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de Estudos Interdisciplinares em Sistemas Complexos,

Universidade de São Paulo, Av. Arlindo Béttio,
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Abstract

Recent experimental data on the transcription dynamics of eve gene stripe two formation of

Drosophila melanogaster embryos occurs in bursts of multiple sizes and durations. That has moti-

vated the proposition of a transcription model having multiple ON states for the promoter of the

eve gene each of them characterized by different synthesis rate. To understand the role of multiple

ON states on gene transcription we approach the exact solutions for a two state stochastic model

for gene transcription in D. melanogaster embryos and derive its bursting limit. Simulations based

on the Gillespie algorithm at the bursting limit show the occurrence of bursts of multiple sizes

and durations. Based on our theoretical approach, we interpret the aforementioned experimental

data as a demonstration of the intrinsic stochasticity of the transcriptional processes in fruit fly

embryos. Then, we conceive the experimental arrangement to determine when gene transcription

has multiple ON promoter state in a noisy environment.
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The control of transcription in cells is characterized by intrinsic fluctuations which result

from the small number of molecules of proteins which control this process. In prokaryotes,

the stochastic theory for this process is relatively well developed because of good under-

standing of the fundamental reaction mechanisms, but in eukaryotes the detailed reaction

and control mechanisms are poorly understood, and a detailed stochastic theory does not

exist. Nevertheless, high resolution experimental studies clearly reveal intrinsic fluctuations

in the form of bursts of transcription of variable size and duration [1–8]. The number of

underlying transcriptional states implied by this bursting behavior remain unclear. Previous

investigations have explained the variable size and duration of bursts in terms of the random

initiation of multiple underlying states [9], while variation in the duration of bursts has been

explained by a two state stochastic model [10]. In the latter study an ansatz required by

the experimental data prevented estimation of burst size, while the former used a determin-

istic model of the binding and elongation of RNA PolII. In this manuscript we consider the

exact solutions for the two state stochastic model to calculate its burst limit approximation

rigorously and show the occurrence of variable burst size using Gillespie’s exact simulation

algorithm. This provides an estimate of the average burst size in one previous study [10]

and demonstrates that the data reported in the other study [9] is fully compatible with a

two state model.

Here we use a two state master equation model of transcription which has exact solutions

given by confluent hypergeometric functions [11, 12] which has been previously applied to the

control of the transcription of even-skipped stripe 2 in D. melanogaster [13]. The stochastic

variables of the model are the number of mRNA molecules, denoted by n, and the state of

the gene’s promoter being ON or OFF. The probability for the promoter state to be ON (or

OFF) at time t when n mRNA molecules are found within a nucleus is denoted by αn(t)

(or βn(t)). mRNA synthesis occurs at rate k when the gene is ON and is zero when the

gene is OFF. mRNA degradation occurs at rate ρ. The promoter transition from the ON

to the OFF (or from the OFF to the ON) state has rate h (or f). We omit the temporal

dependence of the probabilities such that αn(t) ≡ αn and βn(t) ≡ βn and write the master
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equation for the steady state limit as

0 = k(αn−1 − αn) (1)

+ ρ[(n+ 1)αn+1 − nαn]− hαn + fβn,

0 = ρ[(n+ 1)βn+1 − nβn] + hαn − fβn. (2)

The steady state probabilities of finding n mRNA molecules independently of the gene state

are denoted by φn, with φn = αn + βn, given by

φn =
Nn

n!

(Aǫ)n
(ǫ)n

M(Aǫ+ n, ǫ+ n,−N). (3)

M(a, b, z) denotes the KummerM function and (x)n = x(x + 1) . . . (x + n − 1) denotes the

Pochhammer function, where (x)0 = 1. Eq. (3) is written in terms of the parameters

(N, ǫ, A) defined by

N =
k

ρ
, A =

f

f + h
, ǫ =

f + h

ρ
. (4)

N denotes the expectation of the number of mRNA molecules when the promoter is exclu-

sively ON. The steady state probability of finding the promoter in the ON state is denoted

by A, with A =
∑

∞

n=0 αn. ǫ gives the ratio of the switching rate between ON and OFF to

the rate of mRNA degradation. Thus, ǫ ≫ 1 implies that the gene switches multiple times

during the mean lifetime of an mRNA molecule, while ǫ ≪ 1 implies that the gene stays ON

or OFF for a time that is longer than the lifetime of the message. Of the two experimental

studies mentioned above, one [10] reports data for which A ∼ 0, while the other reports

data where ǫ ≫ 1. We consider each case in turn below.

I. Bursting limit. In the work of Suter et al.[10], Fig. 2A shows that the number of

mRNA molecules varies from 0 to 8, and is frequently 0. This indicates that A ∼ 0. We now

show that in this limit, the steady state solutions for the master equations (1) and (2) in

Eq. (3) have the negative binomial probability distribution. Let us evaluate φn at the limit

of A ∼ 0 and ǫ,N ≫ 1 with the ratio δ = N/ǫ kept as a finite constant. That transforms

φn into φ̃n where

φn → φ̃n =
(Aǫ)n
n!

(

δ

1 + δ

)n (

1

1 + δ

)Aǫ

, (5)

the negative binomial distribution which governs mRNA numbers in transcriptional bursts,

as has previously been shown for translational bursts [14, 15].
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FIG. 1. Here we show the probability distributions obtained with Eqs. (3) and (5). The Fano

factors for those distributions are given by 1 + N(1 − A)/(1 + ǫ). A. The approximation of Eq.

(3) by Eq. (5) with parameters (N, ǫ) = (100, 10) and the value of A is given as a key within the

graphs. The Fano factors for A = 0.01 and A = 0.001 are, respectively, 10. and 10.08. Where

the red trace is not visble, the curves overlap. B. Single peaked probability distributions of exact

solutions of Eq.(3) for the parameters (N, ǫ) = (28.9, 7.2) and (A1, A2, A3) = (0.99, 0.77, 0.55) with

the respective Fano factors given by ≈ (1.04, 1.81, 2.59). C. Two-peaked probability distributions of

the exact solutions of Eq. (3) for the parameters (N, ǫ) = (60, 0.75) and (A4, A5, A6) = (0.8, 0.7, 0.6)

with the respective Fano factors given by ≈ (7.86, 11.29, 14.71).

II. Probability distributions. Fig. (1A) shows a comparison between the probabilities

φn and their approximations φ̃n for two sets of parameters (N, ǫ, A), which we denote below

as P1 ≡ (100, 10, 0.1) and P2 ≡ (100, 10, 0.01). The accumulated difference between the

two probability distributions,
∑

∞

n=0 |φn − φ̃n| is < 10−1 and < 10−2, respectively, for the

parameter sets P1 and P2. Note that the value of A indicates the order of magnitude of the

accumulated error of the negative binomial approximation. Figs. (1.B) and Fig. (1.C) show

single peaked and two-peaked probability distributions of exact solutions of Eq. (3). The

two peaked distributions occur when ǫ < 1 with the relative height of the peaks dependent

on the value of A. The modes of the single peaked distributions approach N as A approaches

1.

III. Exact simulations. Fig. (2) shows three realizations of the stochastic process gov-

erned by the probabilities αn(t), βn(t). The blue (red) lines show the number of mRNAs

(promoter state) as a function of time. Fig. (2.A) shows trajectories for transcriptional

bursting in which mRNA numbers at steady state are governed by the negative binomial

limit of the probability distribution of the Eq. (3). Fig. (2.B) presents trajectories obtained

from transcriptional dynamics characterized by a single peaked probability distribution,

as in Fig. (1.B). The bursting of mRNAs occurs during the promoter ON state and the
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A - Stochastic promoter dynamics and stochastic bursty transcriptional dynamics
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B - Stochastic promoter dynamics and stochastic bursty transcriptional dynamics
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C - Stochastic promoter dynamics and stochastic bursty transcriptional dynamics

FIG. 2. Realizations of the dynamics of the number of mRNAs and corresponding promoter

state by the exact simulation algorithm of Gillespie [16] are presented. The left and right side

vertical axes show the number of mRNA molecules and promoter state, respectively. The number

of mRNA molecules (promoter state) trajectory is indicated in blue (red). The graphs A, B,

and C were constructed using parameters (N, ǫ,A, ρ), respectively, equal to (8× 103, 103, 10−3, 1),

(40, 5, 0.9, 0.002), and (0.03, 0.1, 0.5, 10−3).

OFF-ON-OFF state switching time duration appears as a single vertical line. The bimodal

distribution limit of Fig. (1.C) has its corresponding trajectories shown in Fig. (2.C).
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FIG. 3. The histograms for the burst duration and burst size for parameters (N, ǫ,A) =

(104, 104, 0.005) are presented in A and B, respectively. C shows a comparison of the steady

state distribution of the mRNA numbers obtained from Eq. (3), denoted by the label ‘Exact’, the

Eq. (5), denoted by ‘Burst’, with the simulations of the trajectories, denoted by ‘Simul’ on the

key. The Fano factor here is 1.99.

Fig. (3) shows histograms obtained from the simulations at the limit of the negative

binomial distribution when the bursting takes place. Fig. (3.A) shows a histogram for the

time spent by the promoter at the ON state. Fig. (3.B) provides a histogram for the number

of mRNA molecules synthesized during each time interval when the promoter is ON. The

histogram of the number of mRNA’s after the system has achieved steady state is shown in

Fig. (3.C), which gives a comparison of the probability distributions produced by the exact

solution (3), a simulation of it by the Gillespie algorithm (107 repetitions) [16], and in the
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bursting limit (5).

IV. Discussion. We provide a biological interpretation of the bursting limit presented in

Eq. (5) in terms of the parameter relations that were used. The choice of A ∼ 0 implies that

the ON→OFF rate h ≫ f , the OFF→ON rate. Together with the limit ǫ,N ≫ 1, these

relationships mean that k and h are the dominant reaction rates in the bursting limit, and,

furthermore, that h ≫ ρ. Biologically, this means that the promoter ON time is shorter

than the mean lifetime of the mRNA’s. In other words, because h ≫ ρ, most of the mRNA

degradation occurs while the promoter is OFF. Also, because h ≫ f , the promoter tends to

be ON for short periods separated by long intervals of OFF. For the short time interval when

the promoter is ON, because of the high value of k, a large number of mRNA molecules

are synthesized. Because mRNA synthesis and ON-OFF switching of the promoter are both

stochastic processes, the number of RNA molecules produced in a burst and its time duration

are each random variables, and will have different values at each bursting event.

Because A is a measure of the proportion of time that the gene is ON, setting A very small

in the bursting limit is a mathematical expression of the commonsense point that to observe

individual bursts, they should be well separated from one another in time. This is apparent

in Fig. (1A), where it is evident that
∑

∞

n=0 |φn − φ̃n| → 0 as A → 0. The trajectories of

Fig. (2.A) further illustrate this fact. The number of mRNA molecules (Fig. 2.A) increase

rapidly during the very short time interval when the promoter is in the ON state, and then

decay exponentially after the promoter switches to the OFF state. Figs. (3A) and (3B) are

histograms for, respectively, the burst duration and size. Both are random variables arising

from intrinsic fluctuations within the cell.

Fig. (1B) shows unimodal probability distributions for high values of ǫ and a range of

values of A. The distribution of the number of mRNA molecules in this figure are well

approximated by a Poisson distribution when A is closer 1. In Fig (1B), as A → 1, the

mode of the distribution moves to the right and its profile approaches that of a Gaussian

distribution. The corresponding trajectories of the promoter state and of mRNA numbers

are shown on Fig. (2B). The number of mRNA molecules fluctuates around its stationary

mean value. The ON and OFF promoter states tend to have durations proportional to A

along a sufficiently long time interval. The bursts still occur when the promoter is ON, but,

because of the slow mRNA synthesis rate in comparison with the duration of the ON states,

the trajectories of mRNA numbers in Fig. (2B) have less abrupt increases than Fig. (2A).
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Data very similar in appearance to Fig. (2.B) appears in Fig. 4A of a study of tran-

scription driven by the even-skipped stripe 2 enhancer in single nuclei of live embryos of

D. melanogaster [9]. The peaks of differing height were interpreted as individual bursts

revealing multiple ON promoter states of differing synthetic capacity through the use of a

deterministic model of PolII binding and elongation. The peaks of multiple heights and

duration seen in Fig. (2B) shows that the time courses of transcript number observed by

Bothma and collaborators [9] can be obtained from two promoter states only.

The two state stochastic model presented here suggests the necessary experimental design

for probing the underlying state structure of promoters in Drosophila and other organisms.

Consider the binary model presented here at the limit of bimodal distributions of n as shown

on Fig. (1C). The average time intervals for the promoter to be in the ON (TON) or OFF

(TOFF) states are similar to each other but longer than the average lifetime of message,

TD ∼ 1/ρ (TON ∼ TOFF >> TD). Then on average most of the mRNA synthesized during

the ON state will be degraded before the promoter switches to the OFF state. When the

promoter is OFF, the remaining mRNA will be rapidly degraded. Fig. (2.C) illustrates this

fact. In that regime a histogram of the amount of mRNA would be two peaked. The first

peak would be near zero and the second peak would be determined by the transcription

rate of the ON state. The same reasoning implies that in this regime, an M state promoter

would produce an M -modal histogram.

The experimental realization of this regime depends on the system used. In Ref. [9],

observations are made of the fluorescence level of spots of nascent, elongating transcripts.

For these experiments, our parameter ρ represents the release of completed transcripts from

the DNA rather than their physical destruction. Thus, ρ would be increased by a shorter

probe, albeit at the price of fainter signal. Alternatively or in tandem, an enhancer could be

constructed with slower switching between the ON and OFF states in comparison with the

rate of transcript elongation and release from DNA. In such conditions multiple underlying

ON states would be reflected by multi-peaked histograms, with caveat that any states with

extremely fast switching times would be missed.

In the event that the clean experimental regime described above is unobtainable, it is pos-

sible that a two state ON-OFF gene could be distinguished from one with multiple states by

carefully comparing the durations of productive and degradative periods. Depending on the

resolution of the observations, reasonable statistics on the number of mRNA’s synthesized
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per production event may also be obtained. In both the two state and multistate scenarios,

the OFF state (where only degradation occurs) should be exponentially distributed. The

distribution of the synthesis period will be dependent on the structure of the underlying

promoter states. For example, with a state structure of the form OFF, ON1, ON2,..., ONM

where the synthesis rate of ONi < ONi+1 and only state transitions that increased or low-

ered i by 1 were permitted, the synthesis times would follow a Gamma distribution. On

the other hand, if the observations show a geometric burst size distribution, this favors the

bursting limit of the two-state model, given by Eq. (5). However, if the bursting limit does

not apply, more complex production distribution may occur [17].
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