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Abstract 11	

Studies of neuron-behaviour correlation and causal manipulation have long been used separately to 12	

understand the neural basis of perception. Yet these approaches sometimes lead to drastically conflicting 13	

conclusions about the functional role of brain areas. Theories that focus only on choice-related neuronal 14	

activity cannot reconcile those findings without additional experiments involving large-scale recordings to 15	

measure interneuronal correlations. By expanding current theories of neural coding and incorporating results 16	

from inactivation experiments, we demonstrate here that it is possible to infer decoding weights of different 17	

brain areas without precise knowledge of the correlation structure. We apply this technique to neural data 18	

collected from two different cortical areas in macaque monkeys trained to perform a heading discrimination 19	

task. We identify two opposing decoding schemes, each consistent with data depending on the nature of 20	

correlated noise. Our theory makes specific testable predictions to distinguish these scenarios experimentally 21	

without requiring measurement of the underlying noise correlations. 22	

Author Summary 23	

The neocortex is structurally organized into distinct brain areas. The role of specific brain areas in sensory 24	

perception is typically studied using two kinds of laboratory experiments: those that measure correlations 25	

between neural activity and reported percepts, and those that inactivate a brain region and measure the 26	

resulting changes in percepts. The two types of experiments have generally been interpreted in isolation, in 27	

part because no theory has been able combine their outcomes. Here, we describe a mathematical framework 28	

that synthesizes both kinds of results, giving us a new way to assess how different brain areas contribute to 29	

perception. When we apply our framework to experiments on behaving monkeys, we discover two models 30	

that can explain the perplexing finding that one brain area can predict an animal’s percepts, even though the 31	

percepts are not affected when that brain area is inactivated. The two models ascribe dramatically different 32	

efficiencies to brain computation. We show that these two models can be distinguished by an experiment 33	

that measures correlations while inactivating different brain areas.  34	
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Introduction 35	

Although much is known about how single neurons encode information about stimuli, how neurons 36	

contribute to percepts is less well understood[1]. The latter, called the “decoding problem”, seeks to identify 37	

how the brain uses the information contained in neuronal activity. Although some studies have sought to 38	

understand principled ways to decode population responses in the presence of correlated noise [2–12], the 39	

rules by which the brain actually integrates information across noisy neurons remain unclear. 40	

Neuroscientists have traditionally investigated this question using two distinct approaches: causal or 41	

correlational. In causal approaches, experimenters selectively activate or inactivate brain regions of interest, 42	

and measure resulting perceptual or behavioural changes. In correlational approaches, experimenters 43	

measure correlations between behavioural choices and neuronal activity, typically quantified by ‘choice 44	

probability’ (reviewed in Ref. [13]) or, more straightforwardly, by ‘choice correlation’ (CC)[14,15]. If CCs 45	

reflect a functional link between neurons and behaviour, one would expect brain areas with greater CCs to 46	

contribute more strongly to behaviour. This naïve view is contradicted by recent results that reveal a striking 47	

dissociation between the magnitude of CCs and the effects of inactivation across brain systems in 48	

rodents[16,17] and primates[18,19]. In hindsight, this apparent disagreement is not all that surprising 49	

because the two techniques, on their own, yield results whose interpretation is fraught with major 50	

difficulties. 51	

For instance, the CC of a neuron depends not only on its direct influence on behaviour but also on the 52	

influence of all the other neurons with which it is correlated. As an extreme example, a neuron that is not 53	

decoded at all could be correlated with one that is, and thus exhibit choice-related activity[9]. Recent 54	

theoretical results show that it is possible, in principle, to use knowledge of noise correlations to extract 55	

decoding weights from CCs[14]. However, directly measuring the correlational structures that matter for 56	

decoding may be extremely difficult[20]. This problem is compounded by the fact that behaviourally 57	

relevant information may be distributed across neurons in multiple brain areas, so neuronal CCs in one area 58	

may depend on activity in other areas. Moreover, in causal approaches, inactivation of one brain area could 59	
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lead to a dynamic recalibration of decoding weights from other areas. Therefore, changes in behavioural 60	

thresholds following inactivation may not be commensurate with the contribution of the area.  61	

When analysed in conjunction, however, results from correlational and causal studies may together provide 62	

constraints that can be used to precisely determine the relative contributions of the brain areas involved. In 63	

this work, we extend recent theories[14,15,20] and propose a general framework for inferring decoding 64	

weights of neurons across multiple brain areas using CCs and changes in behavioural threshold following 65	

inactivation. The two quantities together provide a direct estimate of the relative contributions of different 66	

areas without needing to precisely measure the correlation structure. We demonstrate our technique by 67	

applying it to data from macaque monkeys trained to perform a heading discrimination task. In this task, 68	

there is a known discrepancy[18,21–23] between CCs and the effects of inactivating two brain areas: 69	

although neurons in the ventral intraparietal (VIP) area were found to be substantially better predictors of the 70	

animal’s choices than dorsal medial superior temporal (MSTd) neurons, performance is impaired by 71	

inactivating MSTd but not VIP. We use our framework to extract key properties of the decoder that can 72	

account for these counter-intuitive results. To our surprise, we find that, depending on the structure of 73	

correlated noise, experimental data are consistent with two opposing schemes that attribute either too much 74	

or too little weight to VIP. We use our theory to make specific testable predictions to distinguish these 75	

schemes using CCs measured during inactivation, again without measuring the detailed noise correlations. 76	

 77	

Results 78	

Decoding framework 79	

We consider a linear feedforward network in which the firing rates r of the neurons are combined linearly 80	

using weights 𝐰 to yield a locally unbiased estimate 𝑠 of the stimulus according to 𝑠 = 𝐰$(𝐫 − 𝐟(𝑠))), 81	

where 𝐟(𝑠)) is the mean response to a reference stimulus 𝑠). In each trial, the animal is assumed to reach a 82	

binary decision given by sgn 𝑠 = ±1, where sgn is the signum function. For a decoder that linearly reads 83	

out neurons from two subpopulations, x and y, the estimate 𝑠 can be expressed as: 84	
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𝑠 = 𝑎1𝑠1 + 𝑎3𝑠3 (1) 

where 𝑠1 = 𝐰1
$(𝐫1 − 𝐟1(𝑠))) and 𝑠3 = 𝐰3

$(𝐫3 − 𝐟3(𝑠))) denote unbiased estimates derived from neurons in 85	

subpopulations x and y respectively. Thus the problem of decoding multiple populations can be viewed as 86	

one of scaling and combining estimates from individual populations. Note that this is equivalent to a single 87	

linear decoder of both populations together using 𝐰 = 𝑎1𝐰1 𝑎3𝐰3 . The form of equation (1) has two 88	

advantages: (i) it is easy to identify and compare the relative contributions of the two areas to behaviour 89	

through the ratio 𝑎1/𝑎3, and (ii) one can dissociate how the weight patterns (𝐰1 and 𝐰3) and their scales 90	

(𝑎1 and 𝑎3) affect the output of the decoder.  91	

This mathematical separation is also appealing because it provides a common framework to synthesize 92	

results from experiments conducted at two fundamentally different levels of granularity. One class of 93	

experiments involves making fine measurements such as the correlation between trial-by-trial fluctuations in 94	

the activity 𝑟6 of an individual neuron 𝑘 and the animal’s decision (Fig 1a). The second class of experiments 95	

studies causation by measuring behavioural effects of inactivating certain candidate brain areas. For 96	

perceptual discrimination tasks, this is done by comparing coarse measures such as the animal’s 97	

discrimination thresholds before (𝜗) and after (𝜗91 and 𝜗93) inactivating population x or y (Figure 1b).  98	

 

Figure 1. Experimental strategies. (a) An illustration of a feedforward network with linear readout. The decoder 
linearly combines the activity r of neurons in populations x and y with weights w, to produce an estimate 𝑠 of the 
stimulus. Activity of individual neurons 𝑟6 is correlated with 𝑠 and is quantified by either the choice probability 𝐶𝑃6, 
or the closely related choice correlation 𝐶6. In an optimal system, the weights w generate choice correlations that 
satisfy equation 2.1. (b) In inactivation experiments, the neurons from each population are inactivated and the 
resulting changes in behavioural threshold are recorded. 
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We would like to use these experimental measurements to identify the relative behavioural contributions of 99	

two brain areas. Therefore we will present a technique to infer neuronal weights in two brain areas, focusing 100	

primarily on how to extract the scaling factors, 𝑎1 and 𝑎3, of the brain areas rather than the fine structure, 101	

𝐰1 and 𝐰3, of the decoding weights. We first present some results that allow us to examine the pattern of 102	

choice correlations of neurons in both areas to characterize the degree of suboptimality in decoding. We will 103	

then show how to combine choice correlations with inactivation results to obtain quantitative estimates of 104	

the relative scaling of readout weights in those areas. 105	

 106	

Analysis of choice correlations 107	

Choice correlation of a neuron k is the correlation coefficient, across repeated trials with the same stimulus 108	

s, between its response 𝑟6 and the animal’s estimate of the stimulus 𝑠, 𝐶6 = Corr(𝑠, 𝑟6|𝑠). It has recently 109	

been shown that readout weights are optimal only if neuronal choice correlations all satisfy the following 110	

relation[15] (Supplementary note S1): 111	

𝐶6,ABC =
𝜗
𝜗6

 (2.1) 

where 𝐶6,ABC is the choice correlation of neuron k  expected from optimal decoding, 𝜗6 is the discrimination 112	

threshold of neuron k, and 𝜗	is the behavioural discrimination threshold. Therefore if neurons from both 113	

areas satisfy the above equation, this gives us strong evidence that the neuronal weights and consequently 114	

their relative scales 𝒂 = (𝑎1, 𝑎3) are optimal. As we will see later, the exact values of a can then be directly 115	

extracted from the behavioural thresholds 𝜗91 and 𝜗93 following inactivation of those areas. 116	

The pattern of choice correlations generated by any generic suboptimal decoder is more complicated, as it 117	

depends explicitly on the structure of noise covariance[14]. For a population of N neurons, the covariance Σ 118	

describes the noise power along N orthogonal noise modes. Each of these modes contributes to the overall 119	

choice correlation according to (Supplementary note S2): 120	

𝐶6 = 𝛽G𝐶6,ABCG
H

GIJ

 (2.2) 
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In this expression we have decomposed the optimal pattern of choice correlations 𝐶6,ABC into components 121	

𝐶6,ABCG  originating from the different noise modes of Σ, with 𝐶6,ABCGH
GIJ = 𝐶6,ABC. The multipliers 𝛽G reflect 122	

the extent of suboptimality. When decoding weights are optimal, every multiplier 𝛽G = 1, so the above 123	

equation reduces to equation 2.1. 124	

In principle, it is very difficult to estimate all of the multipliers 𝛽G because the components 𝐶6,ABCG  depend on 125	

the individual noise modes of Σ (Methods M1 – equation 4). Directly measuring Σ is a notoriously 126	

challenging task[20] that involves simultaneously recording the activity of a large population of neurons, 127	

and is nearly impossible for certain areas due to the geometry of the brain. Even if such recordings are 128	

carried out, it would be impossible to get an accurate assessment of the fine structure of covariance with 129	

limited data due to errors arising from finite measurement density[24]. Fortunately, since neuronal choice 130	

correlations are measurably large, it follows that one can infer decoding weights with reasonable precision 131	

by estimating the few leading multipliers that depend only on the most dominant modes of covariance. This 132	

is because if the correlated noise modes with small variance were to dominate the decoder, then only a tiny 133	

fraction of each neuron’s variations would propagate to the decision, leading to immeasurably small choice 134	

correlations[15] (Figure S1). It is possible to determine properties of the leading modes of covariance 135	

without large-scale recordings, and we will consider two ways producing two different noise models: 136	

extensive information and limited information. 137	

Extensive information model 138	

A common way to measure important components of the covariance structure is through pairwise 139	

recordings. Noise covariance measured between pairs of neurons can be modeled as a function of their 140	

response properties, such as the difference in their preferred stimulus or the similarity of their tuning 141	

functions, to obtain empirical models of noise. One such model is limited-range noise correlations[25–30], 142	

so called because they are proportional to signal correlation and thereby limited in range to pairs with 143	

similar tuning. We use this model to approximate a full noise covariance for all neurons in the 144	

population[31,32] (Methods M8 — equation 7.1). Although the resulting covariance matrix is unlikely to 145	
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capture fine details accurately, if the model is reasonable then most of the variance would be captured by the 146	

leading modes. 147	

When decoding two populations x and y, one has to consider at least two leading modes to capture the two 148	

underlying degrees of freedom decoded by scaling factors 𝑎1 and 𝑎3. In this minimal case, choice 149	

correlations are given by 𝐶6 = 𝛽J𝐶6,ABCJ + 𝛽K𝐶6,ABCK . We can compute 𝐶6,ABCJ  and 𝐶6,ABCK  from the leading 150	

modes of covariance (Methods M1 – equation 4), and use them to estimate 𝛽J and 𝛽K by linear regression. 151	

If there are two dominant noise modes and they affect both populations, then we can approximate Σ with a 152	

rank-two noise covariance matrix composed of both independent (𝜀11 and 𝜀33) and correlated (𝜀13) noise 153	

between the two areas (Supplementary note S3). If the two modes were actually uncorrelated, with 𝜀13 =154	

0, so that each mode affects just one population, then the multipliers 𝛽J and 𝛽K would be specific to neurons 155	

in each population and therefore correspond to 𝛽1 and 𝛽3. 156	

A characteristic feature of extensive information models is that the amount of information in the neural 157	

activity is very large because it grows with population size[33–35], hence the name. The amount of 158	

information extracted by a decoder restricted to the subspace spanned by the few dominant components of 159	

covariance cannot be greater than the information available in that subspace. For a model with extensive 160	

information, this subset would be a tiny fraction of the total information available in the population. 161	

Although this restriction is justified by the large magnitude of neuronal choice correlations, the choice of 162	

this noise model is only justified under the assumption that the brain is radically suboptimal. 163	

Limited information model 164	

Extensive information models are based on measurements of neural populations but, as we mentioned 165	

above, current recordings are not sufficient to measure or even infer the covariance matrix in vivo. It is 166	

therefore possible that information in cortex is not extensive. Indeed, the extensive information model 167	

conflicts with the fact that cortical neurons receive their inputs from a smaller population of neurons. The 168	

cortex must then inherit not only the input signal but also any noise in that input. This generates 169	

information-limiting correlations[15,20] in cortex, a form of correlated noise that looks exactly like the 170	

signal and thus cannot be averaged away by adding more cortical neurons. Since inferring the brain’s 171	
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decoding weights from choice-related activity depends on the noise covariance, we also consider the 172	

consequences of information-limiting correlations. 173	

For fine discrimination between two neighboring stimuli s and 𝑠 + 𝛿𝑠, the signal is given by the change in 174	

mean population responses 𝐟 s + δs − 𝐟 s ≈ δ𝑠	𝐟Q 𝑠 . Information-limiting correlations for this task thus 175	

fluctuate along the direction 𝐟Q, generating a covariance containing differential correlations[20] — that is, a 176	

covariance component proportional to 𝐟′𝐟′S. The constant of proportionality, which we denote as 𝜀, 177	

represents the variance of information-limiting correlations. With increasing population size, both the signal 178	

and this noise component grow identically, resulting in no further improvement in signal-to-noise ratio, and 179	

thus no improvement in discriminability. In general, ε could be very small, and hence information-limiting 180	

correlations may be very hard to detect with limited data as they are easily swamped by noise arising from 181	

other sources. Nevertheless, this noise has enormous implications for decoding large populations because it 182	

limits the total information to 1/𝜀. 183	

When dealing with two populations x and y, one has to keep in mind that although they may together receive 184	

limited information, they need not inherit it from exactly the same upstream neurons. Therefore we construct 185	

a more general model allowing the two populations to receive both distinct and shared information. The 186	

covariance between two neurons in this more general model would still be proportional to the product of the 187	

derivative of their tuning curves. However the constant of proportionality varies depending on whether the 188	

pair of neurons are both from the same population x (𝜀11), both from y (𝜀33), or from different populations 189	

(𝜀13) (Methods M9 – equation 8). For a large population with this noise structure, the total information 190	

content within the x and y subpopulations alone are by construction equal to 1/𝜀11 and 1/𝜀33 respectively. 191	

The information in both populations together is limited as well, once again by the 𝐟′𝐟′S component of the 192	

covariance. Depending on 𝜀13, the two subpopulations may contain completely redundant, independent, or 193	

synergistic information[36,37]. In case the two populations receive information from the same source, then 194	

𝜀11 = 𝜀33 = 𝜀13 yielding the familiar form of information-limiting correlations[15,20] 𝛴UV = 𝛴 + 𝜀𝐟′𝐟′S. 195	

Correlations that limit information within a single neural population introduce redundancy. As a 196	

consequence, many different decoding weights can extract essentially the same information. The system is 197	
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then robust to some suboptimal decoding, which makes it easier to achieve near-optimal behavioural 198	

performance[15]. In the noise model for two populations described above, this is also true for each 199	

population individually. We can generalize this robustness in our framework by considering separate 200	

decoders of each population that produce estimates, 𝑠1 and 𝑠3, that are near-optimal for their corresponding 201	

areas. Importantly, however, these estimates may have different variances, and may even covary, so they 202	

need to be properly combined to produce a good single estimate according to equation 1. While 203	

information-limiting correlations within each area would make the system generally robust to the choice of 204	

weight patterns 𝐰1 or 𝐰3, suboptimality could yet arise from an incorrect scaling (𝑎1 and 𝑎3) of the 205	

individual near-optimal estimates. This is because after the dimensionality reduction from large redundant 206	

populations down to single unbiased estimates per population, there is no redundancy left: just one degree of 207	

freedom remains for the decoder, so different ways of combining the estimates are not equivalent. 208	

If the brain indeed combines activity from different areas suboptimally in this manner, then simplifying 209	

equation 2.2 in the presence of information-limiting correlations gives choice correlations within each area 210	

that are not equal to the optimal choice correlations, but are proportional to them (Supplementary note S5): 211	

𝐶6 = 		𝛽
𝜗
𝜗6

 (2.3) 

Under these conditions, choice correlations in different areas x and y may have different multipliers 𝛽, say 212	

𝛽1 and 𝛽3, which depend on the scaling of the two brain areas and on the covariance between the two 213	

estimates derived from them. These multipliers 𝛽1 and 𝛽3 can be directly identified by regressing measured 214	

choice correlations against 𝜗/𝜗6, the choice correlations predicted for optimal decoding.	215	

Combining choice correlations and inactivation effects to infer decoding weights 216	

In the previous section, we showed how to reduce the fine structure of choice correlations down to one 217	

number for each population — 𝛽1 and 𝛽3. We will now show how these multipliers can be used, together 218	

with the behavioural thresholds 𝜗91 and 𝜗93 following inactivation of areas x and y, respectively, to infer 219	

the relative scaling of their weights 𝑎1 and 𝑎3. Inactivating an area is equivalent to setting the scaling of 220	
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weights in that area to zero, so from equation 1, the animal’s total estimate 𝑠 would be equal to either 𝑠1 or 221	

𝑠3, depending on which area is inactivated. The resultant behavioural threshold would simply reflect the 222	

variance of the remaining estimate, which is equal to the magnitude of dominant decoded noise within the 223	

active area, so 𝜗91K ≈ 𝜀33 and 𝜗93K ≈ 𝜀11. If populations x and y are uncorrelated (𝜀13 = 0), then the ratio of 224	

weight scalings can be factorized into a product of ratios (Supplementary note S6): 225	

𝑎1
𝑎3

=
𝛽1
𝛽3
	
𝜀33
𝜀11

≈
𝛽1
𝛽3
	
𝜗91K

𝜗93K
 (3.1) 

where the two independent factors represent outcomes of correlational and causal studies. If readout is 226	

optimal, then the multipliers 𝛽1 and 𝛽3 are both equal to one, so 𝑎1/𝑎3 = 𝜗91K /𝜗93K . This is consistent with 227	

the general belief that the behavioural effects of inactivating a brain area must be commensurate with its 228	

contribution to the behaviour. A departure from optimality could break this relationship, so the effects of 229	

causal manipulation may not match the relative roles of the brain areas (Figure S2). Even in purely 230	

feedforward networks, the magnitude of neuronal choice correlations need not equal the effects of 231	

inactivation. Thus, disagreements between the two experimental outcomes should not be entirely surprising 232	

and do not undermine the functional significance of either. 233	

In fact, equation 3.1 revealed how one can combine choice correlations and behavioural thresholds to infer 234	

the contributions of two uncorrelated areas. But if the areas are correlated, one must explicitly account for 235	

the magnitude of correlation between areas 𝜀13 and the ratio of scales no longer factorizes: 236	

𝑎1
𝑎3

≈
𝛽1
𝛽3
	
𝜗91K

𝜗93K
− 𝛾 1 −

𝛽1
𝛽3
𝛾

9J

 (3.2) 

where 𝛾 = 𝜀13/𝜀11 is the magnitude of correlated noise between the two populations’ estimates relative to 237	

the variance of estimates from x alone. Note that one can also use equations 3.1 and 3.2 to compute the 238	

optimal weight scaling factors simply by setting both 𝛽1 and 𝛽3 to 1. Therefore we can use these equations 239	

not only to determine the relative weights of brain areas but to also to evaluate precisely how suboptimal 240	

those weights are. 241	
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Application to data 242	

We now use the techniques developed so far to infer the relative contributions of two brain areas in macaque 243	

monkeys to heading discrimination. Data were collected from monkeys trained to discriminate their 244	

direction of self-motion in the horizontal plane (Figure 2a) using vestibular (inertial motion) and/or visual 245	

(optic flow) cues (Methods M4; see also refs. [21,23]). At the end of each trial, the animal reported whether 246	

their perceived heading 𝑠 was leftward (𝑠 < 0°) or rightward (𝑠 > 0°) relative to straight ahead. 247	

Discrepancy between correlation and causal studies 248	

Responses of single neurons were recorded from either area MSTd (monkeys A and C; n=129) or area VIP 249	

(monkeys C and U; n=88) during the heading discrimination task (Methods M5). Basic aspects of these 250	

responses were analyzed and reported in earlier work[21,23]. Briefly, it was found that neurons in VIP had 251	

substantially greater choice correlations (CC) than those in MSTd (Figure 2b – left) for both the vestibular 252	

and visual conditions. This difference in CC between areas could not be attributed to differences in neuronal 253	

thresholds 𝜗6 (Figure 2b – middle), defined as the stimulus magnitude that can be discriminated correctly 254	

68% of the time (𝑑Q=1) from neuron k’s response 𝑟6 (Methods M6; Figure S3). Based on its greater CCs, 255	

one might expect that VIP plays a more important role in heading discrimination than MSTd. In striking 256	

contrast to this expectation, a recent study showed that there was no significant change in heading thresholds 257	

following VIP inactivation for either the visual or vestibular stimulus conditions[18] (Figure 2b – right 258	

(blue); monkeys B and J). On the other hand, inactivation of MSTd using a nearly identical experimental 259	

protocol led to substantial deficits in heading discrimination performance[22] (Figure 2b – right (red); 260	

monkeys C, J, and S). The neural and inactivation studies in VIP used non-overlapping subject pools, so the 261	

observed dissociation between CCs and inactivation effects could potentially reflect the idiosyncrasies of the 262	

subjects’ brains. To rule this out, we repeated the inactivation experiment by specifically targeting Muscimol 263	

injections to sites in area VIP that were previously found to contain neurons with high CCs in another 264	

monkey and obtained similar results (Figure S4). 265	
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Figure 2. Choice-related activity and effects of 
inactivation. (a) Behavioural task: the monkey 
sits on a motion platform facing a screen. He 
fixates on a small target at the center of the 
screen, and then we induce a self-motion percept 
by moving the platform (vestibular condition) or 
by displaying an optic flow pattern on the screen 
(visual condition). The fixation target then 
disappears and the monkey reports his percept by 
making a saccade to one of two choice targets. 
(b) Left: Neurons in both MSTd (n=129) and 
VIP (n=88) exhibited significant choice 
correlations (CCs). The median CC of VIP 
neurons was significantly greater than that of 
MSTd neurons (*p<0.001, Wilcoxon rank-sum 
test) in both vestibular (top) and visual (bottom) 
conditions. Middle: Median neuronal thresholds 
were not significantly different between areas 
(vestibular: p=0.94, visual: p=0.86, Wilcoxon 
rank–sum test). Right: Average discrimination 
thresholds at different times relative to 
inactivation of VIP and MSTd. All threshold 
values were normalized by the corresponding 
baseline thresholds (“pre”). Shaded regions and 
error bars denote standard errors of the mean 
(SEM); asterisks indicate significant differences 
(*p<.05, t–test). Neural data re-analyzed from 
refs. [21,23]. Inactivation data reproduced from 
refs. [18,22].	

These findings reveal a striking dissociation between choice correlations and effects of causal manipulation: 266	

VIP has much greater CCs than MSTd yet inactivating VIP does not impair performance. One may be 267	

tempted to simply conclude that VIP does not contribute to heading perception. We will now show that this 268	

is not necessarily true. Depending on the structure of correlated noise and the decoding strategy, neurons in 269	

both areas may be read out in a manner that is entirely consistent with the observed effects of inactivation. 270	

Test for Optimality 271	

We first asked if the above results can simply be explained if the brain allocated weights optimally to the 272	

two areas. To answer this, we tested if neuronal choice correlations satisfied equation 2.1. Binary 273	

discrimination experiments typically do not measure choice correlations 𝐶6 = Corr(𝑟6, 𝑠|𝑠 = 𝑠)) because 274	

they do not have direct access to the animal’s continuous stimulus estimate 𝑠; they only track the animal’s 275	

binary choice. Instead they measure a related quantity known as choice probability defined as the probability 276	
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that a rightward choice is associated with an increase in response of neuron k according to 𝐶𝑃6 = 𝑃(𝑟6\ >277	

𝑟69) where 𝑟6
± ∼ 𝑃(𝑟6|sgn 𝑠 = ±1) is a response 𝑟6

± of neuron k when the animal chooses ±1. Therefore 278	

we first transformed the measured choice probabilities to choice correlations using a known relation[14] 279	

before further analyses (Methods M7). Equivalently, one could measure the correlation Corr(𝑟6, sgn 𝑠 |𝑠 =280	

𝑠)) between the neural response and the binary choice, which 15  showed is ≈ 0.8𝐶6. Note that the above 281	

definition gives choice correlations that are either positive or negative depending on whether a rightward 282	

choice is associated with an increase or decrease in neuronal response. Therefore we adjusted equation 2.1 283	

to generate predictions for optimal CCs that accounted for our convention (Methods M7). 284	

 

Figure 3. Readout is not optimal. 
Whereas the experimentally 
measured choice correlations (𝐶6) of 
neurons in MSTd (blue) for both the 
vestibular (left) and the visual (right) 
condition are well described by the 
optimal predictions (𝐶6,ABC), those of 
VIP neurons are systematically 
greater (red). This observation was 
consistent across all monkeys (see 
Supplementary Figure S4a for 
monkey 𝑋). Solid lines correspond to 
the best linear fit. Vestibular data 
replotted from Ref.[15] with different 
sign convention (Methods M7). 

 285	

Figure 3 compares experimentally measured CCs against the CCs predicted by optimal decoding for all 286	

neurons recorded in the vestibular (left panel) and visual (right panel) conditions. Our data are consistent 287	

with optimal decoding of MSTd, since the predicted and measured CCs are significantly correlated 288	

(vestibular: Pearson’s r =0.65, p<10–3; visual: r =0.70, p<10–3) with a slope not significantly different from 1 289	

(vestibular: slope = 1.11, 95% confidence interval (CI) =[0.83 1.54]; visual: slope = 1.24, 95% CI =[0.94 290	

1.78]). For VIP, although the predicted and measured CCs are again strongly correlated (vestibular: r = 0.80, 291	

p<10–3; visual: r = 0.75, p<10–3), the regression slope deviates substantially from unity (vestibular: 292	

slope=2.37, 95% CI =[1.97 3.08]; visual: slope=1.98, 95% CI =[1.41 2.74]), demonstrating that our data are 293	

inconsistent with optimal decoding. Note that, if VIP is decoded suboptimally, this implies that the overall 294	
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decoding—one based on both VIP and MSTd—is suboptimal as well because the decoder failed to use all 295	

information available in the neurons across both populations. 296	

This leads to two questions: First, how much information is lost by suboptimal decoding? Second, how is 297	

this information lost? To get precise answers, we will now determine how the brain weights activity in 298	

MSTd and VIP to perform heading discrimination. 299	

Inferring readout weights 300	

Throughout this section, we use subscripts M and V to denote MSTd and VIP instead of the generic 301	

subscripts x and y used to describe the methods. For clarity, we will restrict our focus to the vestibular 302	

condition but results for the visual condition are presented in the supplementary notes. In order to determine 303	

decoding weights, we constructed two kinds of covariance structures that implied either extensive or limited 304	

information as explained earlier. 305	

In the extensive information case, we modeled noise covariance using data from pairwise recordings within 306	

MSTd and VIP reported previously [21,29]. Those experiments established that noise correlation between 307	

neurons in these areas tends to increase linearly with the similarity of their tuning functions, or signal 308	

correlation (Methods M8 – equation 7.1). This relationship between noise and signal correlations has a 309	

substantially steeper slope in VIP than in MSTd (MSTd: 𝑚b=0.19±0.08; VIP: 𝑚c=0.70±0.16, Figure S5). 310	

We used these empirical relationships to extrapolate noise correlations between all pairs of independently 311	

recorded neurons within each of the two populations, using only their tuning curves, and assuming that any 312	

stimulus-dependent changes in correlation were negligible. Since correlations between VIP and MSTd 313	

populations were not measured experimentally, we explored different correlation matrices (Methods M8 – 314	

equation 7.2). 315	

In the limited information case, we added correlations that limited the total information content across the 316	

two populations (Methods M9 – Equation 8). For this latter case, we relied on behavioural thresholds 317	

before and after inactivation, and choice correlations, to determine the magnitudes of noise within (𝜀bb and 318	

𝜀cc) and between (𝜀bc) areas (Methods M9). In both cases, we constructed covariances for many different 319	

population sizes N by sampling equal numbers of neurons from both areas with replacement. The choice of 320	
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distributing neurons equally among the two areas was made only for convenience and has no bearing on the 321	

result as explained later. 322	

Figure 4a shows example covariance matrices for both extensive and limited information models for a 323	

population of 128 neurons. The two structures look visually similar because the additional fluctuations 324	

caused by information-limiting correlations are quite subtle. Nevertheless, there is a huge difference 325	

between the two models in terms of their information content (Figure 4b). The extensive model has 326	

information that grows linearly with N, implying that these brain areas have enough information to support 327	

behavioural thresholds that are orders of magnitude better than what is typically observed. However when 328	

information-limiting correlations are added, information saturates rapidly suggesting that behavioural 329	

thresholds may not be much lower than population thresholds even if the decoding weights are fine-tuned 330	

for best performance. We will now infer scaling factors 𝑎b and 𝑎c of decoding weights using both noise 331	

models and examine their implications. 332	

 

Figure 4. Covariance structure of Extensive and 
Limited information models. (a) Matrix of 
covariances Σij among neurons in MSTd and VIP 
(N=128). Top: Extensive information model 
constructed by sampling according to the empirical 
relationship in Supplementary Figure S5, for the 
case when the two areas are uncorrelated on average. 
Bottom: Limited information model adds a small 
amount of information-limiting correlations with 
magnitudes (𝜀bb = 4.2, 𝜀cc = 7, 𝜀bc = 0) chosen 
arbitrarily for illustration. (b) Inset shows the effect 
of population size on the information content 
implied by the two kinds of noise in MSTd (blue), 
VIP (red) and in both areas together (black). If 
decoded optimally, behavioural thresholds implied 
by the extensive information model would decrease 
with N resulting in performance levels that are vastly 
superior to those actually observed in monkeys 
(black dashed line). Information-limiting 
correlations cause information to saturate with N. 

  333	

  334	
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Extensive information model 335	

We’ve already seen that the pattern of choice correlations is not consistent with optimal decoding of MSTd 336	

and VIP. In fact for the extensive information model, optimal decoding will lead to extremely small CCs by 337	

suppressing response components that lie along the leading noise modes as they have very little information 338	

(Figure S6a). Ironically, the magnitude of CCs found in our data could only have emerged if the response 339	

fluctuations along those leading modes substantially influenced animal’s choice (Figure S6b). This means 340	

that the decoder must be largely confined to the subspace spanned by those modes. We therefore restricted 341	

our focus to the two leading eigenvectors 𝐮J and 𝐮K of the covariance matrix. When the two populations are 342	

uncorrelated, these vectors lie exclusively within the one-dimensional subspaces spanned by neurons in 343	

MSTd and VIP respectively (Figure 5a). In our case, vectors 𝐮J and 𝐮K corresponded to 𝐮c and 𝐮b. 344	

Although decoding only this subspace is not optimal with respect to the total information content in the two 345	

areas, a decoder could still be optimal within that subspace. To test this, we estimated the choice correlations 346	

𝐶6,ABCc  and 𝐶6,ABCb  that would be expected from optimally weighting the two areas within this subspace 347	

(Methods M1 – equation 4). The observed CCs were proportional (MSTd: Pearson’s r =0.55, p<10–3; VIP: 348	

r =0.76, p<10–3) to these optimal predictions implying that the leading noise modes of the extensive 349	

information model are able to capture the basic structure of choice-related activity in both areas (Figure 5b). 350	

However the slopes 𝛽b and 𝛽c were significantly different from 1 (𝛽b=0.73, 95% CI =[0.63 0.84]; 𝛽c=2.38, 351	

95% CI =[2.2 2.57]) implying that the weight scalings 𝑎b and 𝑎c must be suboptimal even within the two-352	

dimensional subspace. Since we knew the magnitudes of 𝜀bb and 𝜀cc for this noise model from pairwise 353	

recordings (Table 1), we applied the exact rather than approximate form of equation 3.1 and obtained a 354	

scaling ratio 𝑎b/𝑎c = 0.8 ± 0.1.  355	

To test whether the inferred scaling was meaningful, we compared behavioural thresholds implied by the 356	

resulting decoding scheme against experimental findings of inactivation. The threshold prior to inactivation 357	

is related to the variance of the estimator whose decoding weights 𝐰 are along the direction specified by 358	

𝑎b𝐮b + 𝑎c𝐮c. Inactivating either area is equivalent to setting the corresponding scaling to zero so post-359	

inactivation thresholds are given by the variance along the leading noise mode specific to the active area 360	
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(𝐮b or 𝐮c). We computed pre and post-inactivation thresholds and found they were qualitatively consistent 361	

with experimental results: for large populations, MSTd inactivation is predicted to produce a large increase 362	

in threshold (Figure 5c, red vs black) whereas VIP inactivation is predicted to have little or no effect 363	

(Figure 5c, blue vs black; see Figure S7 for visual condition). This correspondence to experimental 364	

inactivation results is remarkable because the procedure to deduce scalings 𝑎b and 𝑎c was not constrained 365	

in any way by behavioural data, but rather informed entirely by neuronal measurements. We also confirmed 366	

that the threshold expected from optimal scalings (Table 1) was smaller than that produced by inferred 367	

weights (Figure 5c, green vs black) implying that the brain indeed weighted the two areas suboptimally.  368	

 

Figure 5. Decoder inferred using the extensive information model. (a) Decoding weights were inferred in the 
subspace of 2 leading principal components of noise covariance (solid circles). Inset: These components lie entirely 
within the space spanned by neurons in one of the two brain regions. Components are color coded according to the 
brain region that it inhabits (red=VIP; blue=MSTd). (b) Experimentally measured choice correlations (𝐶6) of 
individual neurons in VIP (red) and MSTd (blue) are plotted against their respective components 𝐶6,ABCJ  and 𝐶6,ABCK  of 
choice correlations generated from optimally decoding responses within the subspace of 2 leading principal 
components. (c) Unlike the optimal decoder in Figure 4b, the behavioural threshold predicted by the inferred weights 
(black) saturates at a population size of about 100 neurons. The green line indicates the performance of an optimal 
decoder within the two-dimensional subspace. Inactivating VIP is correctly predicted to have no effect on behavioural 
performance for large 𝑁 (blue), while MSTd inactivation increases the threshold (red). (d) A schematic of the inferred 
decoding solution projected onto the first principal component of noise in VIP and MSTd. The solid colored lines 
correspond to the readout directions for the four cases shown in (c). The long diagonal black line is the projection of 
the mean population responses for headings from –9° to +9°, and the two gray ellipses correspond to the noise 
distribution at heading directions of ±2°. The colored gaussians correspond to the projections of this signal and noise 
onto each of the four readout directions, and the overlap between these gaussians corresponds to the probability of 
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discrimination errors. (e) The percentage of available information read out by the inferred decoder (the decoding 
efficiency) decreases with population size, because the decoded information saturates while the total information is 
extensive. (f) Correlations between MSTd and VIP were not measured experimentally. We modeled these correlations 
according to the same linear trend that on average described correlations within each population, but with different 
slopes, yielding different interareal correlations parametrized by 𝛾 = 𝜀𝑀𝑉/𝜀𝑀𝑀 (Methods M8 – Equation 7.2). This 
slope reaches its maximum allowable value 𝛾klm = 𝜀cc/𝜀bb, the geometric mean of the slopes for MSTd and VIP. 
(g) For each value of 𝛾, we used the resultant covariance and CCs to infer the decoder, and plotted its behavioural 
thresholds. Thresholds are shown for a population of 256 neurons, by which point the performance had saturated to its 
asymptotic value for all 𝛾. Shaded regions in (c), (e), and (g) represent ±1 SEM. 

 369	

The above findings are explained graphically in Figure 5d by projecting the relevant quantities (tuning 370	

curves 𝐟(𝑠), noise covariance Σ, decoding weights 𝐰) onto the subspace of the first two principal 371	

components (𝐮b and 𝐮c) of the noise covariance Σ. The colored lines indicate different readout directions, 372	

determined by the scaling (𝑎b and 𝑎c) of weights for the two populations. A ratio of 𝑎b/𝑎c > 1 373	

corresponds to greater weight on the estimate derived from MSTd activity, and the associated readout 374	

direction will be closer to the principal component of MSTd. The response distributions are depicted as gray 375	

ellipses (isoprobability contours) for the two stimuli to be discriminated. The discrimination threshold for 376	

different decoders can be obtained simply by projecting these ellipses onto the readout direction of the 377	

specified decoder and examining the overlap between the projections. Within this subspace, the ratio 378	

𝑎b/𝑎c  of the decoder inferred from CCs was much smaller than the optimal ratio (Table 1), meaning that 379	

MSTd was given too little weight. Consequently, the response distributions have more overlap along the  380	

Model Extensive information model† Limited information model 

Model 
parameters 

Noise magnitudes 𝜀bb = 15, 𝜀cc = 45, 𝜀bc = 0  𝜀bb = 5, 𝜀cc = 38, 𝜀bc = 10  

Multiplicative 
scaling of CCs 
relative to optimal 

𝛽b = 0.44, 𝛽c = 1.4  𝛽b = 1.1, 𝛽c = 2.4  

Optimal weights 𝑎b/𝑎c = 2.8 ± 0.5  𝑎b/𝑎c = 9 ± 4  
Inferred weights 𝑎b/𝑎c = 0.8 ± 0.1  𝑎b/𝑎c = 14 ± 7  

Model 
predictions 

Multiplicative 
change in CCs 
following 
inactivation 

𝜁b = 2.2 ± 0.3  

𝜁c = 1.3 ± 0.1  

𝜁b = 0.9 ± 0.4  

𝜁c = 1.3 ± 0.4  
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Table 1. Model parameters and predicted changes in CCs following inactivation for the two covariance models, 381	
shown as median ± central quartile range. (†Values correspond to when decoder is inferred using a rank-two 382	
approximation of the covariance.) 383	

direction corresponding to the decoder inferred from neuronal CCs (black) than along the optimal direction 384	

in that subspace (green). This means that the outputs are less discriminable and thus that the decoding is 385	

suboptimal. VIP inactivation (𝑎c=0) corresponds to decoding only from MSTd (blue). This happens to 386	

produce no deficit because the overlap of the response distributions is similar to that along the original 387	

decoder direction. On the other hand, inactivating MSTd (𝑎b=0) corresponds to decoding only from VIP 388	

(red), where the two response distributions have greater overlap leading to a larger threshold. 389	

It is important to keep in mind that decoding the noisiest two-dimensional subspace, which throws away all 390	

signal components in the remaining low-noise N–2 response dimensions, is a much more severe 391	

suboptimality than misweighting the two areas’ signals within that restricted subspace, which loses less than 392	

half the information (Figure 5c). As illustrated in Figure 5e, the fraction of available information recovered 393	

by this decoder (𝜂) drops precipitously with the number of neurons (𝜂 ~ 2.5N–1). Moreover, for this model, a 394	

steeper relationship between signal and noise correlations leads to greater CCs. This is because the model is 395	

only consistent with suboptimal decoding that fails to remove the strong noise correlations; these noise 396	

correlations are decoded to drive the choice, and thus correlate neurons not only with each other but also 397	

with that choice. Thus, in the extensive information model, high CCs are a consequence of decoding a 398	

restricted subspace of neural activity, a radically suboptimal strategy for the brain. 399	

Behavioural predictions of this model were robust to assumptions about the exact size of the decoded 400	

subspace (Figure S8), but were found to depend on the magnitude of noise correlations between the VIP and 401	

MSTd populations. Since interareal correlations were not measured, we systematically varied the strength of 402	

these correlations by changing 𝛾 (Figure 5f), and used equation 3.2 to infer weight scalings for each case. 403	

We used these scalings to generate behavioural predictions for different values of 𝛾. Predictions for one 404	

example value of these correlations are shown in Figure S9. Behavioural predictions progressively 405	

worsened as a function of the strength of noise correlations between MSTd and VIP: for this model, even 406	
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weak but nonzero interareal correlations imply that inactivating area VIP should improve behavioural 407	

performance (Figure 5g). 408	

 409	

Limited information model 410	

In the presence of information-limiting correlations, choice correlations must be proportional to the ratio of 411	

behavioural to neuronal thresholds (Equation 2.3). This was indeed the case both in MSTd and VIP as we 412	

showed already in Figure 3. Those slopes correspond to the multipliers 𝛽b and 𝛽c for this model, and were 413	

found to be different for the two areas (Table 1). 414	

 

Figure 6. Decoder inferred using the limited information model. (a) Like decoding in the presence of extensive 
information, this decoder is suboptimal (black vs green), and can account for the behavioural effects of inactivation. 
(b) Unlike decoding in the extensive information model, the efficiency of this decoder is high and insensitive to 
population size. Shaded areas represent ±1 SEM. 

As we noted earlier, unlike the leading modes of noise in the extensive information model, the magnitudes 415	

of information-limiting correlations (𝜀bb, 𝜀cc, and 𝜀bc) are difficult to measure. Nevertheless, we can 416	

deduce them from behaviour because behavioural precision is ultimately limited by these correlations. 417	

Briefly, using behavioural thresholds after inactivation of each area, along with 𝛽b and 𝛽c derived from 418	

choice correlations as additional constraints, we can simultaneously infer the magnitude of information-419	

limiting correlation within each area (𝜀bb and 𝜀cc), the correlated component of the noise (𝜀bc), and weight 420	

scalings (𝑎b and 𝑎c) (Methods M9). A model based on these inferred parameters correctly predicted that 421	

the behavioural threshold before inactivation would not be significantly different from threshold following 422	

VIP inactivation (Figure 6a; see Figure S10 for visual condition). This was because the scaling of weights 423	
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in MSTd was much larger than in VIP according to this model (𝑎b ≫ 𝑎c, Table 1), so inactivating VIP had 424	

little impact on the output of the decoder and left behaviour nearly unaffected. Unlike the decoder inferred 425	

for the extensive information model, the efficiency η of this decoder did not depend on the size of the 426	

population being decoded (Figure 6b, vestibular: 𝜂 = 79±13%) because neurons in this model carry a lot of 427	

redundant information. 428	

All analyses above were performed on neural data in the central 400ms of the trials following earlier work. 429	

However our conclusions are robust to the specific time (Figure S11) and duration (Figure S12) of the 430	

analysis window. Additionally, although we extrapolated our data to larger populations by resampling from 431	

a set of about 100 neurons recorded from each area, our results are not attributable to the limited size of the 432	

recording (Figure S13). We also extended our model to account for the fact that the two brain areas may 433	

have only been partially inactivated by Muscimol, and found that our conclusions hold under a wide range 434	

of partial inactivations (Supplementary note S8; Figure S14). Finally, we assumed that inactivation leaves 435	

responses in the un-inactivated area unaffected, as would be the case in a purely feedforward network 436	

model. While an exhaustive treatment of recurrent networks is beyond the scope of this work, we find that 437	

our conclusions can still hold if the above assumption is compromised by recurrent connections between 438	

MSTd and VIP (Supplementary note S9; Figure S15). 439	

Comparison of the two decoding strategies 440	

We inferred decoding weights in the presence of two fundamentally different types of noise, the extensive 441	

information model and the limited information model. Both of these decoders could account for the 442	

behavioural effects of selectively inactivating either MSTd or VIP, albeit with very different readout 443	

schemes. For the extensive information model, neurons in area VIP were weighted more heavily than 444	

optimal, and vice-versa in the presence of information-limiting noise (Table 1, Figure 7a). Why do the two 445	

models have such different weightings? Both noise models have larger noise in VIP than MSTd, but differ in 446	

correlations between the two areas. In the extensive information model, the interareal correlations must be 447	

nearly zero to be consistent with behavioural data (Figure 5g and Figure S9), and the neuronal weights in 448	
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VIP must be high to account for the high CCs. In the limited information model, the significant interareal 449	

correlations explain the large CCs in VIP, even with a readout mostly confined to MSTd. 450	

How could such fundamentally different strategies lead to the same behavioural consequences? For a given 451	

noise model, an optimal decoder achieves the lowest possible behavioural threshold by scaling the weights 452	

of neurons in the two areas according to a particular optimal ratio 𝑎b/𝑎c. Ratios that are either smaller or 453	

larger than this optimum will both result in an increase in the behavioural threshold due to suboptimality. 454	

This produces a U-shaped performance curve. Under certain precise conditions, complete inactivation of 455	

one of the areas will leave behavioural performance unchanged, exactly on the other side of the optimum. 456	

This is the case for VIP according to the extensive information model (Figure 7b – top). On the other hand, 457	

if the weight is already too small to influence behaviour then inactivation may not appreciably change 458	

performance, as demonstrated by the limited information model (Figure 7b – bottom). 459	

 

Figure 7. Decoding strategy and model predictions for the extensive information model and the limited 
information model. (a) Optimal (open black) and inferred (filled black) scaling of weights in MSTd (𝑎b) and VIP 
(𝑎c). Inactivation of either MSTd (red) or VIP (blue) confines the readout to the active area resulting in a scaling of 1. 
Red and blue arrows indicate the transformation resulting from inactivating MSTd and VIP respectively. The scaling 
factors always sum to 1. (b) Behavioural threshold  𝜗 as a function of 𝑎b. Whereas 𝜗 increases following MSTd 
inactivation for both models (red), it improves initially following partial VIP inactivation (blue) in the extensive 
information model (top) but remains unchanged in the limited information model (bottom). (c) The same curves can 
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be replotted as a function of the strength of inactivation of MSTd (red) or VIP (blue) yielding behavioural predictions 
for partial inactivation of the areas. (d) Choice correlations (CC) of neurons in MSTd (blue) and VIP (red), before and 
after inactivation of VIP and MSTd respectively. Again the results following MSTd inactivation do not discriminate 
the two information models, but for VIP inactivation the predictions differ, showing increased CCs for the extensive 
information model and decreased CCs for the limited information model. Slopes of the lines correspond to 𝜁b and 𝜁c 
in Equation (9), and shaded regions indicate ±1 s.d. of uncertainty. 
 460	

Model predictions 461	

According to the extensive information model, the brain loses almost all of its information by poorly 462	

weighting its available signals. Moreover, even beyond this poor overall decoding, the model brain gives 463	

VIP too much weight. As a consequence, this model makes a counterintuitive prediction that gradually 464	

inactivating VIP should improve behavioural performance! A hint of this might already be seen in Figure 1d 465	

and Figure S4b for the vestibular condition (both 0 and 12 h), although the difference was not statistically 466	

significant. Beyond a certain level of inactivation, as the weight decreases past the optimal scaling of the 467	

two areas, performance should worsen again (Figure 7c – top). According to the extensive information 468	

model, the brain just so happens to overweight VIP under normal conditions by about the same amount as it 469	

underweights VIP after inactivation.	Suboptimal decoding in the limited information model has the opposite 470	

effect, giving too little weight to VIP, while overweighting MSTd. However, according to this model, the 471	

available information in VIP is small, because when MSTd is inactivated the behavioural thresholds are 472	

substantially worse (Figure 7c – bottom). Thus the suboptimality due to underweighting VIP is mild 473	

(around 80% in both visual and vestibular conditions, as described above), and the predicted improvement 474	

following partial MSTd inactivation is negligible as gradual inactivation quickly shoots past the optimum. 475	

Graded inactivation of brain areas can be accomplished by varying the concentration of muscimol, as well as 476	

the number of injections. In fact, we have previously reported that behavioural thresholds increase gradually 477	

depending on the extent of inactivation of area MSTd[22]. Unfortunately, those results do not distinguish the 478	

two models, as there is no qualitative difference between the model predictions for partial MSTd 479	

inactivation (Figure 7c, red). Future experiments involving graded inactivation of VIP should be able to 480	

distinguish between the models due to the stark difference in their behavioural predictions.	481	
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The decoding strategies implied by the two models also have different consequences for how CCs should 482	

change during inactivation experiments (Methods M10). According to the extensive information model, 483	

VIP and MSTd are nearly independent, and both are decoded, so inactivating either area must scale up 484	

neuronal CCs in the other area (Figure 7d – top). In the limited information model, inactivating either area 485	

produces no significant changes in the other’s CCs (Figure 7d – bottom). This effect has different origins 486	

for MSTd and VIP. Although inactivating MSTd confines the readout to VIP, it also eliminates the high-487	

variance noise components that VIP shared with MSTd: these two effects approximately cancel leaving CCs 488	

in VIP essentially unaffected. The results of VIP inactivation are simpler to understand: CCs in MSTd do 489	

not change much because VIP has little influence on behaviour to begin with. 490	

 491	

Discussion 492	

Several recent experiments show that silencing brain areas with high decision-related activity does not 493	

necessarily affect decision-making[16–19]. To explain these puzzling results, we have developed a general, 494	

unified decoding framework to synthesize outcomes of experiments that measure decision-related activity in 495	

individual neurons and those that measure behavioural effects of inactivating entire brain areas. We know 496	

from the influential work of Haefner et al[14] how the behavioural impact (readout weights) of single 497	

neurons relates to their decision-related activity (choice correlations) in a standard feedforward network. We 498	

built on this theoretical foundation by adding three new elements that helped us relate the influence of 499	

multiple brain areas to both the magnitude of choice correlations, and the behavioural effects of inactivating 500	

those areas. 501	

First, we have generalised their readout scheme to include multiple correlated brain areas by formulating the 502	

output of the decoder as a weighted sum of estimates derived from decoding responses of individual areas. 503	

In this scheme, the weight scales of individual estimates can be readily identified as the scaling of neuronal 504	

weights in the corresponding areas, providing a way to quantify the relative contribution of different brain 505	

areas. Second, we postulated that readout weights are mostly confined to a low-dimensional subspace of 506	

neural response that carries the highest response covariance, in both the extensive and limited information 507	

models. This postulate was instrumental to developing a theory of decoding that focused on the relationship 508	
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between the overall scales of choice-related activity and neuronal weights, in lieu of their fine structures. 509	

Besides its mathematical simplicity, the resulting coarse-grained formulation confers an important practical 510	

advantage in that we can apply it without precisely knowing the fine structure of response covariance. Third, 511	

we used a straight-forward relation between behavioural threshold and the variance of the decoder to 512	

explicitly link the relative scaling of weights across areas to the behavioural effects of inactivating them. 513	

Our theoretical result linking the behavioural influence of brain areas to their CCs and inactivation effects 514	

(Equation 3.1 and 3.2) is applicable only when neuronal weights within each area are mostly confined to 515	

the leading dimension of their response covariance. Although this requirement looks stringent, it is needed 516	

to explain the high CCs seen in experiments[15]. This claim might appear to be at odds with the fact that 517	

some earlier studies successfully predicted CCs that plateaued close to experimental levels using pooling 518	

models that did not explicitly take care of the above confinement[6,9]. However a closer examination 519	

revealed that these studies used a scheme in which decision was based on the average response of neuronal 520	

pools that were all uniformly correlated, a combination of model assumptions that in fact satisfies our 521	

requirement. Similar explanations apply to other simulation studies that used support-vector machines or 522	

alternative schemes that inadvertently restricted decoding weights to low-frequency modes of population 523	

response where shared variability was highest[12,30]. Thus our postulate is fully compatible with earlier 524	

work and in fact points to a more general class of models that can be used to describe the magnitude of CCs 525	

in those data. 526	

Recent experiments show that reversibly inactivating area VIP in macaque monkeys does not impair 527	

animals’ heading perception, despite the fact that responses of VIP neurons are strongly predictive of 528	

perceptual decisions[18,21]. In contrast, inactivating MSTd does adversely affect behaviour even though 529	

MSTd neurons exhibit much weaker correlations with choice[22,23]. Assuming that both areas contribute to 530	

decision, we used our framework to infer decoding strategies that could account for these experimental 531	

results. Surprisingly, the data were consistent with two different schemes – overweighting or underweighting 532	

of VIP – depending on whether information was extensive or limited. A major implication of the finding 533	

from the extensive information model is that if a causal test of function (e.g., inactivation) reveals no 534	
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impairments, it does not disprove that a brain area contributes to a task. The limited information model on 535	

the other hand suggests that area VIP is indeed of very little use to heading perception. In spite of this 536	

difference, both models share a basic attribute, namely, that decoding is suboptimal (although to very 537	

different extents, as discussed in the next section). Therefore our analysis reveals that the observed 538	

discrepancy between decision-related activity and effects of inactivation is not peculiar, and is actually 539	

expected from systems that integrate information across brain areas in a suboptimal fashion. The nature of 540	

this suboptimality can be understood intuitively by drawing an analogy to cue combination. Imagine there 541	

are two cues x and y, and you use a suboptimal strategy in which a larger weight is allocated to the less 542	

reliable cue y. If y is removed thereby forcing you to rely completely on x, then your behavioural precision 543	

might not change very much if the reduction in information from losing y is offset by the gain in information 544	

from x. On the other hand, if you mostly ignored y to begin with, then once again you will be unaffected by 545	

its removal. Either “too much” or “too little” weighting of a brain area can lead to suboptimal performance, 546	

both in a way that leaves the behavioural threshold largely unaltered following complete inactivation of that 547	

area. 548	

Decoding is suboptimal, but just how bad?  549	

Although both models were suboptimal to some degree, the overwhelming distinction between them is the 550	

efficiency they imply for neural computation, where efficiency is the ratio of decoded information to 551	

available information. The efficiency of the limited information model is around 80%, independent of 552	

population size N. In contrast, the extensive information model encodes information that grows with N, 553	

while decoding is restricted to the least informative dimensions of neural responses. These decoders extract 554	

only a tiny fraction of the available information, resulting in an efficiency that falls inversely with N. For a 555	

modest-sized population of 1000 neurons, the efficiency is already less than 1%. Thus, the conventional 556	

model of correlated noise (with extensive information) is radically suboptimal, whereas the limited 557	

information model extracts an impressive fraction of what is possible, limited largely by noise.  558	

It has previously been argued that the key factor that limits behavioural performance in complex tasks is 559	

suboptimal processing, not noise[38]. However, in simple tasks involving binary choices, and in areas in 560	
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which most of the available information can be linearly decoded, it is unclear why the behaviour of highly 561	

trained animals should be so severely undermined by suboptimality. Moreover, radical suboptimality of the 562	

kind described here for the extensive information model implies tremendous potential for learning, as the 563	

neural circuits can continually optimize the computation by tuning the readout to more informative 564	

dimensions. This is hard to reconcile with the observation that behavioural thresholds in a variety of 565	

perceptual tasks typically saturate within a few weeks of training in both humans and monkeys[29,39–41]. 566	

In the presence of information-limiting noise, however, learning can only do so much, and performance 567	

must saturate at or below the ideal performance. Therefore we regard the limited information model as a 568	

much more likely explanation of our data, for otherwise one would need to posit that cortical computations 569	

discard the vast majority of available information. Note that suboptimal cortical computation might still 570	

account for information loss in the limited information model, as opposed to neural noise[38], but this 571	

information loss is now much more modest, probably around 20%. 572	

A direct way to tell the two models apart would be to measure the structure of noise correlations. 573	

Unfortunately, this is not straightforward, because the differences between noise models giving extensive or 574	

limited information can be quite subtle[20]. In fact, there can be a whole spectrum of subtly different noise 575	

models with different information contents, lying between the two models that we have considered here. 576	

Therefore, a more accurate technique to determine the information content (which, after all, is a major 577	

reason why we care about noise correlations) is simply to record from hundreds of neurons simultaneously, 578	

and then decode the stimulus. This will provide a lower bound on the information available in the neural 579	

population. One can then compare the resultant population thresholds with the behavioural threshold to 580	

determine how suboptimal the decoding needs to be to account for behaviour. Eventually, we expect this 581	

strategy will be successful, but it will require advances in recording technology to be viable in the target 582	

brain areas. Meanwhile, by examining the key properties of the decoding strategy implied by the two 583	

models, we identified distinct predictions that are testable without large-scale simultaneous recordings. 584	

Specifically, they involve fairly simple experiments such as graded inactivation of VIP, and measurement of 585	

CCs in either VIP or MSTd while the other area is inactivated (Figure 7). Future experiments will test each 586	
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of these predictions to provide novel evidence about the information content and decoding strategy used by 587	

the brain. 588	

 589	

Limitations of the framework and possible extensions 590	

Similar efforts to deal with outcomes of correlational and causal studies using a coherent framework are 591	

rarely undertaken, despite their significance. To our knowledge, there is only one instance where this has 592	

been attempted before[42]. In that work, the authors used a recurrent network model with mutual inhibition 593	

between populations[43,44] to reconcile choice-related activity and the effect of silencing neurons. Although 594	

their study was similar to ours in spirit, their goal was different. They showed that inactivation just before a 595	

decision, when activity was highly correlated with the choice, had less impact on the behaviour than 596	

inactivation near the stimulus onset. This addresses a temporal, as opposed to a spatial, dissociation between 597	

correlation and causation, so a model with recurrent connectivity was essential to explain their findings. In 598	

contrast, we wanted to account for the discrepancies between measures of correlation and causation across 599	

brain areas. This latter phenomenon is entirely within the realm of standard feedforward network models in 600	

which both populations causally contribute, rather than compete to drive behaviour, and differ only in terms 601	

of the relative strength of their contributions. 602	

Time-varying weights have been shown to better predict animals’ choice in certain tasks[45], and 603	

psychophysical kernels are sometimes skewed towards one end of the trial[46,47], suggesting that decoding 604	

could also be suboptimal in time. Such temporal weighting of information would naturally arise from 605	

recurrent connectivity, which is beyond the scope of this work. But it can also originate in feedforward 606	

networks, possibly through a gating mechanism that blocks the integration of neural responses beyond a 607	

certain time.[32] 608	

Other studies have considered that choice-related activity might arise from decision feedback[46,48,49]. 609	

Indeed, pure decision feedback to an area would create apparent sensitivity to sensory signals, even in the 610	

absence of direct feedforward input to the target neurons[46,48,49]. In such a case, neural sensitivity to the 611	

stimulus would then be precisely equal to the animal’s sensitivity. In the absence of other sources of 612	
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variability, response fluctuations would be perfectly correlated with fluctuations in the fed-back choice, 613	

producing choice correlations of 1. Of course there would be additional variability in the neural responses, 614	

and this would dilute both the choice correlations and neural tuning by equal amounts, giving rise to 615	

measured CCs that should match the optimal CCs (Equation 2.1). Even if there are other feedforward 616	

sensory components to the neural responses, direct decision feedback will pull the choice correlations 617	

toward this optimal prediction. Thus, simple decision feedback cannot account for the pattern of CCs 618	

observed in our VIP data, which are two to three times larger than predicted from optimal inference or direct 619	

decision feedback (Figure 3). Conversely, as we demonstrated through supplementary modeling, adding 620	

feedback or recurrent connections may not affect the suboptimal readout weights inferred using our scheme, 621	

even when those connections modulate responses along the decoded dimensions (Figure S15). Nevertheless, 622	

future expansions of our work should account for more general recurrent connectivity to study how neural 623	

circuits simultaneously integrate information across space and time. In particular, recurrent networks also 624	

include decision feedback as a special case, and might help test alternative theories on the origins of choice 625	

correlations[1,46]. 626	

Finally, while VIP inactivation did not impair heading discrimination, MSTd inactivation partially impaired 627	

the animal’s ability to perform the task. The fact that MSTd inactivation did not completely abolish 628	

performance cannot be accounted for by our two-population models unless the inactivation was only partial 629	

and/or VIP is read out to some degree. Additionally, we cannot exclude the possibility that VIP is merely 630	

correlated with behaviour and that a third brain area besides MSTd contributes some task-relevant 631	

information. In fact, both of our models actually predict a somewhat bigger deficit following MSTd 632	

inactivation (Figure 5c, 6a) than is observed experimentally (Figure 1b). This highlights the importance of 633	

ultimately extending coding models to include more than two brain areas. 634	

As neuroscience moves towards ‘big data’, there is a greater need for theoretical frameworks that can help 635	

discern simple rules from complex multi-neuronal activity[50]. We believe our work responds to this 636	

challenge and, despite its limitations, takes us closer to bridging the brain-behaviour gap for binary-decision 637	

tasks.  638	
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METHODS 639	

M1. Choice correlations in a linear feedforward model. Consider a standard feedforward decision process in which the neural 640	

response 𝐫~𝒩(𝐟, 𝛴) is read out with weights 𝐰 to generate an estimate 𝑠 = 𝐰$(𝐫 − 𝐟 𝑠) ). Choice correlations 𝐂 in this scheme 641	

were previously shown[14,15] to be related to neuronal weights and response covariance according to 𝐂 = 𝑆9J𝛴𝐰/ 𝐰S𝛴𝐰 642	

where 𝑆 = diag(Σ). We can decompose these choice correlations into a sum of components arising from the individual noise 643	

modes of the NxN covariance matrix 𝛴 as: 𝐂 = 𝛽G𝐂ABCGH
GIJ  where 𝐂ABCG  is the component of choice correlations generated from 644	

noise fluctuations along the ith mode when decoding weights 𝐰 are optimal (Supplementary notes S1, S2). 𝐂ABCG  depends on the 645	

shape of the ith noise mode 𝐮G, the amplitude of the signal 𝐟Q (the derivative of the neurons’ tuning curves), and the optimal 646	

threshold 𝜗 according to: 647	

𝐂ABCG = 𝜗	 𝐟Q$𝐮G 	𝑆9J𝐮G (4) 

If decoding is optimal, then multipliers 𝛽G ≡ 1 so the choice correlation 𝐶6,ABC of neuron k becomes 𝐶6,ABCGH
GIJ =648	

	𝜗	 𝐟Q$𝐮G 	 𝑆9J𝐮G 6
H
GIJ  which reduces to 𝜗/𝜗6 (Supplementary note S2) in agreement with earlier work[15]. In general 649	

however, multipliers 𝛽G will be different from 1 and can be estimated by regressing measured choice correlations 𝐂 against the 650	

corresponding component 𝐂ABCG .  651	

M2. Weight scaling factors for unbiased decoding. Let 𝐰 = (𝑎1𝐰1, 𝑎3𝐰3)$ denote the readout weights of neurons where 𝑎1 652	

and 𝑎3 represent the scaling of weights in the two populations x and y. To ensure unbiased decoding both before and after 653	

inactivation of the individual populations x or y, 𝐰$𝐟′, 𝐰1
$𝐟1Q , and 𝐰3

$𝐟3Q  must all be equal to 1 where 𝐟Q = (𝐟1Q , 𝐟3Q )$ denotes the 654	

derivatives of the tuning curves of neurons in x and y (Supplementary note S0). This yields the constraint that 𝑎1 + 𝑎3 = 1 at all 655	

times. 656	

M3. Relation between behavioural threshold and weight scaling factors. Behavioural threshold 𝜗 is proportional to the square 657	

root of the decoder variance (with proportionality of 1 for threshold of 68% correct), so 𝜗K = 𝐰$𝛴𝐰. If decoding is confined to 658	

the subspace of leading eigenmodes of 𝛴 spanned by neurons within x and y (𝐮1 and 𝐮3), then 𝐰1 ∝ 𝑎1𝐮1 and 𝐰3 ∝ 𝑎3𝐮3 where 659	

the constants of proportionality are chosen to ensure unbiased decoding. In this case, the behavioural threshold can be expressed 660	

purely in terms of weight scaling factors and the variance originating from noise within the noise modes as (Supplementary note 661	

S4): 662	

𝜗K = 𝑎1K𝜀11 + 𝑎3K𝜀33 + 2𝑎1𝑎3𝜀13 (5) 
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where 𝜀11 and 𝜀33 are the magnitudes of noise within x and y, and 𝜀13 is the magnitude of correlated noise. Thresholds following 663	

inactivation can be determined by setting the weight scaling factor for the inactivated area to zero, yielding 𝜗91K = 𝜀33 and 𝜗93K =664	

𝜀11. 665	

M4. Subjects and Behavioural Task. Six adult rhesus monkeys (A, B, C, J, S, U, and X) took part in various aspects of the 666	

experiments. Three animals were employed in each of the MSTd (C, J and S) and VIP (X, B and J) inactivation experiments. Two 667	

animals provided the neural data from each brain area (A and C for MSTd; C and U for VIP). All surgical and experimental 668	

procedures were approved by the Institutional Animal Care and Use Committees at Washington University and Baylor College of 669	

Medicine, and were performed in accordance with institutional and NIH guidelines. All animals were trained to perform a heading 670	

discrimination task around psychophysical threshold. In each trial, the subject experienced a real or simulated forward motion 671	

with a small leftward or rightward component (angle s, Figure 1a). Subjects were required to maintain fixation within a 2x2˚ 672	

electronic window around a head-fixed visual target located at the center of the display screen. At the end of each 2-s trial, the 673	

fixation spot disappeared, two choice targets appeared and the subject made a saccade to one of the targets to report his perceived 674	

heading relative to straight ahead. Nine logarithmically spaced heading angles were tested (0˚, ±0.5˚, ±1.3˚, ±3.5˚, and ±9˚ for 675	

monkeys A and J, 0˚, ±1˚, ±2.5˚, ±6.4˚, and ±16˚ for monkeys B, C, S and U), including the ambiguous case of straight ahead 676	

motion (s = 0˚). These values were chosen to obtain near-maximal psychophysical performance while allowing neuronal 677	

sensitivity to be estimated reliably for most neurons[21,23]. Subjects received a juice reward for indicating the correct choice. For 678	

trials in which the ambiguous heading was presented, rewards were delivered randomly on half of the trials. The experiment 679	

consisted of three randomly-interleaved stimulus conditions (vestibular, visual, and combined). In the vestibular condition, the 680	

monkey was translated by a motion platform while fixating a head-fixed target on a blank screen. In the visual condition, the 681	

motion platform remained stationary while optic flow simulated the same range of headings. Under the combined condition, both 682	

inertial motion and optic flow were provided. Each of the 27 unique stimulus conditions (9 heading directions × 3 cue conditions) 683	

was repeated at least 20 times, for a total of 540 discrimination trials per recording session. Identical stimuli and trial structure 684	

were employed during both neural recordings and inactivation experiments. 685	

M5. Neural recordings. Activity of single neurons in areas MSTd and VIP was recorded extracellularly using epoxy-coated 686	

tungsten microelectrodes (impedance of 1–2 MΩ). Area MSTd was located using a combination of magnetic resonance imaging 687	

(MRI) scans, stereotaxic coordinates (~15 mm lateral and ~3–6 mm posterior to AP-0), white/gray matter transitions, and 688	

physiological response properties. In some penetrations, electrodes were further advanced into the retinotopically organized area 689	

MT[23]. Most recordings concentrated on the posterior/medial portions of MSTd, corresponding to more eccentric, lower 690	

hemifield receptive fields in the underlying area MT. To localize area VIP, we first identified the medial tip of the intraparietal 691	

sulcus and then moved laterally until there was no longer directionally selective visual response in the multiunit activity, as 692	

described in detail previously[21]. 693	
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M6. Estimation of Behavioural and Neuronal thresholds. Behavioural performance was quantified by plotting the proportion 694	

of 'rightward' choices as a function of heading (the azimuth angle of translation relative to straight ahead). Psychometric data were 695	

fit with a cumulative Gaussian function with mean 𝜇 and standard deviation 𝜗, and this standard deviation defined the 696	

psychophysical threshold, corresponding to 68% correct performance (𝑑Q=1, assuming no bias, i.e. 𝜇 = 0°).  697	

For the analysis of neuronal responses, we used the linear Fisher information 𝐽 which is simply a measure of the signal-to-noise 698	

ratio: signal power divided by noise power. The linear Fisher Information captures all of the Fisher information in responses 699	

generated from the exponential family with linear sufficient statistics. Its inverse is exactly equal to the variance of an unbiased, 700	

locally optimal linear estimator (for differentiable tuning curves and nonsingular noise covariance). We defined the square root of 701	

this variance (i.e. the standard deviation of the estimator) to be the neuronal discrimination threshold, which corresponds to 68% 702	

accuracy in binary discrimination. This threshold can be obtained directly from the neuron’s tuning curve and noise variance as 703	

follows:  704	

𝜗6 = 1/√𝐽6 = 𝜎6/𝑓6Q (6) 

where 𝜗6 and 𝐽6 are the threshold and linear Fisher information[51] for neuron k, 𝑓6Q is the derivative of the neuron’s tuning curve 705	

at the reference stimulus (0˚), and 𝜎6K is the variance of the neuronal response for that stimulus. Neuronal thresholds computed 706	

using the above definition were very similar to those computed using a traditional approach based on neurometric functions 707	

constructed from the responses of the recorded neuron and a presumed 'antineuron' with opposite tuning[52] (Supplementary 708	

Figure 3). 709	

M7. Estimation of Choice correlation. To quantify the relationship between neural responses and the monkey’s perceptual 710	

decisions, we first computed choice probabilities (CP) using ROC analysis[53]. For each heading, neural responses were sorted 711	

into two groups based on the choice that the animal made at the end of each trial. In previous studies, the two choice groups were 712	

typically related to the preferred and non-preferred stimuli for a given neuron[21,23].  In this study, in order to appropriately 713	

compare different neurons in a population code, the two choice groups were simply rightward and leftward choices; hence, CPs 714	

may be greater than or less than 1/2. ROC values were calculated from these response distributions, yielding a CP for each 715	

heading, as long as the monkey made at least 3 choices in favor of each direction. To combine across different headings, we 716	

computed a grand CP for each neuron by balanced z-scoring of responses in different conditions, which combines z-scored 717	

response distributions in an unbiased manner across conditions, and then performed ROC analysis on that combined 718	

distribution[54]. The CPs were then converted to choice correlations according to 𝐶6 ≈
�
K
𝐶𝑃6 −

J
K

 (refs. [14,15]) where 𝐶𝑃6 719	

and 𝐶6 are the choice probability and choice correlation of neuron k respectively (Supplementary note S0). Due to the 720	

convention we chose for computing CPs, the resulting choice correlation could be positive or negative depending whether a 721	

neuron predicted rightward choices by increasing or decreasing its response relative to reference stimulus. For an optimal 722	
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decoder, the sign of a neuron’s choice correlation should match the sign of the derivative of its tuning curve, so we modified the 723	

definition of ref.[15] (Equation 2.1) to accommodate our sign convention, yielding 𝐶6,ABC = sgn 𝑓6Q 	𝜗/𝜗6 where sgn denotes the 724	

signum function. 725	

There were neurons in both MSTd and VIP whose choice-related activity during the visual condition is anticorrelated with their 726	

signal-related activity[21,23]. Further analysis showed that heading preferences of these neurons during visual and vestibular 727	

conditions differed. Therefore the analysis of data collected during the visual condition presented in the Supplementary notes 728	

included only the subset of recorded neurons that had similar heading preferences as in the vestibular condition[23] (MSTd: 729	

66/129 neurons; VIP: 63/88 neurons). 730	

M8. Noise covariance of extensive information model. Pairwise neuronal recordings carried out separately in areas VIP and 731	

MSTd were used to estimate noise correlations between pairs of neurons, 𝑅G� = Corr(𝑟G, 𝑟�|𝑠 = 0), where 𝑟G and 𝑟� are the 732	

responses of neurons i and j, and correlation coefficients were computed by averaging over trials with headings near 0°. The same 733	

recordings were used to compute signal correlations, 𝑅G�
��� = Corr(𝑓G, 𝑓�), where 𝑓G and 𝑓� are the tuning curves of neurons i and j, 734	

and the correlation coefficients were computed by averaging over a uniform distribution of headings in the horizontal plane. The 735	

typical noise correlations, 𝑅, were then modeled as linearly proportional to the signal correlations: 736	

𝑅G� = 1 − 𝑚 𝛿G� + 𝑚𝑅G�
��� (7.1) 

where 𝛿G� is the Kronecker delta function (𝛿G� is 1 when i=j, and 0 otherwise) and m is the slope of the relationship between signal 737	

correlations and noise correlations. This slope was much steeper in VIP than MSTd[21]. For the vestibular condition, slopes were 738	

found to be 𝑚b=0.19±0.08 and 𝑚c=0.70±0.16 within MSTd and VIP respectively, and for the visual condition they were 739	

𝑚b=0.12±0.09 and 𝑚c=0.50±0.14. The above fits determined the average relationship between noise and signal correlations, but 740	

there was considerable diversity around this trend. To emulate this diversity, we used a technique similar to the one proposed in 741	

ref. [31]. Specifically, we sampled correlation coefficient matrices 𝑅 from a Wishart distribution with a mean matrix 𝑅 given by 742	

equation 7.1 and the fitted slope m, and rescaled them to ensure 𝑅GG = 1. The number of degrees of freedom for the Wishart 743	

distribution was adjusted so sampled matrices had the same uncertainty in slope m as the data when subjected to the same fitting 744	

procedure. Covariance matrices were generated by scaling the correlation coefficients by the standard deviations for each neuron. 745	

Model variances were set equal to the mean responses, so the standard deviation of neuron i is fi
1/2. Thus the covariance 𝛴 is 746	

related to correlation coefficients R by 𝛴G� = 𝑅G� 𝑓G𝑓�. Correlations between responses of MSTd and VIP neurons were not 747	

measured experimentally, so the slope 𝑚bc of any linear trend relating noise and signal correlations between the two areas was 748	

not known. We explored different possibilities by varying 𝑚bc according to: 749	

𝑚bc = 𝑘 𝑚b𝑚c (7.2) 
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where	𝑘 ∈ [0,1). Each value of k produced correlation between areas with magnitude 𝜀bc which was expressed as 𝜀bc = 𝛾𝜀bb. 750	

M9. Noise covariance of limited information model. If the information reaching MSTd (M) and VIP (V) is not perfectly 751	

redundant across the populations, then the resulting covariance matrix will be of the form:  752	

𝛴UV = 𝛴 +
𝜀bb𝐟bQ 𝐟bQ

$ 𝜀bc𝐟bQ 𝐟cQ
$

𝜀bc𝐟cQ 𝐟bQ
$ 𝜀cc𝐟cQ 𝐟cQ

$  (8) 

where 𝐟bQ  and 𝐟cQ  are derivatives of tuning curves of the neurons in M and V respectively, and 𝛴 is the noise used in the extensive 753	

information model. Whereas 𝐟bQ  and 𝐟cQ  can be estimated by measuring the tuning curves of individual neurons, precisely 754	

estimating 𝜀bb, 𝜀cc, and 𝜀bc is difficult even with large-scale recordings as their magnitudes may be very small compared to the 755	

magnitude of noise in 𝛴. Nevertheless, we know that for large populations, the behavioural threshold will be dominated by the 756	

magnitude of information-limiting correlations. Specifically, they are related through the relative scaling of decoding weights in 757	

equation 5 where M and V take the places of x and y. Consequently, we can determine 𝜀bb and 𝜀cc from behavioural thresholds 758	

following inactivation using 𝜀bb = 𝜗9cK  and 𝜀cc = 𝜗9bK . We can then use equation 5 in conjunction with equation 3.2 to 759	

determine both the ratio 𝑎b/𝑎c of weight scalings and the magnitude of correlation between populations 𝜀bc = 𝛾𝜀bb. 760	

M10. Effects of inactivation on choice correlations. Complete inactivation of one of the areas will affect neuronal choice 761	

correlations in the non-inactivated area. If 𝐂1 and 𝐂3 denote the choice correlations of neurons in area x before and after 762	

inactivation of y, then it can be shown that 𝐂1 = 𝜁1𝐂1 and similarly 𝐂3 = 𝜁3𝐂3 where scalars 𝜁3 and 𝜁3 are (Supplementary note 763	

S10): 764	

𝜁1 =
J
��

���
�

  and   𝜁3 =
J
��

���
�

    (9) 

where 𝛽1 and 𝛽3 are the multipliers that relate the observed and optimal patterns of neuronal choice correlations in areas x and y. 765	

The above equation implies that choice correlations in the active area will increase by a factor proportional to the behavioural 766	

effect of inactivating the other area. Intuitively, this is because inactivating an area that was very important for behaviour will 767	

dramatically increase the burden on the active area, leading to an increase in the magnitude of choice-related activity. 768	
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