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Abstract

As organisms age, cells accumulate genetic and epigenetic changes that eventually 

lead to impaired organ function or catastrophic transformation such as cancer. Since 

aging appears to be a stochastic process of increasing disorder1 cells in an organ will 

be individually affected in different ways - thus rendering bulk analyses of postmitotic

adult tissues difficult to characterize. Here we directly measure the effects of aging in 

primary human tissue by performing single-cell transcriptome analysis of 2544 human

pancreas cells from eight donors spanning six decades of life. We find that islet cells 

from older donors have increased levels of molecular disorder as measured both by 

noise in the transcriptome and by the number of cells which display inappropriate 

hormone expression, revealing a transcriptional instability associated with aging. By 

further analyzing the spectrum of somatic mutations in single cells, we found a 

specific age-dependent mutational signature characterized by C to A and C to G 

transversions. These mutations are indicators of oxidative stress and the signature is 

absent in single cells from human brain tissue or in a tumor cell line. We have used 

the single cell measurements of transcriptional noise and mutation level to identify 

molecular pathways correlated with these changes that could influence human 

disease. Our results demonstrate the feasibility of using single-cell RNA-seq data 

from primary cells to derive meaningful insights into the genetic processes that 

operate on aging human tissue and to determine molecular mechanisms coordinated 

with these processes.
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Main

Aging in higher-order metazoans is the result of a gradual accumulation of cellular 

damage, which eventually leads to a decline in tissue function and fitness 1. Since the 

fundamental processes involved in aging affect single cells in a stochastic manner, 

they have been difficult to study systematically in primary human tissue. Studies of 

selected genes in mice indicate that aging postmitotic cells of the heart display a 

transcriptional instability 2 that is not observed in actively renewing cell populations 

such as those of the hematopoietic system 3. An accumulation of genetic aberrations 

has been suggested to underlie transcriptional dysregulation by affecting promoter and

enhancer elements as well as exonic sequences 4. However, due to technical 

constraints it has previously been difficult to study these processes in human tissue or 

at the whole transcriptome level.

In order to investigate the effect of physiological aging on pancreatic epithelial cells, 

we obtained pancreata from eight previously-healthy donors operationally defined as 

juvenile (ages 1 month, 5 years and 6 years), young adult (ages 21 and 22) and 

adult/middle aged (ages 38, 44 and 54). Single pancreatic cells were purified by flow 

cytometry and their mRNA expression analyzed using single-cell RNA-Seq (scRNA-

seq) 5, with the quality of individual cells assessed using an automated quality control 

pipeline (see Methods for details). Dimensionality reduction analysis (tSNE) of data 

from all donors led to consistent clustering of different cell types into distinct regions 

(Fig. 1a), indicating good and an absence of donor or sequencing related batch effects.
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The large span of donor ages (≈6 decades), allowed us to assess the effect of 

organismal aging at the single cell level. Expression levels of known markers of 

organismal aging such as CDKN2A (p16) were strongly associated with age, but 

overall we observed only modest systematic age-dependent transcriptional changes 

for other genes (Fig. 1b, S1a-b). From investigations on a small panel of genes in the 

mouse heart 2, it has previously been suggested that aging is the result of an increase 

in transcriptional instability rather than a coordinated transcriptional programme. To 

test whether this observation can be generalized to a full transcriptional profile in 

human pancreas, we measured the transcriptional noise within cell types and donors 

using estimates based on Euclidean distance (Fig. S1h) or Pearson correlation as a 

fraction of technical error (Fig 1c). Both methods indicated increased transcriptional 

noise in samples from older donors compared to samples from young adults and 

children, demonstrating age-dependent transcriptional noise.

A subset of α-cells and β-cells simultaneously expressed both Insulin (INS) and 

Glucagon (GCG) mRNA - a result which is consistent with prior studies 6–8, and 

which we verified using in situ RNA staining (Fig. S1, c-g). scRNA-Seq revealed that 

the fraction of α- or β-cells co-expressing both Insulin and Glucagon mRNA 

increased significantly with advancing age (Fig. 1d, GCG in β-cells: P=1.74e-27, 

n=348. INS in alpha cells [not shown]: P=5.38e-10, n=998, linear regression). Thus, 

increasing numbers of cells with ‘atypical’ hormone mRNA expression is emblematic 

of age-dependent transcriptional instability, and suggests a physiological basis for 

declining endocrine function observed by others in aging pancreas 9,10. 
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To investigate whether any systematic gene expression differences accompany an 

increase in transcriptional noise we performed linear regression on gene expression 

levels as a function of noise rank (batch corrected  and within celltype). As shown in 

Fig 1e stress response genes such as FOSB, HSPA1A and JUND were most highly 

associated with increasing transcriptional noise, supporting an aging paradigm that 

implicates cellular stress in age-related pathology 11.

Aging is accompanied by the accumulation of somatic DNA substitutions and the 

pattern of somatic substitutions in a cell depends on the mutagenic processes that 

cause them. A growing body of data from tumor genomes has uncovered a multitude 

of such mutational signatures 12–15, many of which can be linked to specific mutational

processes. However, these signatures are dominated by processes associated with 

tumor growth and only three such signatures are linked to aging in tumors or organoid

cultures of stem cells 16,17. In order to directly study mutational signatures that are 

active in healthy tissue, we developed a computational method for determining 

somatic variation within single cells using single-cell RNA-seq data (see methods). 

Using this method, we compiled a catalogue of putative somatic and germ-line 

mutations from the 2544 pancreas cells together with 398 previously published single 

cells from adult human brain 18. We also compiled a similar catalogue of clonal 

variation within 73  GP5d colon adenocarcinoma cells cultured in vitro. Germline 

variation contributed 73.5% of the total number of substitutions on average in 

pancreas (Fig. 2a). Somatic substitutions were enriched in untranslated regions of 

transcripts and also enriched for mutations resulting in codons which do not alter the 

amino acid sequence (Fig 2b, S4h). As expected, the vast majority of putative somatic
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substitutions were observed in only one cell each (Fig. S2a), indicating that the 

method is specific to somatic variation. These somatic mutation rates exceed technical

error rates due to amplification and sequencing error, as measured by internal spike-in

controls of synthetic RNA included in each single cell experiment.

To investigate the patterns of somatic mutations, we determined the rates of the six 

possible single nucleotide substitutions. Single cells from pancreas had a markedly 

higher rate (> 5-fold) of somatic variation compared to brain tissue for most 

substitution types (Fig. 2a, S2c), and there was considerable variation also between 

cell types in the pancreas (Fig S2b). However, rates of C>T substitutions in a CpG 

dinucleotide context, known to deaminate spontaneously when methylated, and T>C 

substitutions were relatively higher in brain compared to pancreas (Fig S2c), in line 

with what was previously found for postmitotic brain cells19. Synthetic control RNA 

substitution rates were similar between cell types of the pancreas and represent a 

lower level of technical noise in the measurement. Thus, analyzing the raw sequence 

reads from scRNA-seq data allows us to determine the mutational history of primary 

tissues as well as the clonal variation in a tumor cell line.

To identify the mutational signatures (S1-S3, SC4-7) that underlie the observed 

substitution rates, we used non-negative matrix factorization followed by hierarchical 

clustering (similar to 20, see methods for details) on the substitution rates of single 

cells (Fig. 2c, S3a-c). The S1 signature (high rate of C>A, followed by C>G and C>T 

substitutions), and S3 signature (highly elevated rate of T>C substitutions), were cell 

type specific signatures, with S1 found in the endocrine pancreas and S3 in the brain. 
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The S2 signature was highly enriched in clonal variation within the mismatch repair 

deficient GP5d cell line, with weaker signal in brain. The pancreas specific signature 

S1 was characterized by C>A  substitutions, with  C>G and C>T substitutions at 

progressively lower rates. C>A and C>G substitutions are attributed to oxidation of 

the guanine base, creating 8-Oxo-2'-deoxyguanosine (8-Oxo) which mispairs with 

adenine and can be further oxidized to mispair with guanine 21,22, whereas C>T 

substitutions are attributed to oxidation of the cytosine base23. Consistent with 

oxidation of guanosine driving the mutational signature of β cells, 8-

hydroxyguanosine levels were markedly elevated in the DNA of  β cells compared to 

non-islet cells, while only modestly elevated in RNA (Fig. 3). 8-Oxo substitutions 

preferentially occur when the guanine is on the non-transcribed strand 24,12, possibly 

due to transcription-coupled nuclear excision repair of adducts on the transcribed 

strand25. In order to determine if transcriptional strand bias occurred in our data, we 

annotated the single-base substitutions with whether the mutated pyrimidine was on 

the transcribed (-) or untranscribed (+) strand. As expected, C>A and C>G 

substitutions had a strong preference to occur on the transcribed strand in endocrine 

cells but not in brain cells, consistent with guanine oxidation driving signature S1 

(Fig. S3d). Taken together, signature S1 appears to be a novel, strand-specific 

mutational signature which bears the hallmarks of oxidative damage.

Previous large-scale efforts to decipher cancer-specific mutational signatures in bulk 

tumor genomes 12 discovered 21 unique signatures using the substitution type and the 

surrounding two bases. We reasoned that our signatures might have been also detected

in the tumor data, and compared the signatures by collapsing their probabilities into 
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single-base substitution probabilities. Signature S3 found in this study was very 

similar to tumor signature 12 from 12 (Fig S4d) , and the characteristic T>C 

substitutions in brain display a similar degree of strand specificity to tumor signature 

12 (S3d). Signature S2 was almost identical to both the age dependent tumor signature

1, and the mismatch repair associated tumor signature 6 (Fig S4d) . The major 

distinguishing feature between the two tumor signatures is the rate of C>T 

substitutions within a GpC context, which is higher in tumor signature 6. As shown in 

figure 2d this distinguishing feature clearly separates the two tissues, suggesting that 

non-clonal substitutions in GP5d mainly stem from faulty mismatch repair, whereas 

somatic substitutions in brain are caused by the same age dependent process as tumor 

signature 1. Interestingly, tumor signature 5, which is of unknown aetiology and is 

found at low levels in all tumor types is highly reminiscent of our false positive 

signature (Fig. S4c) - suggesting that it is either a product of false-positive calls in the 

tumor datasets, or caused by a mechanism that is shared between human replication 

and enzymes used for nucleic acid amplification. None of the 21 tumor signatures 

found to date is directly related to endogenous oxidative stress, and the endocrine 

signature S1 has no direct counterpart among the tumor signatures. Further 

investigation into tumor signatures of healthy tissues will be needed to elucidate 

whether signature S1 is emblematic of mainly post mitotic cells with high rate of 

metabolism, which rarely form tumors, or if it is specific to endocrine pancreatic cells.

Ranking of cells by signature-specific mutational load indicated that signatures S1 

and S2 were highly correlated with age, with S1 showing the highest significance 

(P=5.95E-23, Fig. 4a, S4). Only two genes, PON2 (a membrane protein with a 
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putative antioxidant activity) and EGR1, were significantly associated with mutational

load of the age dependent S2 (Fig S4a-c). Signature S1, on the other hand, was 

associated with a large transcriptional effect. The genes most highly associated with 

high S1 load were involved in transcription (TCEB2), protein synthesis (RPL6) and 

modulation of ROS (ROMO1) (Fig. 4b). Gene set enrichment analysis indicated that 

pathways involved in protein synthesis are altered in both cells with high S1 load and 

high transcriptional noise (Fig 4c). Age-dependent decline in function and 

regenerative potential has been attributed partially to the activity of reactive oxygen 

species (ROS) produced by cellular metabolism 11. The age-dependent mutational 

signature in the endocrine pancreas is characterized by a high rate of C>A and C>G 

substitutions, which are selectively induced by ROS (Fig S4e) 22,26-27. Pancreatic islet 

cells are sensitive to ROS due to low expression of antioxidant enzymes such as 

SOD1 28, a relatively high rate of ATP dependent processes such as protein production

and secretion, and the requirements for reducing power to keep insulin disulfide 

bonded. Our results thus suggest that the age specific mutational signature observed in

the endocrine pancreas is due to ROS dependent lesions on DNA. Interestingly, 

oxidative damage is part of the pathology of type II diabetes, and plasma 8-

hydroxyguanosine is a good correlate to endocrine dysfunction29.

Given that DNA sequence directly influences gene expression, it is tempting to 

speculate that transcriptional noise in β cells results from an oxidative environment 

which directly causes lesions to guanine in genomic DNA. However, the correlation 

between transcriptional noise and signature S1 was weaker than that of either of the 

two with age, suggesting that they might be caused by independent age related 
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processes. Also, high levels of transcriptional noise seem to occur in younger adults 

than high levels of oxidative damage (compare figures 1e and 4a). Thus our single cell

approach indicates that although the two effects are individually linked to age, DNA 

damage and transcriptional noise might not be in direct causation - contrary to what 

has been previously suggested4.  In a broader sense, our methods for determining 

transcriptional noise and mutational signatures from scRNA-seq data provide a means

to study such signatures in arbitrarily specific cell populations from primary tissue, 

irrespective of the replicative potential of the cells, which could have far reaching 

implications on our ability to study such processes.
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Methods

Human Pancreas and Islet Procurement

All studies involving human pancreas or islets were conducted in accordance with 

Stanford University Institutional Review Board guidelines. De-identified human 

pancreata or islets were obtained from previously healthy, non-diabetic organ donors 

with BMI<30, less than 15 hours of cold ischemia time, and deceased due to acute 

trauma or anoxia. Organs and islets were procured through Integrated Islet 

Distribution Network (IIDP), National Diabetes Research Institute (NDRI), UCSF 

Islet Isolation Core (San Francisco, CA USA) and International Institute for the 

Advancement of Medicine (IIAM). For FACS, scRNA-Seq studies islets from three 

juvenile (ages 1 month-old, 5, 6), and five adult donors (ages 21, 22, 38, 44, 54 years) 

were used. For immunostaining studies pancreatic tissue sections from a 31-year-old 

donor were used.

 

Flow Cytometry

Isolated human islets were dissociated into single cells by enzymatic digestion using 

Accumax (Invitrogen). Prior to antibody staining, cells were incubated with blocking 

solution containing FACS buffer (2% v/v fetal bovine serum in PBS and goat IgG 

[Jackson Labs], 11.2 μg per million cells). LIVE/DEAD Fixable Aqua Dead Cell Dye 

(Life Technologies) was used as a viability marker. Cells were then stained with 

appropriate antibodies at 1:100 (v/v) final concentration. The following antibodies 
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were used for FACS experiments: HPx1-Dylight 488 (Novus, NBP1-18951G), HPi2-

Dylight 650 (Novus, NBP1-18946C), CD133/1 - Biotin (Miltenyi Biotec 130-090-

664), CD133/2 - Biotin (Miltenyi Biotec 130-090-852), streptavidin-eFluor780 

(eBioscience, 47-4317-82), streptavidin-APC (eBioscience, 17-4317-82), anti human 

EpCAM-APC (Biolegend, 324208). Cells were sorted on a special order 5-laser 

FACS Aria II (BD Biosciences) using a 100 m nozzle following doublet removal. 

Sorted single cells were collected directly into 96-well plates (Bio-Rad cat #: 

HSP9601) containing 4 µL of lysis buffer with dNTPs 5 for downstream single-cell 

RNA-Seq assays.

Single-Cell RNA-Seq and Data Analysis

Single-cell RNA-Seq libraries were generated as described 5. Briefly, single-cells 

collected in 96-well plates were lysed, followed by reverse transcription with 

template-switch using an LNA-modified template switch oligo to generate cDNA. 

After 21 cycles of pre-amplification, DNA was purified and analyzed on an automated

Fragment Analyzer (Advanced Analytical). Each cell’s cDNA fragment profile was 

individually inspected and only wells with successful amplification products 

(concentration higher than 0.06 ng/ul) and with no detectable RNA degradation were 

selected for final library preparation. Tagmentation assays and barcoded sequencing 

libraries were prepared using Nextera XT kit (Illumina) according to the 

manufacturer's instructions. Barcoded libraries were pooled and subjected to 75 bp 

paired-end sequencing on the Illumina NextSeq instrument.
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Sequencing reads were trimmed, adapter sequences removed and the reads aligned to 

the hg19 reference assembly using STAR 30 with default parameters. Duplicate reads 

were removed using picard 31. Transcript counts were obtained using HT-Seq 32 and 

hg19 UCSC exon/transcript annotations. Transcript counts were normalized  into log 

transformed counts per million (log2(counts * 1 000 000 / total_counts  + 1). Single 

cell profiles with the following features were deemed to be of poor quality and 

removed : 1) cells with less than 100.000 total number of valid counts on exonic 

regions. 2) cells with very low actin CPM. To determine a cutoff for actin CPM, we 

used the normal distribution with empirical mean and standard deviation from actin. 

The cutoff was set to the 0.01 quantile (eg. the lower 0.01 % of the bell curve). 

Table 1 Summary of sequenced cells, only cells with > 10E5 aligned counts are 

shown. Sequencing statistics are median values.
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Pairwise distances between cells were estimated using Pearson correlation on the 500 

most highly expressed genes in any one cell. Dimensionality reduction of the pairwise

correlation matrix was performed using the t-SNE method 33.

To determine Gene Ontology categories that were associated with transcriptional 

noise or signature specific mutational load, we used Gene Set Enrichment Analysis 

(GSEA), using the coefficients of association to noise/rank of significantly altered 

genes (P<1E-5, linear model, FDR corrected). Coefficients were used as a preranked 

list in the GSEA software using default parameters with the gene set database 

“c5.all.v5.2.symbols.gmt”, which includes all GO categories. 

The data reported in this paper have been deposited in the Gene Expression Omnibus 

(GEO) database, accession no. GSE81547.

Genomic sequencing

Genomic variants were determined from whole genome sequencing data following 

GATK Best Practices34 . Briefly, adapters and low quality bases were trimmed using 

cutadapt v1.934,35. Reads were aligned to hg19 using BWA-MEM 0.7.12 36. Duplicates 

were removed using Picard tools v1.119 followed by indel realignment and base 

recalibration using GATK v3.531. Variants were called using haplotype caller and 

recalibrated using VQSR. Default software parameters were used and reference files 

downloaded from the GATK Resource Bundle 2.8/hg19. 
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Somatic mutational signatures in single-cell RNA-seq data

To explore mutational signatures in single postmitotic cells, we analyzed the raw 

sequence reads from mRNA-seq. Previously, mutational signatures have been 

successfully extracted from exon sequencing; however using single-cell data poses a 

number of additional challenges. First, we need to deal with the higher error rate 

associated with reverse transcription and a higher number of PCR cycles. We do this 

in two ways - by including positive and negative internal controls for each cell, that 

are used to derive a meaningful cutoff when calling substitutions, and by performing 

an additional post-selection of signatures, discarding potential false-positives. Second,

the sequence space in a single-cell RNA-seq experiment is typically fairly limited, 

even compared to exon sequencing. We mitigate this issue by sequencing long reads 

(75 bp paired-end), and by sequencing deeper than typically needed for scRNA-seq 

(approx. 1M mapped reads per cell). Further, we calculate substitution rates based on 

the actual number of sequenced kmers in each cell, to account for differences in base 

distribution. Finally, the limited number of substitutions in each cell means that the 

sequence context cannot be reliably included in all cases, which is why we generally 

restricted ourselves to analyzing single-base substitutions.

Raw variation calls were made using the Haplotype Caller (GATK pipeline31,34) on the

BAM files after applying SplitNCigarReads to remove overhangs into intronic 

regions. Variants were filtered to remove clusters (>3 SNPs within 35 bases), as well 

as variants with QD < 2.0 and FS > 30.0. Germline mutations were called using a 

merged set of all single-cell profiles from each patient. Subsequently, we filtered the 
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raw variation calls by applying variant quality score recalibration using the GATK 

pipeline. To reliably call substitutions we need internal controls for each cell, 

corresponding to a true-positive and true-negative set. We used known variants 

(dbSNP release 138) from our germline calls that mapped to transcribed regions of the

genome as a true positive set (phred-scaled prior: 15.0) and variants that map to 

ERCC control reads as a false positive set (ERCC controls are synthetic RNA 

sequences and therefore devoid of systematic variation). To filter somatic 

substitutions, a strict cutoff, allowing 10% false negative rate was used. Variants also 

found in the germline were flagged as germline mutations and not used for somatic 

signatures. In all subsequent analysis, only single-nucleotide substitutions were 

considered.

For each cell, we extracted the genomic context of each mutation and created a 

catalogue of the frequency of mutation types. We then divided these frequencies with 

the kmer counts derived from fastq sequences for the cell to obtain the final 

substitution rates. Negative control ERCC sequences were processed in parallel, to 

give accurate substitution rates that reflect the different sequence background. 

Substitution rates in these ERCC samples were 4.8E-7. If we assume that the false-

positive substitutions stem exclusively from somatic calls (eg. that the germline calls 

are completely devoid of false positives), this result would  indicate a false discovery 

rate of 15.05% for somatic substitutions. Thus, we estimate that the upper bound of 

our false discovery rate is 15%. To further validate our method we performed 25x 

whole genome sequencing (WGS) of GP5d and compared the overlapping 

substitution calls from single-cell mRNA seq and bulk genomic sequencing. A total of
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151,030 genomic positions were determined to have single-base substitutions from 

the reference genome based on mRNA-seq. Out of these 151,030 substitution calls, 

105,673 were also found in WGS and 105,543 were identical (concordant). 45 357 

substitutions, or 30.0% of total, were  not found in WGS calls; these calls include 

somatic substitutions, false negative calls from WGS and technical errors. Based on 

these numbers and our findings about somatic substitution rates, we estimate that the 

false positive rates due to technical errors are accurately described by the ERCC 

substitution rates.

To determine how well our method identifies somatic substitutions, we again used 

bulk WGS as a gold standard. We determined the overlap of WGS substitution calls 

with all putative somatic substitutions called from the merged mRNA-seq data. Out of

4637 putative somatic substitutions 612 were also found in WGS, indicating that 

13.2% of our putative somatic calls are actually germline SNPs.

Thus, we estimate the overall false discovery rate in our data (before applying 

nonnegative matrix factorization and signature selection) to be approximately 25%, 

which includes 13.2% that represent real variation stemming from germline rather 

than somatic events and ~10-15% substitution calls that were erroneously called due 

to technical errors such as PCR or sequencing artifacts.

To further explore structure within the somatic substitution calls, we examined the 

effect of substitutions on protein sequence. Because of the degeneracy of the exon 

code, a fraction of exonic substitutions will give rise to a DNA sequence which codes 
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for the same amino acid sequence. Such synonymous (or silent) substitutions are 

enriched in germline SNPs, and given that a subset of amino acid substitutions will 

negatively affect fitness of the cells, we would expect some enrichment of 

synonymous substitutions also among somatic substitutions. Also, we would expect 

this enrichment to be similar in different cell types, irrespective of the mutational 

load. Substitution calls due to technical errors, however, will not be enriched in silent 

substitutions. We annotated the substitution calls based on genomic notation (hg19), 

and calculated the fraction of calls that result in a codon for the same amino acid. As a

comparison, we calculated the fraction of synonymous substitutions based on random 

DNA mutation. The average fraction of synonymous substitutions was 40% higher 

than expected by random chance (0.32 in pancreas compared to 0.23 expected by 

random, P=3.34E-125, Wilcoxon test. Figure S4h). Importantly, this number did not 

correlate with mutational load; cells with higher number of mutations in fact had a 

somewhat increased fraction of synonymous substitutions (Slope=3.25E-5, P=0.08, 

linear regression), and pancreas cells had almost identical fraction of  silent mutations 

compared to brain even though the substitution rate was five-fold higher in pancreas 

(Fig S4i). Thus, the differences in substitution rates likely reflect genetic alterations in

the cells, rather than technical error.

To decipher the underlying mutational signatures, we applied non-negative matrix 

factorization using the NMF R package 37 to the substitution rates of single-nucleotide

substitutions (eg. the mean of the rates for a substitution type over all contexts) for 

each cell type separately. The highest scoring solution out of 10000 independent runs 

of the algorithm was used for the final result. The number of possible signatures (5) 
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was chosen to be higher than the number of unique signatures actually found by the 

algorithm, and duplicate signatures were merged together. We applied hierarchical 

clustering on the full set of mutational signatures (“basis matrices”) to identify distinct

mutational signatures (Fig S3a). Finally, we selected signatures based on five criteria 

(summarized below and in Fig S3c). To find the signatures that likely represent cell 

type specific processes that were active in the healthy cell during the donor’s lifetime, 

we determined cell type specificity and age dependence of each signature. Also, 

because of the relatively high level of noise in the data, a signature might represent 

errors that arose systematically during reverse transcription. Thus, to arrive at the final

three signatures (S1-S3), removed mutational signatures with a high degree of 

similarity to the substitution rates of the negative control RNA, with no cell-type 

specificity, positive age dependence, or with a very low signal. We also determined 

the similarity of the signatures to the COSMIC tumor signatures12. Figure S3C, 

bottom panel, summarizes the association of signatures with these traits. It should be 

noted that we cannot completely rule out the possibility that the excluded signatures 

were due to a cell-type specific process active during the lifetime of the donor. Further

investigation on much larger panels of tissues will be needed to determine the origin 

of these signatures.

Fig. 2b and S3c show the geometric median signature of each cluster. Mutational load 

of a signature on a cell was determined as the fraction of somatic substitutions of that 

cell attributed to the signature in question. To obtain a signature load ranking, cells 

were ordered according to the fraction of mutations that are attributed to a specific 

signature. Statistical significant association was determined using linear regression. 
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Estimation of transcriptional noise

In order to ascertain the robustness of age dependent transcriptional noise, we 

computed three measurements of transcriptional instability each of which displayed a 

strong statistical significance and positive coefficient to age. For per-donor 

measurements we first divided the cells into cell types and computed the mean 

expression vector for each cell type. We then calculated the Euclidean distance 

between each cell and its corresponding celltype mean vector. The individual 

datapoints are summarized as boxplots. As an alternative method to obtain a measure 

of the transcriptional noise of a single cell, we first subsampled the gene count list to 

100 000 counts per cell. We then selected a set of invariant genes evenly across the 

range of mean expression. First we binned the genes in 10 equally sized bins by mean 

abundance, then we selected the 10% of genes with the lowest CV from each bin, 

omitting the bins at the high and low extremes. We then used these genes to determine

the Euclidean distance from each cell to the average profile across all cells. Finally, 

we used a correlation based method where noise is expressed as biological variation 

over technical variation. First, we calculated the biological variation bijk=1-cor(xijk, 

uij), where ui is the mean expression vector in cell type i, patient j and xijk is the 

expression vector of cell k in that cell type i, patient j. Next, we calculated the 

corresponding technical variation tijk=1-cor(xcontr
ijk, ucontr) where xcontr

ijk and ucontr are the 

expression vector and mean expression vector of the ERCC spike-in controls. The 

final measurement is bijk/tijk eg.  the biological noise as a fraction of technical noise. 
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The cells were ordered by this distance within cell type, and their ranking used for 

linear regression.

To determine the genes whose mRNA abundance were significantly dependent upon 

transcriptional instability, we used linear rank regression on the CPM values. P-values

were adjusted for multiple testing using the FDR procedure of Benjamini & Hochberg

(with FDR < 1E-15 as significance cutoff), and ordered by their coefficient.

In situ RNA and protein staining

Multiplex RNA staining was performed on 10 µm thick, formalin-fixed, tissue 

sections using barcoded transcript-specific padlock probes and rolling circle 

amplification (RCA) as described before 38 . The primer sequences were 

GCG: G+TC+TC+TC+AA+AT+TC+ATCGTGACGTTT

INS: G+CA+CC+AG+GGC+CCC+CGCCCAGCTCCA

Padlock probes: 

GCG: Phosp-GAATAACATTGCCAAACGTGTGTCTATTTAGTGGATCCCGTGCG

CCTGGTAGCAATTAGCTCCACTGTTACTAGATTGGAATACCAAGAGGAACAG

INS: Phosp-AGGTGGGGCAGGTGGAGCCTCAATGCTGCTGCTGTACTCTACG

ATTTTACCAGTTGCCCTAGATGTTCCGCTATTGTCCGGGAGGCAGAGGACCTGC

Detection probes:

DO_1_FITC: AGUCGGAAGUACTACTCUCT_FITC

DO_1_Cy3: CCUCAATGCUGCTGCTGUAC_Cy3
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DO_1_Cy5: TGUGTCTATUTAGTGGAUCC_Cy5

DO_2_FITC: CGUGCGCCUGGTAGCAAUTA_FITC

DO_2_Cy3: AGUAGCCGUGACTATCGUCT_Cy3

DO_2_Cy5: TCUACGATUTTACCAGTUGC_Cy5

DO_3_FITC: CCUAGATGTUCCGCTATUGT_FITC

DO_3_Cy3: GCUCCACTGUTACTAGAUTG_Cy3

DO_3_Cy5: CTUGTGCTGUATGATCGUCC_Cy5

 and accession numbers of the probes used are reported in Supplementary Table 1 The

RCA products were stained by sequential hybridization of three uracil-containing 

fluorescent oligonucleotides following a modified protocol from Ke 2013. The three 

reported probes were mixed 0.1 mM each with hybridization buffer (20% formamide 

in 2x SSC) and incubated with the tissue at 37°C for 30’. After incubation, tissue 

section was washed in PBS 5’ and nuclei were counterstained with DAPI 300nM in 

PBS at room temperature for 15’. The tissue was washed in ethanol 70, 85 and 100% 

5’ each, air dried and mounted in Antifade gold (Invitrogen) before imaging. After 

imaging, the fluorescent probes were removed by digestion with 0.02 U/µl UNG 

(Thermo) in UNG buffer and 0.2µg/µl BSA at 37°C for 30’ followed by two washes 

in 65% formamide pre-warmed at 55°C. Consecutive staining of the RCA products 

were performed, in the same way, with different set of fluorescent probes. 

After RNA, immunofluorescent staining was done on the same tissue section. The 

tissue was washed twice in PBS with 0.025% triton X-100 at room temperature and 

blocked with 1%BSA in PBS for 2 h at room temperature. Antibodies against human 
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Insulin (DAKO, A0564, guinea pig) and glucagon (Sigma, G 2654, mouse) were 

diluted 1% in PBS containing 1% BSA and applied to the tissue and incubated at 4°C 

overnight. The tissue was washed twice in PBS with 0.025% triton X-100 before 

incubation with 1% anti-guinea pig GFP labelled and anti-mouse Cy5 secondary 

antibody, 1% BSA in hybridization buffer for 1 h at room temperature. Cy3-labelled 

RCA reporter probes were also added at 0.1 µM concentration to stain all the RCA 

products and used to align immunofluorescence images to previous RNA staining. 

After incubation in secondary antibody the section was washed 3 times in 1xPBS at 

room temperature before mounting in Antifade gold and imaging. For 8-

hydroxyguanosine staining, 8-oxo-dG Ab (MyBioSource, MBS606843, mouse) was 

used, which binds to the oxidized based both in DNA and RNA. To measure the levels

of oxidized genomic guanine, cells were treated with RNaseA before staining 

according to the protocol provided by the manufacturer. Briefly, sections were 

incubated in PBS buffer containing 500 µg/ml RNaseA (ThermoFisher), 150 mM 

NaCl and 15 mM sodium citrate for 1 h at 37˚C. After washing the sample twice in 

PBS the DNA was denatured by incubating with HCl 2N for 5’ at room temperature 

and then neutralized by incubation with Tris-base 5’ at room temperature followed by 

two washes in PBS. Blocking and antibody staining against human insulin and 8-

Hydroxy-2’-deoxyguanosine was performed as described before (anti 8-oxo-dG was 

used at 1:250 dilution). 

Multidimensional imaging was done with a Zeiss Axioplan epifluorescence 

microscope equipped with filter-cubes for DAPI, FITC, Cy3 and Cy5, a Axiocam 506 

mono camera (Zeiss), automated filter-cube wheel and a motorized stage. Z-stacks of 
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15 images were acquired with a Plan-Apochromat 63x objective and check objective) 

several field of view of each region of interest were projected (maximum intensity 

projection) and automatically stitched using the Axiovision software (Zeiss).

Images were exported as single-channel 16-bit grayscale and analyzed as described 

before 38. Briefly, single channels images from staining cycle one were combined and 

used as mask to align images from subsequent cycles based on nuclei and RCA 

staining. Image alignment was done using MultiStackReg module of ImageJ (version 

1.50e). Pre-aligned RNA images were analyzed with CellProfiler 2.1.1 (rev 6c2d896) 

and intensity and position of RCA products were measured using the same pipeline as 

in39. The barcode decoding was obtained using the same Matlab script as described 

before47. Lowering the quality threshold to zero (Qt=0) allowed us to increase 

sensitivity of detection while the fraction of insulin and glucagon signals detected 

outside the islets (false positives) was still negligible (less than 0.3% of all GCG and 

INS signals). Object-based measurement of immunostaining intensity was done with 

CellProfiler on the corresponding images using the identified RCA products as mask.

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 13, 2017. ; https://doi.org/10.1101/108043doi: bioRxiv preprint 

https://doi.org/10.1101/108043


Author contributions: M.E., H.E.A, S.K.K. and S.R.Q. designed research; M.E., 

H.E.A, JB and M.M performed research; R.B. isolated islets; M.E., and S.R.Q. 

analyzed data; M.E, H.E.A, M.M, S.K.K., and S.R.Q. wrote the paper.

Acknowledgements: The authors thank Norma Neff and Gary Mantalas for assistance 

with sequencing and Spyros Darmanis, Geoff Stanley and Felix Horns for helpful 

discussions. This study was supported by California Institute for Regenerative 

Medicine Grant GC1R-06673, Center of Excellence for Stem Cell Genomics and 

National Institutes of Health Grants U01-HL099999 and U01-HL099995 (to S.R.Q.). 

M.E was supported by the Wallenberg Research link at Stanford University. H.E.A. 

was supported by a postdoctoral fellowship from the JDRF and a training grant to the 

Endocrinology Division, Department of Medicine, Stanford (5T32DK007217-39, 

NIDDK). Marco Mignardi was supported by the Swedish Research Council, grant 

number XXX-2015-00599.

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 13, 2017. ; https://doi.org/10.1101/108043doi: bioRxiv preprint 

https://doi.org/10.1101/108043


Figures:

Figure 1

A comprehensive survey of single cells sampled from human pancreas across different

ages. a) tSNE plot of 2544 successful scRNA-seq libraries from eight donors. Each 

point represents one cell and points are positioned to retain the pairwise distances as 

determined by pearson correlation of the 500 most highly expressed genes. Cell 

identity is indicated by marker gene expression. b) Fraction of cells that express the 

aging associated gene CDKN2A (p16) in juvenile (0-6 years), young adult (21-22 

years) and middle-aged (38-54 years) donors increases with age (P=3.1E-3, n=8, 

linear regression. Bars are mean +-SEM, n=2-3) c) Transcriptional noise in β-cells is 

plotted by age group. Whole-transcriptome cell-to-cell variability within cell type is 
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higher in cells from adult donors than in cells from juvenile donors. d) Log2 counts 

per million (CPM) of cell-atypical glucagon transcript in β cells. Cells from older 

donors display higher abundance of cell-atypical hormone expression. e) Age and 

stress genes are strongly associated with transcriptional noise. All genes were tested 

for association with transcriptional noise (linear rank regression), shown are the top 

genes by coefficient, with P < 1E-15 (FDR corrected). Line is loess fit +-.995 

confidence interval. Dots are running mean, k=10.
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Figure 2

Somatic mutation rates and age-dependent somatic mutational signatures.derived 

from scRNA-seq data. a) Substitution rates for each type of substitution in the three 

datasets. Somatic substitution rates are more than five times as high in pancreas as in 
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brain (2.74 x10-6 vs 0.52 x10-6), whereas germline substitution rates were similar 

between the two. As expected, the rate of clonal substitutions in the tumor cell-line 

(GP5d) is several fold higher than germline rates in primary tissue. b) Somatic 

substitutions are strongly enriched on untranslated regions compared to germline 

substitutions. Bars are mean +- SEM. (3’UTR: P=1.40E-32, paired t-test, n=73) c) 

Single-nucleotide substitutions in 3003 cells from pancreas, brain and the colon 

cancer cell line GP5d were organized into five mutational signatures using non-

negative matrix factorization followed by agglomerative hierarchical clustering. 

Barplot illustrates the percent of mutations attributed to each substitution type in each 

of the three signatures (S1-S3). Bottom panel denotes the presence of a signature 

(columns) in a cell type (rows), with color scale indicating strength of signature as 

median substitution rate for cells of the indicated type. Blue boxes denotes a 

significant association between signature load and donor age. Bottom row indicates 

equivalent signatures from 12. d) Signature S2 is composed of two sub-signatures 

corresponding to cancer signatures 1 and 6. Violin plot show C>T substitutions with a 

preceding G as a fraction of all substitutions in a cell, which is a hallmark of cancer 

signature 6.
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Figure 3

The genome in pancreatic islets are highly enriched in oxidized guanine. a) Pancreatic

β-cell DNA is enriched in oxidized guanosine. Nuclear staining intensity of anti 8-

Oxoguanosine antibody was quantified for INS-positive β or INS-negative, from the 

same images. Slides were treated with RNase so as to only measure oxidized bases on

DNA. Barplot indicates mean +-SEM ( P=7.30E-57, wilcoxon text. n=769 β-cells, 

10713 non-islet cells.). b) Left panel, representative micrograph with 8-Oxoguanosine

in magenta and nuclear stain (DAPI) in grey (scale bar, 50μm). Right Panel, Insulin 

protein staining (green) of  the same slide. Insulin-positive islet cell mass is at bottom 
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left, boundary indicated with orange line.  c) Pancreatic β-cell RNA is marginally 

enriched in oxidized guanosine. Cytoplasmic staining intensity of anti 8-

Oxoguanosine antibody was quantified for INS-positive β cells and INS-negative 

cells from the same slides. Barplot indicates mean +-SEM ( P=9.5E-22, 1239 β-cells, 

21048 surrounding cells). d) Representative micrograph of 8-Oxoguanosine (magenta,

left) and Insulin (green, right). All settings are as in (c,d).
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Figure 4

Transcriptional correlates of mutational signatures. Endocrine pancreas cells were 

ordered according to the fraction of mutations attributed to Signature S1. a) Average 

age is higher in cells with high S1 load (P=5.95E-23, linear rank regression). Points 

are running mean, k=10, and line is loess fit, dotted lines indicate +- .999 confidence 

interval. b) Each gene was tested for association with signature S1 (linear rank 

regression), shown are the top genes by coefficient, with P < 1E-15 (FDR corrected). 

Points are individual mRNA measurements, line loess fit as in (a). c) Comparison of 
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the top ten gene ontology (GO) categories positively correlated with signature S1 and 

transcriptional noise. Categories related to protein production, such as ribosomal 

proteins, recur in both. Color scale indicates FDR-adjusted p-value, winsorized at 10-

6. The GO term “Ribosomal Subunit” occurred in both lists. 
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Figure S1
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a) tSNE plot of cells from the major endocrine cell types. Colors are by donor (as 

specified by age, top right panel). Cells cluster by donor suggesting that our data 

could not find support for sub cell types that have a stronger cell identity than 

individual variation. b) Relative contributions of cell type, age, gender, donor and 

library preparation batch. Error bars are mean +/-SEM. c-e) Parallel protein and RNA 

staining in situ. A representative image at 63x magnification of a pancreatic islet 

containing cells with atypical hormone expression. Scale bar is 20 µm. c) protein stain

only (green: insulin, blue: glucagon), d) in situ RNA-staining (dots) + protein stain 

(green dots: INS gene specific, blue dots: GCG gene specific). e) Magnified version 

of c). f) Quantification of cell-atypical hormone expression in situ. Green bars show 

number of INS spots per cell, red dots number of GCG spots. There was no 

significant dependency between INS expression and GCG expression (P=0.859, linear

regression). g) Violin plots of the ratio of Insulin to Glucagon protein staining at the 

sites of Insulin (INS, n=5801) and Glucagon (GCG, n=3254) RNA hybridization 

spots. h) Pairwise Euclidean distances between 10000 random pairs of endocrine cells

from each donor is plotted by age group. Whole-transcriptome cell-to-cell variability 

between β-cells from adult donors is higher than variability between cells from 

juvenile donors. i) Fractions of endocrine cell types in donors. Donors are sorted by 

age.
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Figure S2

a) The distribution of the number of occurrences of distinct somatic (non-germline) 

substitutions. As expected, somatic mutations that are shared between more than one 

cell are rare. b) Somatic substitution rates vary between cell types in the same organ 

(bars are mean +- SEM). c) Comparison of mutation rates of single-nucleotide 

substitutions in the context of the nucleotide immediately 5’. Different substitution 

types are separated by boxes with the substitution type indicated (eg. C>A: C to A 

transversion). Brain cells display a lower substitution rate overall, although the 

difference is smaller for C>T substitutions within a CpG context, associated with 

DNA methylation.
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Figure S3

Mutational signatures. a) Heatmap showing raw signatures from non-negative matrix 

factorization. Dendrogram (top) indicates hierarchical clustering, and clusters at the 
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6th branch point shown as colored bar between dendrogram and heatmap. The spatial 

median of each cluster  is shown in Fig. 2a and S3c. b) Association of signatures S1-

3,SC4-7 to age. Cells were ordered according to the fraction of mutations attributed to

the indicated signature. Dots are running mean of age, k=10. Line is loess fit, dotted 

lines indicate +-.999 confidence interval. c) Fractional barplots of all signatures (S1-3,

SC4-7). Colors as in a. Bottom panel indicates selection items for determining 

whether to exclude the signature. Green: cause for inclusion, Red: cause for 

exclusion. d) Strand specificity differs between cell types. Mutations were annotated 

based on if the mutated pyrimidine occurred on the transcribed (-) or untranscribed 

(+) strand. Bars represent raw substitution counts in endocrine cells (left) and brain 

cells (right). Note that endocrine cells have a strong strand bias for the transcribed 

strand for C>A, C>G, C>T substitutions (also found in oxidative stress-related tumor 

signatures12), while brain has a similar bias for the transcribed strand for T>C 

substitutions (simlilar to tumor signature 1212).
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Figure S4
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Transcriptional correlates of mutational signatures. Brain cells were ordered 

according to the fraction of mutations attributed to Signature S2. a) Average age is 

higher in cells with high signature S2 load (P=2.7E-3, n=398. linear rank regression). 

Line is loess fit +-.999 confidence interval. Dots are running mean, k=10. b) Each 

gene was tested for association with signature S2 (linear rank regression), shown are 

the top genes by coefficient, with P < 5E-2 (FDR corrected). Line is loess fit +-.999 

confidence interval. Dots are individual observations. c) Signature of raw substitution 

rates in ERCC spike-in RNA constitutes a false-positive signature. d) Tumor 

signatures from Alexandrov. et al.12, collapsed into substitution types without 3’/5’ 

context by addition. e) Empirical misincorporation rates caused by 8-

Hydroxyguanosine in vitro. Data from from Kamiya et al.40. f-g) Ratio of human 

mRNA to spike in control in cells, ordered by rank of transcriptional noise (f) or rank 

of signature S1 mutational load (g). h) Synonymous substitutions generating an 

identical codon as the reference sequence are enriched in somatic variation from all 

tissues. i) The fraction of synonymous substitutions is not positively correlated with 

overall mutation load.
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