-validation
[1] (see Section “Cross-validation and measuring predictivity”).

Macau: Bayesian matrix factorization

We built a Bayesian matrix factorization method called Macau that incorporates
image features from CellProfiler as side information. To factorize the 524 371 x
1200 activity matrix Y, Macau represents each compound and each assay by
D-dimensional latent vectors u; and v;, respectively. The prediction for the
element Yj;, corresponding to the activity of compound 7 on assay j is given by
the scalar product u; v;. The image features x; are 842 dimensional vectors (see
Data set section) and are added to the prior of the latent vectors of compounds
u;.
This results in a probabilistic model of

Y ~ N/ v, a™) (S1)
w; ~ N (g + Bxi, A7) (52)
Vi NN(NvaA;1)7 (83)

where « is precision of the observations, parameters p,, and A, model the mean
and precision of the compound latent vectors, similarly p, and A, model the
latent vectors for assays. The parameter 3 is a D x 841 dimensional matrix that
maps the image features to the compound latent space. To learn 3 we apply
Gaussian prior on it:

B~ N0, (Ay ® AgTsa) ™), (54)

where ® is the Kronecker product, Ag is precision parameter and Ig4; is the
identity matrix of size 841. The Figure S1 depicts the plate diagram for the
probabilistic model.

By deriving conditional probabilities we obtain Gibbs sampler for the model,
as was done in [2]. We use Gibbs sampler to learn the parameters of the model,
except for a and D that are fixed to 10 and 150, respectively. For the exper-
iments, we ran Gibbs sampler for 2000 iterations and discarded the first 400
as burn-in. To compute the final answer we use each Gibbs sample to make a
prediction for Y;; and then we compute the average over the samples.

To evaluate the model performance we used 3-fold cross-validation as de-
scribed in the next section.

Cross-validation and measuring predictivity

In our in silico experiments we used 3-fold cross-validation where all of the com-
pounds of a chemical series are in a single fold (see Figure S2). Each chemical
series was defined by 0.7 Tanimoto similarity cutoff on ECFP6 features. There-
fore, the test set never contains a compound that is chemically very close to
a training set compound. With this setup we can measure the model’s actual
ability to generalize across series.

For each cross-validation fold we compute its test AUC-ROC scores for each
target assay at plCsg thresholds of 5.5, 6.5, 7.5 and 8.5. We use the average
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Figure S1: Diagram for the probabilistic model for the used matrix factorization
approach Macau.
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Figure S2: Clustered cross-validation for compound-protein activity prediction.
Every block of rows corresponds to a compound series and every column to an
assay.

of the 3 folds as the evaluation metric for each assay-threshold pair. We then
only keep the assay-threshold pairs with at least 25 actives and 25 inactives,
and consider the model to have high (moderate) predictivity on an assay if one
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of the thresholds has AUC-ROC higher than 0.9 (0.7).

Autofluorescence filtering and CNS availability

Frequent hitters are compounds that are promiscuously active, e.g. based on
certain substructure motifs they might contain. Also, some compounds might
be dyes themselves, be reactive species, or interfere with particular assay tech-
nologies as Fluorescent or AlphaScreen readouts. Baell/Holloway [3] suggested
a Pan Assay Interference Compounds (PAINS) filter for removing such promis-
cuous compounds from HTS hits.

The Blood-Brain-Barrier (BBB) is a critical membrane to separate the blood
from the brain in the central nervous system (CNS). Drugs for CNS disease
indications should pass the BBB, while drugs for non-CNS indications should
not pass the BBB for preventing unwanted side-effects. The BBB allows the
passage of water and lipid-soluble molecules by passive diffusion. Two major
estimations for BBB permeability are therefore based on passive diffusion models
based on logP and polar surface area (PSA) of compounds [4], or active transport
via a P-glycoprotein (P-gp) substrate probability of compounds [5, 6]. We
filtered out all compounds that do not exhibit BBB permeability according
to standard pharmaceutical practice.

Deep neural networks (DNNs)

We implemented Deep Neural Networks (DNNs), concretely feed-forward arti-
ficial neural networks, with many layers comprising a large number of neurons
[1]. DNNs consists of interconnected neurons that are arranged hierarchically
in layers. In the first layer of the network (the input layer), the neurons obtain
an input vector which are the descriptors of the chemical compound. The in-
termediate layers (the hidden layers) comprise the hidden neurons which have
weighted connections to the neurons of the lower level layer, and can be consid-
ered as abstract features, built from features below. The last layer (the output
layer) supplies the predictions of the model. While traditional networks em-
ployed a small number of neurons, a DNN may have thousands of neurons in
each layer [7]. Figure S3 shows the general architecture of Deep Neural Net-
works.

HCI features as network inputs. FEach chemical compound is represented
by image features from CellProfiler averaged across multiple cells. These 841
features entered the input layer of the DNNs.

Activation function. We used rectified linear units (ReLUs) as activation
functions in the hidden layers. The output layer has sigmoid activation func-
tions.

Regularization. To avoid overfitting, we employed multiple regularization
techniques, concretely Dropout [8] and early stopping. Both the dropout rate
and the early-stopping parameter, that is the number of epochs after which
learning is stopped, were determined on a validation set.
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Figure S3: Architecture of Deep Neural Networks

Multitask Learning. Since each chemical compound can have multiple bi-
ological activities, the prediction task at hand represents a multi-task setting.
Deep Learning naturally enables multi-task learning [9]. These tasks can mu-
tually increase the representation of the samples in the hidden layers which can
further lead to performance improvements [1]. We modeled each assay by a
separate output unit, which led to DNNs with around 1,200 output units.

Objective Function We used cross-entropy as a loss function for our DNNs:
= 307 iy (Y log(Vy) + (1-Yy) log(1—Yiy))
v

where f’ij is the prediction for compound ¢ and assay and the actual label is Yj;.
Y;; indicates whether the compound was active (Y;; = 1) or inactive (Y;; = 0)
in this assay. Additionally, for many compounds the activity has not been
measured which we accommodated by a binary variable m;; that is zero if a
measurement is present and zero otherwise.

Training of the DNN and Software implementation We used minibatch
Stochastic Gradient Descent (SGD) to train the DNNs. Hence, we implemented
the DNNs using the CUDA parallel computing platform and employed NVIDIA
Tesla K40 GPUs to achieve speed-ups of 20-100x compared to CPU implemen-
tations.

Hyperparameter search We optimized the DNN architecture and hyperpa-
rameters, such as learning rate, early-stopping parameter and Dropout rate on
a validation set in a nested cross-validation procedure [10, 11]. This procedure
produces performance estimates that are unbiased by hyperparameter selection
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Hyperparameter Considered values
Number of Hidden Units {1024, 2048, 4096}
Number of Hidden Layers {1, 2, 3}

Learning Rate {0.01, 0.05, 0.1}
Dropout {no , yes (50% Hidden Dropout, 10% Input Dropout)}
Dropout-schedule {no, yes}

Table S1: Hyperparameters considered for Deep Neural Networks

Hyperparameter Considered values
criterion {Gini, cross-entropy}
number of trees {250}

number of features considered at each split {1, 2, 3} x+v/total number of features

Table S2: Hyperparameters considered for Random Forests

since the hyperparameters are optimized on the inner folds and only the best
performing hyperparameters are tested on the outer folds. We considered 1, 2 or
3 layer networks with 1024, 2048, or 4096 units in each layer. The tested learn-
ing rates were 0.01, 0.05, and 0.1. The Dropout rates were either set to zero, or
to 10% dropout in the input layer and 50% dropout in the hidden layers. Addi-
tionally, we tested whether the dropout rate should be arithmetically increased
from 0 by 0.005 after each epoch (“dropout schedule”) until the given dropout
rate or whether the dropout rates were constant (“no dropout schedule”) during
learning. Table S1 summarizes these hyperparameters and architecture design
parameters that were used for the DNNs, together with their search ranges.

The hyperparameters that performed best when averaged across the three
cross-validation folds were: 3 layers with 2 048 units, learning rate 0.05, Dropout:
yes, Dropout-schedule: yes. The early stopping-parameter was determined to
be 63 epochs.

Random Forests (RF)

Random Forests work well with different types of descriptors [12] at a large
variety of tasks and their performance is relatively robust with respect to hy-
perparameter settings [13]. We used a high number of trees to obtain a stable
model with high performance [14] The critical parameter is the number of fea-
tures considered at each split [15] which we adjusted in the established nested
cross-validation setting. We trained and assessed models for each assay indi-
vidually in our established framework using different hyperparameters given in
Table S2 and the Random Forest implementation “ranger” [16].

Method Performance

We compared Macau, a regression method based on Bayesian matrix factor-
ization with side information (Online Methods), random forest classification
(Breiman, 2001) and deep neural networks (Mayr, 2016) (Online Methods) for
predictive performance using imaging features as inputs, see Supplementary
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Table S1 for the detailed results. We found that the methods performed sim-
ilarly with respect to which assays could be predicted accurately. Concretely,
11 assays could be predicted with AUC above 0.9 by all three methods (see
Venn diagram in Figure S4). Similarly, 182 assays had performance of AUC
above 0.7 by all three methods (see Venn diagram in Figure S5). The numbers
of assays where only a single or a pair of methods gave an AUC above 0.7 are
all comparably smaller. Therefore, we conclude that the performance is mainly
driven by imaging features rather than the machine learning method.

16
Macau RF

7 11 2

DNN

Figure S4: Venn diagram: number of protein targets with high predictivity
(AUC > 0.9).

External Tables

The table providing performance values for each method at each prediction task
is attached as an external file: Supplementary_Table_S1.x1s
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Figure S5: Venn diagram: number of protein targets with predictivity AUC >
0.7.
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