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Population dynamics of mutualism and intraspecific density dependence:

how θ-logistic-like density dependence affects mutualistic positive feedback
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Abstract Mutualism describes the biological phenomenon where two or more species are reciprocally
beneficial, regardless of their ecological intimacy or evolutionary history. Classic theory shows that
mutualistic benefit must be relatively weak, or else it overpowers the stabilizing influence of intraspecific
competition and leads to unrealistic, unbounded population growth. Interestingly, the conclusion that
strong positive interactions lead to runaway population growth is strongly grounded in the behavior
of a single model. This model—the Lotka-Volterra competition model with a sign change to generate
mutualism rather than competition between species—assumes logistic growth of each species plus a
linear interaction term to represent the mutualism. While it is commonly held that the linear interaction
term is to blame for the model’s unrealistic behavior, we show here that a linear mutualism added
to many other models of population growth will not lead to unbounded growth. We find that when
density dependence is decelerative, the effect of mutualism is greater than when density dependence
is accelerative. Although there is a greater benefit at equilibrium of a mutualist partner, decelerative
density dependence tends to destabilize populations whereas accelerative density dependence is always
stable. Incidentally, even when we model density dependence in birth and death rates separately, as
long as one of the rates shows accelerative density dependence, populations will always be stable. We
interpret these findings tentatively, but with promise for the understanding of the population ecology
of mutualism by generating several predictions relating growth rates of mutualist populations and the
strength of mutualistic interaction.

Keywords Mutualism · population dynamics · density dependence · Lotka-Volterra · θ-logistic

1 Introduction

Mutualistic interactions describe the ecology of two or more species that reciprocally increase each
other’s fitness (Bronstein, 2015). These interactions are arguably the most common type of ecological
interaction, and they have profoundly shaped biodiversity as we understand it. Examples include
mutualisms between mycorrhizae and plants (van der Heijden et al, 2015), coral and zooxanthellae
(Baker, 2003), plants and pollinators (Willmer, 2011), tending ants and aphids or Lepidoptera larvae
(Rico-Gray and Oliveira, 2007; Stadler and Dixon, 2008), plants and seed-dispersing animals (Howe
and Smallwood, 1982; Levey et al, 2002), lichens (fungi and algae) (Brodo et al, 2001), and plants
and rhizobia (Sprent et al, 1987; Kiers et al, 2003). Despite mutualism’s obvious importance, it was
not until the latter part of the 20th century that the natural history of mutualism underwent rigorous
ecological study, the conceptual framework for mutualism was laid, and mutualism was no longer
confounded with the concept of symbiosis. Thus, by the time mutualism was fully introduced to the
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larger ecological community, theoretical ecology had been developing in its absence for decades. This
resulted in the paucity of theory for mutualisms still very much visible today.

Gause and Witt (1935) first used the Lotka-Volterra model of interspecific competition to investigate
the case of facultative “mutual aid” between two species by reversing the sign of the linear competition
term from negative to positive. They noted that with enough “mutual aid” the zero-growth isoclines
no longer cross to give a positive equilibrium point and species grow exponentially without bound—a
biologically unrealistic scenario. More specifically, they found that if the product of the strength of
mutualism between the two species is ≥ the product of the strength of intraspecific competition for each
species, then the positive feedback of mutualism would overpower the negative feedback of intraspecific
competition, resulting in unbounded growth. Following this pioneering study, no development of theory
around mutualism would happen for over 30 years and ecologists were left lacking a basic theoretical
explanation for what stabilizes mutualism in nature.

A key feature of the Lotka-Volterra model is its use of a linear functional response: the effect of a mu-
tualist on its partner’s per capita growth rate is linearly proportional to the mutualist’s density. Early
models of obligate mutualism also shared this feature. Albrecht et al (1974), May (1976), Christiansen
and Fenchel (1977), and Vandermeer and Boucher (1978) introduced the idea of modeling mutualism
through the intrinsic growth rate, shifting it from positive, in the case of facultative mutualism, to
negative for obligate mutualism. Using linear functional responses, they generally found that, first, two
obligate mutualists cannot stably coexist and, second, stable coexistence is possible if one species is
obligate and the other is not, depending on the strength of the mutualism. These papers and others
(e.g, Wolin, 1985; DeAngelis et al, 1986) further postulated that mutualistic functional responses are
nonlinear, and thus attributed the unrealistic behavior of the Lotka-Volterra and similar models to
their use of a linear functional response. Nonlinear functional responses were later explicitly modeled
(e.g., Wright, 1989; Holland et al, 2002; Holland and DeAngelis, 2010; Revilla, 2015), confirming that
nonlinear functional responses can indeed stabilize mutualistic populations.

Each of the aforementioned mutualism models, regardless of the functional response, assumes lin-
ear intraspecific density dependence; i.e., logistic within-species dynamics. However, nonlinear density
dependence has been observed in controlled laboratory populations of organisms with simple life his-
tories, such as Daphnia sp. and other Cladocera (Smith, 1963; Smith and Cooper, 1982) and Drosophila

spp. (Ayala et al, 1973; Gilpin and Ayala, 1973; Pomerantz et al, 1980), and in long-term datasets
on species with more complex life histories (Stubbs, 1977; Fowler, 1981; Sibly et al, 2005; Coulson
et al, 2008). Models that relax the assumption of linear intraspecific density dependence have been
proposed for single species (e.g., Richards, 1959; Schoener, 1973; Turchin, 2003; Sibly et al, 2005) and
communities with two or more competitors (Ayala et al, 1973; Gilpin and Ayala, 1973; Schoener, 1976;
Goh and Agnew, 1977; Gallagher et al, 1990), but never for mutualism (but see a recent analysis of
a facultative-obligate mutualism, Wang, 2016). Given the prevalence of nonlinear intraspecific density
dependence, and its known influence on dynamics in other ecological contexts, the dearth of mutualism
models that assume anything besides logistic growth suggests that our understanding of mutualistic
dynamics may be quite incomplete.

In sum, the Lotka-Volterra mutualism model makes two separate assumptions that are likely vio-
lated in many natural systems: a linear effect of mutualistic interactions, and linear intraspecific density
dependence. The former is widely thought responsible for the Lotka-Volterra mutualism model’s un-
realistic behavior, but since the latter has never been investigated in the context of mutualisms, the
relative importance of these two simplifying assumptions remains unclear. While we agree that many
mutualistic interactions are likely nonlinear, the same could be said of competitive interactions, and yet
Lotka-Volterra competition models endure. Is the need to eschew linear interaction rates truly funda-
mental for mutualisms? We approached this line of inquiry by returning to the original Lotka-Volterra
mutualism model. To complement what is already known, we relax the assumption of linear intraspe-
cific density dependence while leaving the assumption of a linear mutualistic functional response intact.
We accomplish this by replacing the logistic term in the Lotka-Volterra mutualism model with a pair
of θ-logistic terms that represent density dependent birth and death rates that can each accelerate or
decelerate nonlinearly with intraspecific density. We found that most models with nonlinear intraspe-
cific density dependence lead to stable coexistence, irrespective of the strength of mutualism. We
therefore conclude that relaxing either of the Lotka-Volterra model’s major simplifying assumptions is
sufficient to prevent unrealistic model behavior. Given that nonlinear intraspecific density dependence
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appears widespread, nonlinearity in mutualistic interaction rates may be less important for stabilizing
mutualisms than was previously believed.

2 Methods

The Lotka-Volterra mutualism model for populations of two species, N1 and N2, takes the form

1

N1

dN1

dt
= f1(N1) + β1N2 = r1 − α1N1 + β1N2

1

N2

dN2

dt
= f2(N2) + β2N1 = r2 − α2N2 + β2N1.

(1)

That is, the per capita change in each population is a function of intraspecific density, fi (Ni), and a
linear function of mutualist partner density, βiNj . It is further assumed that intraspecific density de-
pendence, fi (Ni), is logistic. This means the per capita growth rate approaches ri when Ni approaches
0, and linearly decreases as intraspecific density increases, with slope −αi. Assuming positive parame-
ter values, eq. (1) has the following behavior: each population grows when rare, each population has a
stable positive abundance in the absence its mutualist partner, a feasible 2-species equilibrium exists
if βiβj < αiαj , and unbounded exponential growth occurs if βiβj ≥ αiαj (Vandermeer and Boucher,
1978).

We chose to use the Verhulst logistic equation (r-α) over the Pearl-Reed logistic equation (K)
because it is a simpler model with more clearly interpretable parameters (see Mallet (2012) for a
detailed comparison). Primarily relevant to us is that the Verhulst logistic formulation has parameters
that can be independently measured and independently statistically estimated. Also, it allows us to
avoid the terminological baggage of ‘carrying capacity’ (see Sayre (2008) for a historical review, and
references in Mallet (2012) for paradoxes and more modern disagreements), whose exact meaning is
ambiguous when the ‘maximum population density’ is uncreased by mutualism.

Unfortunately, there are pitifully few empirical studies on functional responses in mutualistic sys-
tems, especially given the breadth of functional and taxonomic diversity of types of mutualistic inter-
actions; e.g., facultative and obligate; transient and permanent; species-specific and diffuse; symbiotic
and free-living; bi-product, invested, and purloined; direct and indirect; transportation, protection, and
nutritional; and bi- and unidirectional mutualisms. The few studies that have directly or indirectly fo-
cused on the functional responses of a population to its mutualist partner’s population have found
evidence for different functional forms, including linear (e.g., Fonseca, 1999; Morales, 2011), saturating
(e.g., Holland et al, 2002), and hyperbolic (e.g., Gange and Ayres, 1999; Vannette and Hunter, 2011),
albeit with some statistical limitations (e.g., Morales, 2011; Vannette and Hunter, 2011). Nevertheless,
linear responses can provide realistic descriptions in some settings. For example, Fonseca (1999) found
that population growth of Amazonian ants is limited by the number of plant-producing domatia, and as
the density of domatia increased, ant colonies proportionally increased. As a second example, Morales
(2011) found that the emigration of predators from treehopper aggregations increased linearly with
the density of the ants that defend the treehoppers. As a third example, in by-product mutualisms
(see Connor, 1995), where there is no cost or a fixed cost to engage in a mutualism, the conferment of
benefits are likely linear. Ultimately, if linear responses can provide realistic descriptions in some set-
tings, they will usually be preferable because they are more easily tractable and have a straightforward
biological interpretation, with βi as an interaction coefficient. As explained in the Introduction, we
do not yet know whether the linear functional response uniquely explains the Lotka-Volterra model’s
unrealistic description of mutualisms, nor when its use can be justified on the grounds of tractability.
This is one thing we seek to discover with this study, and so we retain the Lotka-Volterra’s linear
functional response in our initial model before subsequently replacing it with a nonlinear response.

The first terms in eq. (1) have not received the same scrutiny as the last terms. We suspect this
has more to do with the ubiquity of the logistic model than any careful evaluation of its application
here. To explore this, we relax the assumption of logistic growth—the assumption that the difference
between per capita births and deaths linearly decreases as density increases. We relax this assumption
by modeling per capita births and deaths as separate, nonlinear functions, using the θ-logistic model
for each. This causes the per capita birth (or death) rate to be a decelerating function of density if the
exponent is < 1 and an accelerating function if the exponent is > 1 (Fig. 1). An exponent of 0 yields a
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density independent model and an exponent of 1 recovers the logistic model. We write each birth and
death function as a density independent term, bi or di with a density dependent term, µiN

ηi
i or νiN

θi
i .

Our first model pairs the θ-logistic birth and death functions with a linear functional response, to
arrive at

1

N1

dN1

dt
=
(
b1 − µ1Nη1

1

)
−
(
d1 + ν1N

θ1
1

)
+ β1N2

1

N2

dN2

dt
=
(
b2 − µ2Nη2

2

)
−
(
d2 + ν2N

θ2
2

)
+ β2N1.

(2)

Rearranged to group the density independent, density dependent, and mutualism terms, our model
with a linear functional response is,

1

N1

dN1

dt
= (b1 − d1)−

(
µ1N

η1
1 + ν1N

θ1
1

)
+ β1N2

1

N2

dN2

dt
= (b2 − d2)−

(
µ2N

η2
2 + ν2N

θ2
2

)
+ β2N1.

(3)

In these eqs., bi − di is equal to ri in eq. (1). Similarly, when ηi = θi = 1 in eq. (3), − (µi + νi) is equal
to −αi in eq. (1).

Finally, to more fully understand the effect of relaxing the assumption of linear intraspecific density
dependence, we extend our approach to include a saturating functional response. Specifically, we replace
the βiNj in eq. (3) with a saturating function (following Wright, 1989; Holland et al, 2002; Holland
and DeAngelis, 2010, and others), to create equations:

1

N1

dN1

dt
= (b1 − d1)−

(
µ1N

η1
1 + ν1N

θ1
1

)
+

γ1N2

δ1 +N2

1

N2

dN2

dt
= (b2 − d2)−

(
µ2N

η2
2 + ν2N

θ2
2

)
+

γ2N1

δ2 +N1
,

(4)

with γi being the maximum benefit species j can confer to species i and δi as the half-saturation con-
stant, which controls how quickly the saturation of benefits occurs. For a more mechanistic, consumer-
resource-based interpretation of the parameters in the saturating functional response for mutualisms,
see Revilla (2015).

2.1 Analyses

Our main experiment involved assessing stability of eq. (3) by modifying the four types of intraspecific
density dependence (density independent, decelerating, linear, accelerating) for births and deaths in a
model of mutualism with a linear functional response. Fig. 2 graphically depicts the 16 qualitatively
different combinations of types of birth and death rates. We refer to cases where ηi = θi, along the
diagonal of Fig. 2, as “symmetrical”; in these cases, the intraspecific part of our model is the familiar
θ-logistic equation. In our analysis, we consider the symmetrical cases first, before considering non-
symmetrical examples in which ηi 6= θi. In all analyses we assumed the same parameters between
species i and species j. Lastly, we compared our results to those obtained from model (4).

We analyzed eqs. (3) and (4) using a combination of analytical, numerical, and graphical techniques
to assess model behavior. Specifically, we (i) found equilibria and (ii) determined the behavior around
each equilibrium using local stability analysis. When analytical solutions were not possible (ηi or θi 6= 0
or 1), we solved for stable equilibria numerically using the Livermore Solver for Ordinary Differential
Equations, Automatic (LSODA) (Hindmarsh, 1983; Petzold, 1983) and solved for unstable equilibria
using Newton’s method. LSODA is an integrator that was used because of its generality and ability
to automatically handle stiff and non-stiff initial value problems, which were properties of our models.
Newton’s method is an iterative root-finding algorithm we used to find unstable equilibria to a precision
of 10−15, across state-space, from Ni = 0–10100 by orders of 10. Analyses were conducted in the R
language and environment (R Core Team, 2016), with LSODA implemented in the deSolve package
(Soetaert et al, 2010; Soetaert, 2010) and Newton’s method in the rootSolve package (Soetaert and
Herman, 2009; Soetaert, 2009). Code to run numerical analysis can be found at https://github.com/

dispersing/Mutualism-NonlinearDensityDependence.
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Parameter values for numerical analyses focused on the type of nonlinear per capita intraspecific
density dependence (i.e., ηi and θi) and the strength of mutualism (i.e., βi, but also the maximum
saturation in eq. (4), γi). For both of these types of parameters, we considered values ranging from
10−2–102. The other parameter values—bi, di, µi, and νi—did not qualitatively affect the model behav-
ior in terms of number or stability of equilibria (C. Moore, unpublished results), so we do not discuss
their effects in detail.

Graphical analyses were conducted using a modified version of the R package phaseR (Grayling,
2014a,b). Specifically, phase plots were created, using direction fields and zero-growth isoclines (i.e.,
nullclines) to corroborate and visualize our numerical findings.

3 Results

3.1 General results

For all analyses with linear functional responses we found between 3 and 5 non-negative equilibrium
population sizes (Fig. 3). Analytically, we found that (0,0) was always an equilibrium and always
unstable. Further, there were always two boundary equilibria (N1 > 0, 0) and (0, N2 > 0), both of
which were saddle nodes. The instability of the trivial and boundary equilibria means that populations
always grow when rare, as expected. Numerically, we found that in cases where interior equilibria were
present (N∗

1 > 0, N∗
2 > 0), there were either one or two points. In cases where there was only one

equilibrium point, it was always stable; in cases where there were two equilibrium points, the point
proximal to the origin (0,0) was always stable and the point distal to the origin was a saddle node.
Fig. 4 shows the six qualitatively different types of phase planes found in this study: (i) a trivial
density independent case ηi = θi = 0; (ii & iii) unstable and stable configurations when intraspecific
density dependence was decelerating, 0 < ηi = θi < 1; (iv & v) unstable and stable configurations
when intraspecific density dependence was linear, ηi = θi = 1; and (vi) a stable configuration when
intraspecific density dependence was accelerating, ηi = θi > 1.

In general, in the absence of mutualism, decelerating intraspecific density dependence increased both
species’ densities at equilibrium (βi = 0 plane in Fig. 5, left panel). Oppositely, accelerating intraspe-
cific density dependence decreased the equilibrium densities. Strong mutualism (high βi) destabilized
populations with decelerating intraspecific density dependence, but populations with accelerating in-
traspecific density dependence were always stable (Fig. 5, center panel; note that only stable equilibria
are shown, so missing portions of the surface (at high βi and low ηi and θi) denote loss of stability).
Further, when a stable interior equilibrium was present, adding mutualism to populations with decel-
erating intraspecific density dependence generated a larger benefit of mutualism than with accelerating
intraspecific density dependence (Fig. 5, right panel). Adding mutualism to populations when birth
and death rates were subject to independent intraspecific density dependence (i.e., non-symmetrical,
ηi 6= θi) was always stable if either ηi or θi was accelerating (> 1), and destabilized populations if
ηi 6= θi were both decelerating (< 1) if the mutualistic effect was sufficiently large (Fig. 6). Below we
describe results based on symmetrical cases when ηi = θi and non-symmetrical cases when ηi 6= θi, in
greater depth.

3.2 Symmetrical density dependence, ηi = θi

3.2.1 Decelerating density dependence, 0 < ηi = θi < 1

When 0 < ηi = θi < 1, we found that there were 1–2 interior equilibria (3–5 total equilibria), depending
on the strength of mutualism. In the absence of mutualism, the interior equilibrium (and consequently
the boundary equilibria by setting either coordinate to 0) is at((

b1 − d1
µ1 + ν1

)η−1
1

,

(
b2 − d2
µ2 + ν2

)η−1
2

)
. (5)

Notice the η−1
i exponent. In these cases of decelerating density dependence, as ηi = θi decrease from

1, the greatest change in growth rate occurs at lower densities (Fig. 1). Furthermore, the equilibrium
density in the absence of mutualism grows larger as ηi = θi decreases.
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Adding mutualism to populations with decelerating density dependence changed the dynamics in
either of two ways: (i) it destabilized the populations resulting in unbounded population growth (Fig. 4,
top-center panel) or (ii) it created both a stable and saddle node (Fig. 4, top-right panel). For very
small values of ηi = θi, populations were always unstable with mutualism added (i.e., βi > 0). As
decelerating density dependence became more linear (i.e., as ηi = θi → 1), however, weak mutualism
(small values of βi) resulted in an alternative configuration in which zero-growth isoclines crossed
twice. Of these two equilibria, the stable equilibrium point was always larger than in the absence of
mutualism (βi = 0) and the saddle node was always larger than the stable point. For the same values
of ηi = θi with stable and saddle nodes, increasing βi increased the stable point and decreased the
saddle point. Continuing to increase βi ultimately resulted in a saddle-node bifurcation, beyond which
all configurations were unstable, illustrated as the light-dark gray boundary in Fig. 3.

3.2.2 Linear density dependence, ηi = θi = 1

When ηi = θi = 1, there were either 0 or 1 interior equilibrium configurations (3 or 4 total equilibria)
that respectively corresponded to the absence of presence of an interior stable point. Linear density
dependence is equivalent to the most traditional formulation of mutualism, the Lotka-Volterra compe-
tition model with the sign reversed of the effect of another population. Although the behavior of this
model is well-known, we summarize its properties briefly here for ease of comparison. In the absence of
mutualism, the interior equilibrium (and consequently the boundary equilibria by setting either value
to 0) is at (

b1 − d1
µ1 + ν1

,
b2 − d2
µ2 + ν2

)
.

The slope of the zero-growth isocline as it increases from the boundary equilibrium is
βiNj

µi+νi
, and

zero-growth isoclines form a stable interior equilibrium point anytime βiβj < (µi + νi) (µj + νj). This
is equivalent to the more traditional notation, αijαji < αiiαjj found in ecology texts (e.g., May, 1981;
DeAngelis et al, 1986; Kot, 2001). The location of the stable interior equilibrium point is

(
b1 − d1
µ1 + ν1

+
β1(b1 − d1)(β1 + µ1 + ν1)

(µ1 + ν1)2((µ1 + ν1)− β2
1)

,
b2 − d2
µ2 + ν2

+
β2(b2 − d2)(β2 + µ2 + ν2)

(µ2 + ν2)2((µ2 + ν2)− β2
2)

)
.

3.2.3 Accelerating density dependence, 1 < ηi = θi

When 1 < ηi = θi, there was always one interior equilibrium (4 total equilibria), irrespective of the
strength of mutualism (Figs. 3, 5). In the absence of mutualism, the interior equilibrium is again given
by (5). Again, note the η−1

i in the exponent. In these cases of accelerating density dependence, as ηi = θi
increase from 1, the greatest change in growth rate occurs at higher densities (Fig. 1). Furthermore,
the equilibrium point in the absence of mutualism decreases as ηi = θi increased (Fig. 5, left panel).
With mutualism (βi > 0), in addition to always being stable, the benefit decreased as ηi = θi increased.

3.3 Non-symmetrical density dependence, ηi 6= θi

When ηi 6= θi, we found no dynamics qualitatively different from what we found in the symmetrical
cases. When either of the birth or death functions were density independent (ηi = 0 or θi = 0), the
population growth rates and model dynamics behaved according to the function without the non-zero
exponent. Further, when either of the birth of death functions responded linearly density, or both of
the birth and death functions responded at a decelerating rate, the population growth rates and model
dynamics were behaved similarly to cases with decelerating density dependence (Fig. 6, ηi ≤ 1 and
θi ≤ 1).

There was one important difference in non-symmetrical cases. Specifically, if either of the birth and
death functions were accelerating, then there was always one interior stable equilibrium (Fig. 6, ηi > 1
and θi > 1). This finding is irrespective of the strength of mutualism.
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3.4 Comparison of nonlinear density dependence with a saturating functional response

We investigated relaxing the assumption of linear intraspecific density dependence and have thus far
focused on a linear functional response between mutualist partners (eq. (3)). We further compared this
model with a different functional response, a nonlinear saturating function (eq. (4)) (Fig. 7). In general,
our findings with respect to the benefit of mutualism were the same: as intraspecific density dependence
shifted from decelerating to accelerating, for a given strength of mutualism (γi is roughly analogous
to βi in the linear functional response), the benefit of mutualism decreased (Fig. 7, right panel). Also,
increasing the strength of mutualism (γi) always increased the benefit of mutualism for any type of
density dependence. There were three major differences between the linear and saturating models.
First, in the saturating model, there were no unstable configurations (Fig. 5, center panel, compared
with Fig. 7, center panel). Second, again in the saturating model, across all values of strength of
mutualism and density dependence there were always four equilibria, with a single, stable interior
equilibrium. Third, weak accelerating density dependence with a linear functional response produced
a disproportionally large spike in benefit from mutualism (Fig. 5, right panel, compared with Fig. 7,
right panel).

4 Discussion

4.1 Main findings

Lotka-Volterra models of mutualism assume that intraspecific density linearly decreases per capita
growth rates. Other population models of mutualism have inherited this assumption and have generally
concluded that 2-species models of mutualism are inherently unstable. In real populations, however,
not only do nonlinear per capita growth rates exist, but they seem to be the rule rather than the
exception (Stubbs, 1977; Fowler, 1981; Sibly et al, 2005). In this study, we examined how relaxing the
assumption of linearly dependent per capita birth and death rates affects the stability and mutualistic
benefit in these models. We found that when per capita growth rates decrease most strongly at low
densities and are decelerating, mutualism usually destabilizes the model. In contrast, when growth rates
decrease most strongly at high densities and are accelerating, models are always stable with mutualism.
Despite the tendency for mutualism to destabilize the 2-species equilibrium with decelerating density
dependence, the benefit was greater compared to stabilizing, accelerating density dependence. We
additionally found that if either the birth or death functions exhibited accelerating density dependence,
the models always had a single, stable interior equilibrium irrespective of the strength of mutualism.

4.2 Forms of intraspecific density dependence

Our paper presents an alternative way that classic Lotka-Volterra mutualism models can be modified to
stabilize mutualism. Simply put, we added a layer of biological realism (nonlinear intraspecific density
dependence) to the Lotka-Volterra mutualism model and we found informative ways that within-species
properties could stabilize mutualism, even with a linear functional response modeling the interaction
between species. Support for decelerating and accelerating density dependence has largely been based
on large datasets from observational studies (e.g., 1750 species of mammals, birds, fish, and insects
in Sibly et al, 2005). Most of the data suggest that decelerating density dependence is the most
common form (Sibly et al, 2005). In our models, decelerating density dependence was largely unstable
with mutualism added. The reason that our decelerating models were unstable was that for strong
deceleration (i.e., ηi and θi → 0), after the initial steep decline in birth or death rates, the population
growth rate continues to decrease, but at decreasing rate. For biologically-realistic densities, after the
initial steep decline in birth or death rates, the population growth rate is asymptotic and therefore
does not meaningfully decrease with increasing density, allowing the benefit of mutualism to overpower
and destabilize the system.

From an ecological perspective, consumers’ nonlinear responses to intraspecific density arise from
differences in ecological habits or population structure. Sedentary organisms, like many plants for
example, exhibit a more-or-less-constant death rate at low-to-intermediate population densities, and
then at higher densities death rates tend to rapidly increase (as in scramble competition or self-thinning,
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Yoda et al, 1963) or increase linearly (as in contest competition, Crawley and Ross, 1990), resulting in
accelerating density dependence. Subsets of populations, such as age or stage, can experience different
vital rates and generate nonlinear density dependence for populations as a whole. In African ungulates,
for example, increases in density led to increases in adult mortality, while juvenile mortality remained
relatively constant at all population densities (Owen-Smith, 2006). In fact, many mutualisms occur
between species with structured populations, so our study may lend insights into these interactions.
As examples, many plant-mycorrhizal associations are mutualistic in the seedling stage (Grime et al,
1987; Jones and Smith, 2004; van der Heijden and Horton, 2009) and adult plants engage in mutualistic
interactions with pollinators when they reach a reproductive stage.

From an evolutionary perspective, a long-standing theory about why we see nonlinear density de-
pendence comes from evolutionary theories of life-history strategies; i.e., r- and K-selected populations
(Gilpin and Ayala, 1973; Stubbs, 1977; Fowler, 1981), but also θ-selection (Gilpin et al, 1976). Setting
aside historical controversies, this body of theory has generated very useful quantities like the specific
growth rate of a population. The most general prediction made is that populations with a high specific
growth rate (commonly referred to as r-selected) should exhibit decelerating density dependence since
their survival probability drops off precipitously at relatively low densities. On the other hand, popula-
tions with a low specific growth rate (commonly referred to as K-selected) should exhibit accelerating
density dependence since their survival probabilities drop off at relatively high densities (see Figs. 1,
2 in Fowler, 1981). Another illuminating example of how traits associated with life-history strategies
may be driving nonlinear density dependence was in a study of bird populations (Sæther and Engen,
2002). Sæther and Engen (2002) found that intrinsic growth rate, r, was correlated with the type
of nonlinear density dependence exhibited by the population, as well as metrics like clutch size and
adult survival rates. Interestingly, they also found a correlation between environmental stochasticity
and intrinsic growth rate, suggesting that intrinsic growth rate may be a confounding factor if studies
try to find a relationship between environmental stochasticity and the shape of a population’s density
dependence (Sæther and Engen, 2002).

4.3 Comparison with a saturating mutualism

We compared both linear and saturating functional responses because the latter response is now widely
used as an alternative that prevents unrealistic outcomes of the Lotka-Volterra mutualism model
(e.g., Holland et al, 2002, 2006; Okuyama and Holland, 2008; Holland and DeAngelis, 2010; Bastolla
et al, 2009; Rohr et al, 2014). The effects of nonlinear per capita intraspecific density dependence
was largely the same for both models, with the mutualistic benefit being greatest with decelerating
density dependence. We postulate that this is a general phenomenon that we expect to see with other
types of mutualistic functional responses. As an example, in a hypothetical seed-caching seed-dispersal
mutualism, we can expect that the per capita effect of the seed-caching animals on the nut-producing
plants will be constant; i.e., seed-caching animals disperse all nuts, regardless of the density of seed-
caching animals. In this case, we may model the functional response as a constant function gi(Nj) = εi,
with εi being the constant per capita benefit of having any amount of seed-caching animals present.
Coincidentally, this example is actually a special case of to the saturating functional response, as the
upper limit of the saturating function as Nj →∞ or δi → 0 is a constant (γi in eq. (4)).

The two major differences between the dynamics of our models with linear and saturating functional
responses were (i) the saturating functional response model always had a stable interior equilibrium
and (ii) there was a strong peak in the population densities with weak accelerating density dependence
with a linear functional response that was not present with a saturating functional response (Fig. 5,
center and right panels). Unlike the linear functional response, the model with a saturating functional
response withstood destabilization with linear and decelerative density dependence when relatively
strong mutualism was added. Indeed, persistent stabilization is one of the most attractive features of
the saturating functional response. Although it remained stable with stronger deceleration, we found
that the mutualistic benefit continued to increase, which does not seem to be a realistic feature of our
models. The peak in the mutualistic benefit in the model with a linear functional response was the
other difference compared with the saturating functional response model, which also does not seem to
be a realistic feature. This peak arose from parameter space where accelerating density dependence
was weak and the strength of the linear functional response was strong (for 1 < ηi or θi < 2). We
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did not observe a similar peak in the models with a saturating functional response because at higher
densities the benefit of the mutualism is diminished.

4.4 Future directions

Mutualism is incredibly important in virtually every ecosystem, yet we are missing fundamental the-
oretical and empirical information like the role of intraspecific density dependence in mediating its
effect. Very few empirical studies on the population ecology of mutualism exist, and we hope that this
will be remedied. This is especially true because ecologists are extending population models into larger,
more complex community models where functional forms can have important consequences (see the
exchange, for example: Bascompte et al, 2006a; Holland et al, 2006; Bascompte et al, 2006b). Most
importantly, we need studies examining both the relationship between intraspecific density and popu-
lation growth rate and the functional and numerical responses of mutualist pairs for the multifarious
forms of mutualisms (e.g., interspecific-resource defense, tropic-resource, spatial-resource mutualisms).
As argued in the methods, there is no a priori reason to reject a linear functional response for all
mutualisms based on the few empirical studies of mutualism population dynamics that exist. Iden-
tifying more examples of linear functional responses could help reveal what other processes stabilize
the interaction, and whether nonlinear intraspecific density dependence can be a stabilizing process as
suggested by our study.

There were many empirical predictions and questions that arose from relaxing linear per capita
intraspecific density dependence in this study. Foremost, we predict that in species with accelerating
intraspecific density dependence, the benefit of engaging in mutualism is less than in species with decel-
erating intraspecific density dependence. Does this mean that we expect fewer species with accelerating
intraspecific density dependence to engage in mutualistic interactions than those with decelerating in-
traspecific density dependence? Or do we expect more species with accelerating intraspecific density
dependence to engage in mutualistic interactions than those with decelerating intraspecific density
dependence because the interaction is inherently more stable? Contrasting the trade-off between the
benefit of mutualism and, at least in the models with a linear functional response, stability may reveal
which species with different life histories are involved with mutualisms while others are not. We found
this tradeoff with both the linear and saturating functional responses.

4.5 Conclusion

The linear functional response has historically been the scapegoat for theoretical studies of the popu-
lation dynamics of mutualism. For example, the eminent Lord Robert May (1976) writes:

. . . the simple, quadratically nonlinear, Lotka-Volterra models . . . are inadequate for even a first discus-

sion of mutualism, as they tend to lead to silly solutions in which both populations undergo unbounded

exponential growth, in an orgy of mutual benefaction. Minimally realistic models for two mutualists

must allow for saturation in the magnitude of at least one of the reciprocal benefits.

In this paper, we build on May’s idea of modifying the Lotka-Volterra mutualism model; not through
the saturation of benefits, but through intraspecific density dependence. We found that biologically-
realistic nonlinear density dependence significantly changes the dynamics of the original Lotka-Volterra
mutualism model, where we found that accelerative density dependence always stabilized our models
but with weaker mutualistic benefit relative to decelerative density dependence. We hope that this
study will further stimulate ecologists to consider all simplifying of assumptions of even the most
basic models and also to investigate more deeply into the relationships between intraspecific density,
interspecific density, and population growth to gain a better grasp on mutualistic population dynamics.
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Fig. 1 Values of ηi and θi used in eqs. (3) and (4) to represent nonlinear per capita birth and death rates before
accounting for the effects of mutualism. Panels show how the per capita birth (left) and death (right) rates change
as functions of intraspecific density, Ni. The actual values used for numerical analyses are presented in light gray,
with highlighted examples of decelerating intraspecific density dependence (ηi or θi = 1/10; short dashes, ),
linear intraspecific density dependence (ηi or θi = 1; medium dashes, ), and accelerating intraspecific density
dependence (ηi or θi = 10; long dashes, ).

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 13, 2017. ; https://doi.org/10.1101/108175doi: bioRxiv preprint 

https://doi.org/10.1101/108175
http://creativecommons.org/licenses/by-nc/4.0/


Population dynamics of mutualism and intraspecific density dependence: 11

0

0

0

0

0

0 0 0

Density
independent Decelerating Linear Accelerating

−N θi=0
i −N0<θi<1

i −N θi=1
i −N1<θi

i

P
er

ca
p
it
a
ra
te
s

P
er

ca
p
it
a
ra
te
s

P
er

ca
p
it
a
ra
te
s

P
er

ca
p
it
a
ra
te
s

Ni Ni Ni Ni

−Nηi=0
i

−N0<ηi<1
i

−Nηi=1
i

−N1<ηi
i

Density
Independent

Decelerating

Linear

Accelerating

B
irth

s

Deaths

Fig. 2 The qualitative range of per capita birth and death functions used in this study to examine how relaxing the
assumption of linear per capita intraspecific density dependence could affect the population dynamics of mutualism.
Each panel’s x-axis is population density, Ni, and the y-axis is the per capita birth, death, or growth rate. Per capita
birth ( ) and death ( ) rates respectively increase or decrease as a function of density. Across rows
of panels the shape of density dependent births changes as ηi increases and across columns of panels the shape of
density-dependent deaths changes as θi increases. The difference between the birth and death rates, the per capita
population growth rate ( ), is superimposed to show that similar overall population growth functions can arise
from different birth and death processes.

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 13, 2017. ; https://doi.org/10.1101/108175doi: bioRxiv preprint 

https://doi.org/10.1101/108175
http://creativecommons.org/licenses/by-nc/4.0/


12 Christopher M. Moore et al.

Density dependence (ηi = θi)

S
tr
en
g
th

o
f
m
u
tu
a
li
sm

(β
i)

Unbounded growth Stable coexistence

Stable coexistence
and unbounded
growth

Fig. 3 Number of equilibrium points (shades of gray) across all values of intraspecific density dependence (ηi = θi)
and strength of mutualism (βi), while holding the remaining parameters constant at bi = 5, di = 1, µi = 1, and νi = 1.
Across all analyses, there were always between 1 and 2 interior equilibria (3 and 5 total equilibria, including the trivial
and boundary equilibria). The light-gray regions corresponds to unstable configurations where no interior equilibrium
existed, the medium-gray regions correspond to stable configurations where one stable interior equilibrium existed,
and the dark-gray regions correspond to areas with two interior equilibria, one stable at low densities and one saddle
at high densities.
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each panel, zero-growth isoclines (nullclines) are shown for N1 (red) and N2 (blue): (i) when there is no mutualism
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the two results of decelerating intraspecific density dependence (0 < ηi = θi < 1) are shown in the second and third
columns of the top row, linear intraspecific density dependence (ηi = θi = 1) is shown in the first and second columns
of the bottom row, and accelerating intraspecific density dependence (ηi = θi > 1) is shown in the bottom right panel.
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Fig. 5 For model (3), nonlinear per capita birth and death rates with a linear functional response of mutualism,
the location of the interior equilibrium in the absence of mutualism (βi = 0, left), stable interior equilibrium with
mutualism (center), and the benefit of mutualism as the difference between the two (right). The locations of equilibria

were identified as the Euclidian distance from the origin,
√

(N∗
i )2 + (N∗

j )2, for identical parameters for each species:

bi = 5, di = 1, µi = 1, and νi = 1. Each panel shows the aforementioned response on the vertical axis, the type of
intraspecific density dependence (ηi = θi from 10−2–102) on the left horizontal axis, and the strength of mutualism
(βi from 10−2–102) on the right horizontal axis. Further, each panel shows the relative values of each surface (colors),
the absolute values of each surface (same axes across panels), and contour lines at the base of each plot show changes
in the surface. In the left panel, we extend the result at βi = 0 across the right horizontal axis to aid comparison with
the center panel. Further, in areas where there is no surface, there was no stable interior equilibrium when βi 6= 0
(center). In the left panel without mutualism, there there were stable interior equilibria across all values of ηi and θi,
but we removed the same part of the surface to aid comparison across panels. Because there is no mutualism in the
left panel, if we showed the entire surface is would be the same as Fig. 7, left panel.
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Fig. 6 Number of equilibrium points given non-symmetrical intraspecific density dependent birth (ηi; x-axis) and
death (θi; y-axis) functions, for different strengths of a linear mutualism functional response (βi; grayscale). If either
birth (ηi) or death (θi) functions were accelerating (> 1), then there was always one interior equilibrium and it was
stable (black), irrespective of the strength of mutualism (βi). We only show parameter space up to 102, but a stable
interior equilibrium was present for any value greater than 1. If both birth and death functions were decelerating
(< 1), then the strength of mutualism determined if there was no interior equilibrium or two interior equilibria.
Contours lines delineate the no-interior- (white) and two-interior-equilibrium (gray) boundaries for several strengths
of mutualism (10−1 ( , darkest gray), 10−2 ( , medium gray), and 10−3 ( , lightest gray)).
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Fig. 7 For model (4), nonlinear per capita birth and death rates with a saturating functional response of mutualism,
the location of the interior equilibrium in the absence of mutualism (left), stable interior equilibrium with mutualism
(center), and the benefit of mutualism, as the difference between the two (right). The locations of equilibria were

identified as the Euclidian distance from the origin,
√

(N∗
i )2 + (N∗

j )2, for identical parameters for each species:

bi = 5, di = 1, µi = 1, and νi = 1. Each panel shows the aforementioned response on the vertical axis, the type of
intraspecific density dependence (ηi = θi from 10−2–102) on the left horizontal axis, and the strength of mutualism
(γi from 10−2–102) on the right horizontal axis. Further, each panel shows the relative values of each surface (colors),
the absolute values of each surface (same axes across panels), and contour lines at the base of each plot show changes
in the surface.
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