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We  repurpose  a  High-Throughput  (cell)  Imaging  (HTI)  screen  of  a
glucocorticoid receptor assay to predict target protein activity in multiple
other seemingly unrelated assays. In two ongoing drug discovery projects,
our repurposing approach increased hit rates by 60- to 250-fold over that
of  the  primary  project  assays  while  increasing  the  chemical  structure
diversity  of  the  hits.  Our  results  suggest  that  data from available  HTI
screens are a rich source of information that can be reused to empower
drug discovery efforts.

High-throughput (cell)  Imaging (HTI) captures the morphology of the cell  and its
organelles by high-throughput microscopy and is successfully applied in many areas
of  current  biological  research  (Walter  et  al. (2010),  Pepperkok  et  al. (2006),
Starkuviene and Pepperkok (2010)). In a pharmacological context, HTI is applied to
screen chemical compounds based on morphological changes they induce (Yarrow
et al. (2003), Held et al. (2010)). Currently, most HTI screens are designed for the
single  purpose  of  evaluating  one  specific  biological  process  and  exploit  only  a
handful of morphological features from the image (Singh et al. (2014)), see Fig. 1b.
These  morphological  features  are  understood  to  directly  reflect  that  biological
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process. However,  any  imaged  cellular  system  hosts  many  more  biochemical
processes and thousands of potential drug targets, all of which are exposed to the
screened chemical  compounds. Many of these targets and processes impact cell
morphology  and  that  morphology  can  to  a  large  extent  be  extracted  from the
images  (Carpenter  et  al.  (2006)).  This  set  of  features  can  be  used to  describe
chemical compounds and can be considered as an image-based fingerprint. Wawer
et al. (2014) proposed the use of image-based fingerprints to optimize the diversity
of  medium scale  compound sets.  Image-based fingerprints  can  also  be  used to
group compounds by pharmacological  mechanism (Caicedo et  al.  (2016)).  Thus,
images provide a rich source of biological information that can be leveraged for a
variety of purposes in drug discovery.

Figure  1: Repurposing  imaging  screens.  Panel  A:  Our  repurposing  approach  is
depicted. A large number of features are extracted from images of cells which are
then used by machine learning methods to model all available activity data from
previously performed assays. Targets with good predictivity on the test data are
then  selected  for  in  vitro  validation.  Panel  B:  A  typical  HTI  screen  approach  is
depicted (Evensen et al. (2010), Ansbro et al. (2013)). Few or single features are
extracted from cellular images.

Here, we propose the systematic evaluation of image-based fingerprints from HTI
screens for predictivity on a large collection of protein targets, most of which were
not considered during the design of the screen (Fig. 1a). To this end, an extensive
fingerprint of morphological features was extracted for each compound imaged in a
single  screen,  aiming  for  maximal  and  unbiased  information  capture.  We  then
deployed a machine learning approach to predict the activity across a broad set of
validated target assays (from now referred to as assay) based on the image-based
fingerprint of the compounds, and evaluated model performance for each assay. In
this way, we hypothesized existing HTI screens can be repurposed to inform on the
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activity of untested compounds in assays for which a high-quality model is available
(Fig. 1a).

This procedure is reminiscent of the predictive modeling approaches used for virtual
screening and QSAR, but differs in that it uses image-based fingerprints rather than
chemical  fingerprints  that  encode  the  structure  of  compounds.  Chemistry-based
models are predictively performant, but only for those parts of chemical space for
which  sufficient  assay  activity  data  is  available,  because  chemical  fingerprints
themselves do not incorporate biological or target information. Hence, compounds
that are chemically very different from any known active compound are unlikely to
be predicted as active. Image-based models are expected to be less dependent on
the availability of chemically similar training examples. The model then correlates
all  imaged biology to the biological  activities  to  predict.  Therefore,  image-based
models could outperform chemistry-based models in novel and activity-wise poorly
annotated chemical space.

In  our  study,  we repurposed  a  high-throughput  imaging  screen  of  524,371
compounds  originally  used  for  the  detection  of  glucocorticoid  receptor  (GCR)
nuclear translocation. Each compound was applied in a concentration of 10µM to H4
brain  neuroglioma  cells,  incubated  for  one  hour,  before  the  addition  of  1µM
hydrocortisone to stimulate translocation of the GCR. After an additional 1 hour of
incubation, cells were fixed and imaged in 3-channel fluorescence, with a nuclear
stain (Hoechst), CellMask Deep Red (Invitrogen) to delineate cell boundaries, and
indirect  immunofluorescence  detection  of  GCR.  For  repurposing  the  screen,  the
images were post-processed using CellProfiler software. Using a pipeline similar to
that  of  Gustafsdottir  and  colleagues  (2013),  we  extracted  unbiased  maximally-
informative  features  from the  images.  For  each  cell  in  the  image,  the  pipeline
computed  an  image-based  fingerprint  of  842  features.  In  our  machine  learning
models, each compound was then represented by the vector of feature medians
across all cells in the image.

We then built a machine-learning model using Bayesian matrix factorization with
the image-based fingerprint as side information (Online Methods). This model was
evaluated for its predictivity across assays that map to more than 600 drug targets
leveraging  more  than  ten  million  activity  measurements.  We  assessed  the
performance of this model using nested cluster cross-validation (Mayr, 2016). The
model was predictive for 37.3% of the assays (AUC > 0.7 on 225 assays, Online
Methods) and offered high predictivity for 5.6% of the assays (AUC > 0.9 on 34
assays, Online Methods). Among these 34 assays with high-quality predictions, two
were running in ongoing discovery projects: one oncology project and one central
nervous system (CNS) project.  We used the matrix factorization model to select
compounds for testing by these two projects.

For the oncology project, the target was a kinase with no known direct relation to
the glucocorticoid receptor. Using our matrix factorization model, we ranked about

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 29, 2017. ; https://doi.org/10.1101/108399doi: bioRxiv preprint 

https://doi.org/10.1101/108399
http://creativecommons.org/licenses/by-nc/4.0/


60,000 compounds tested in the GR assay but for which no activity measurement
was available in the oncology screen. We then experimentally validated the 342
compounds ranked highest by our matrix factorization method, roughly the amount
of non-control wells on a plate. This resulted in 141 submicromolar hits (41% hit
rate), which corresponds to a 60-fold enrichment over the initial HTS (0.725% hit
rate).

To evaluate the chemical diversity of the hits, we computed the Tanimoto similarity
(based on extended-connectivity fingerprints (ECFP), Rogers and Hahn (2010)) of
each hit to the nearest hit identified by the initial HTS. When compared to that of
the initial  hits  (red distribution in  Fig.  2a),  the distribution of  these similarities
implies a substantially improved chemical structure diversity (shift to the left) of the
image-based hits (green). As a reference, the figure also depicts the distribution for
randomly  selected  compounds  (blue).  Thus,  the  HTI  matrix  factorization  model
selected candidate compounds with a high hit rate, and diversified the hit space.

Figure  2: For  each  compound  in  a  set,  the  ECFP  (radius  4)  based  Tanimoto
similarity  to  the  nearest  hit  from  the  initial  screen  was  considered.  Similarity
densities for the set of initial hits, the set of hits from our biological extension and a
randomly  selected  set  of  compounds  are  depicted  in  red,  green  and  blue,
respectively, for the oncology project in Panel A and for the CNS project in Panel B.
Note that in the CNS project, unlike the oncology project, the selection procedure
involved  an  additional  step  to  reduce  representatives  from the  same chemical-
structural class. Overall, the hits discovered by our approach are chemically highly
diverse.

For the CNS project,  the target was a non-kinase enzyme again without obvious
relation to the glucocorticoid receptor. Using our matrix factorization model, activity
was  predicted  for  all  500,000  image-annotated  compounds.  Compounds  with
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predicted submicromolar activity were filtered to deplete for unfavorable properties,
like autofluorescence and low predicted central nervous system availability (Online
Methods), and the remaining compounds were grouped in chemical clusters from
which we randomly selected a handful of representatives from each cluster (Online
Methods). The 141 compounds resulting from this procedure were experimentally
tested, and for 37 of them, submicromolar activity was confirmed, resulting in a
22.7% hit rate or a 250-fold enrichment over the hit rate of the initial HTS (0.088%).
Importantly, the 37 hits mapped to 32 Murcko scaffolds that were not represented in
the set of initial hits. The distribution of Tanimoto similarities to the nearest hit in
the initial screen (Fig. 2b) supports that conclusion. These results again suggested
that an image-empowered compound selection strategy can boost hit rate and hit
diversity.

To check whether the success of our approach arises from the machine learning
method or from the description of chemical  compounds by imaging features, we
applied three different machine learning methods. We used Macau (Simm, 2015), a
regression method based on  Bayesian matrix  factorization with  side information
(Online  Methods),  random forest  classification  (Breiman,  2001)  and deep neural
networks (Mayr, 2016) (Online Methods). These machine learning models performed
similarly in terms of the assays that could be predicted accurately (Supplementary
Fig. S4 and S5). Our cross-validation setup also guarantees that the predictive
performance does not come from the activity data of the same compound across
other  targets  (Online  Methods).  Therefore,  we  conclude  that  the  description  of
compounds by imaging features is the essential contribution to the success of our
approach.

We emphasize that the method is a supervised machine learning method and hence
output  labels  (in  this  context,  activity  measurements)  are  required  to  train  the
model. This requires that activity measurements be acquired for a reasonably sized
library of compounds.

Our results indicate that images from HTI screening projects that are conducted in
many institutions can be repurposed for increasing hit rates in other projects, even
those that seem unrelated to the primary purpose of the HTI screen. Consequently,
it  might be possible to replace particular assays with the potentially  more cost-
efficient imaging technology together with machine learning models.  By accessing
rich morphological features of the cell, imaging screens provide a view over various
cellular  processes  resulting  in  a  fingerprint  of  biological  action.  This  raises  an
interesting question of the breadth of targets that could be accessed by imaging
screens  if  different  cell  lines,  culturing  conditions,  staining  of  organelles  and/or
incubation times are used.

The focus of this report was to demonstrate that the use of HTI data enables the
identification of  diverse hits  without the need to retest  the entire  library in the
target assay. We note that our models may also support target deconvolution for
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phenotypic screens,  through the prioritization of  targets with predicted activities
that match phenotypic observations.

Moreover,  in  the light  of  recent advances of  convolutional  neural  networks, raw
images might be used directly in the activity prediction pipeline. This would allow
the model to learn the best image features for the specific task at hand and may
strengthen our approach. Furthermore, our results are based on a single HTI screen
and  we  envision  that  a  collection  of  multiple  HTI  screens  could  even  be  more
powerful with respect to assay activity prediction. Finally, our imaging features are
median  values  across  all  cells  from  an  image.  However,  models  based  on  the
distribution of the feature values (e.g. quantiles) or even single cell analysis could
prove to have higher predictive power and will be investigated in the near future.
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