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Abstract 

Functional magnetic resonance imaging (fMRI) studies have shown that neural activity fluctuates 

spontaneously between different states of global synchronization over a timescale of several seconds. 

Such fluctuations generate transient states of high and low correlation across distributed cortical areas. 

It has been hypothesized that such fluctuations in global efficiency might alter patterns of activity in 

local neuronal populations elicited by changes in incoming sensory stimuli. To test this prediction, we 

used a linear decoder to discriminate patterns of neural activity elicited by face and motion stimuli 

presented periodically while participants underwent time-resolved fMRI. As predicted, decoding was 

reliably higher during states of high global efficiency than during states of low efficiency, and this 

difference was evident across both visual and non-visual cortical regions. The results indicate that 

slow fluctuations in global network efficiency are associated with variations in the pattern of activity 

across widespread cortical regions responsible for representing distinct categories of visual stimulus. 

More broadly, the findings highlight the importance of understanding the impact of global 

fluctuations in functional connectivity on specialised, stimulus driven neural processes.   
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Introduction 

Recent studies have highlighted the dynamic nature of neural activity in the absence of explicit task 

demands (Allen et al. 2014; Breakspear 2004; Chang and Glover 2010; Karahanoglu and Van De 

Ville 2015; Ponce-Alvarez et al. 2015). By combining time-resolved functional magnetic resonance 

imaging (fMRI) and tools from the field of network science, it has recently been shown that neural 

activity fluctuates spontaneously in and out of global synchronization over a timescale of several 

seconds (Zalesky et al. 2014). Such fluctuations in hemodynamic activity generate transient states of 

high and low correlation across distributed cortical areas, resulting in global changes in network 

efficiency. Global efficiency is a metric used to quantify the capacity of a complex network to share 

information between spatially segregated communities (Latora and Marchiori 2001). Efficiency 

computed in functional brain networks provides an index of the brain’s capacity to support the parallel 

transfer of information (Achard and Bullmore 2007; Sporns 2011).   

It has been hypothesized that transitions between high and low states of global efficiency might 

influence patterns of activity in local neuronal populations. Specifically, results from computational 

and empirical work suggest that slow fluctuations in neural activity underpinning efficiency may play 

a critical role in maintaining global network stability while facilitating generation of, or access to, 

sensory representations (de Pasquale et al. 2015; Gollo et al. 2015; Kringelbach et al. 2015; Murray et 

al. 2014; Shine et al. 2016). Thus, for example, neural responses associated with the presentation of a 

given visual input might be associated with distinct patterns of local neuronal activity under high 

versus low states of global network efficiency. Alternatively, ongoing slow fluctuations in global 

network efficiency may represent a mechanism of the brain’s energy homeostasis (Bullmore and 

Sporns 2012; Zalesky et al. 2014) that has no significant impact on patterns of neural activity 

associated with the encoding, maintenance or retrieval of sensory information. To date, however, it 

remains unknown whether slow fluctuations in global network efficiency are associated with changes 

in local activity elicited by the presentation of distinct sensory inputs, independent of explicit task 

demands.   

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 12, 2017. ; https://doi.org/10.1101/107888doi: bioRxiv preprint 

https://doi.org/10.1101/107888


Cocchi et al. 4 
 

To address this issue, we combined a passive visual monitoring paradigm with multiple sessions of 

sub-second resolution functional magnetic resonance imaging (fMRI) (Fig. 1). The sub-second 

temporal resolution of the MR protocol allowed for robust characterization of fluctuations in global 

network efficiency. During scanning, participants were asked to relax and keep their gaze on a central 

fixation cross. Participants were explicitly instructed to ignore a sparsely presented stream of face and 

motion stimuli that appeared at fixation (see SMovie for trial example). To determine the impact of 

expected slow changes in global neural efficiency on faster stimulus-driven processes, we analysed 

the data using approaches sensitive to global changes in dynamic connectivity (Zalesky et al. 2014) 

and a linear classifier allowing the isolation of patterns of neural response evoked by two distinct 

categories of visual stimuli (Stelzer et al. 2013). Neutral human faces and patches of visual motion 

were selected as stimuli because they are known to evoke specific and robust multivoxel patterns of 

activity in the visual system, specifically in the fusiform gyrus (Haxby et al. 2001) and medial 

temporal area [MT,  (Hong et al. 2012)], respectively. Due to constraints imposed by the sparse, 

event-related design and relatively short scan duration (20 mins), we used human faces as one 

category, and radial-dot motion as the other, to maximize the strength and reliability of decoding 

across widespread regions of the cortex. We reasoned that if changes in global efficiency affect local 

activity patterns elicited by the face and motion stimuli, classification accuracy should be different 

when these visual events appear during states of high versus low network efficiency (Fig. 1).  

We began by isolating brain areas in which mean activity (Friston et al. 1994), or multivoxel patterns 

of activity (Kriegeskorte et al. 2006), differentiated face and motion stimuli. Next, we used a 

validated, time-resolved approach to characterise spontaneous fluctuations in whole-brain functional 

connectivity and global network efficiency (Zalesky and Breakspear 2015; Zalesky et al. 2014). We 

then assessed whether the fluctuations in global neural states, characterised as high or low efficiency, 

were associated with differences in decoding of local neuronal activity elicited by the face and motion 

stimuli. 
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Materials and Methods 

The study was approved by The University of Queensland Human Research Ethics Committee. 

Written informed consent was obtained for all participants. Data from 26 healthy adult participants 

were acquired on a 3T Siemens Trio MR scanner equipped with a 32-channel head coil. Participants 

underwent two 20-minute fMRI scans, separated by an anatomical scan, all within a single 60-minute 

experimental session, as outlined in detail below. We performed two fMRI scans per participant so 

that the decoding algorithm could be trained and tested on independent datasets (Fig. 1). 

 

During the two fMRI sessions, participants were instructed to maintain their gaze on a fixation cross 

presented in the middle of the screen, to relax, and to avoid focusing on any particular thought. 

Participants were informed that images of neutral human faces or radially moving dots would 

sporadically and gradually appear and disappear on the background of the white fixation cross, and 

that they should ignore them as no response was required. Participants’ eyes were constantly 

monitored during data collection to ensure they did not fall asleep or become excessively drowsy 

(Fukunaga et al. 2006; Tagliazucchi and Laufs 2014). Six participants were excluded because they 

closed their eyes for prolonged periods (> 5 sec) in at least one of the two fMRI sessions. All analyses 

were therefore performed on a final sample of 20 participants (mean 28, S.D. ± 7 years; 12 females).  

 

Stimulus materials 

Stimuli were presented using Psychtoolbox 3 (http://psychtoolbox.org/, installed on a Dell Optiplex 

960 with Windows XP) and back-projected onto a screen positioned at the head end of the scanner by 

a liquid crystal display (LCD) projector (Canon sx80). Twenty-four human faces displaying a neutral 

expression and 24 radial dot motion stimuli were presented in a sparse and pseudo-random order in 

each fMRI run (SMovie).  

 

Stimuli were first grouped in random blocks of 3 faces and 3 motion stimuli. Next, blocks were 

concatenated and modified such that the same stimulus category (face or motion) could not appear 
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more than 3 times in a row. Different face and motion stimuli were used across the two fMRI runs. 

The minimum inter-stimulus-interval between the stimuli was 9 seconds, and the maximum was 15 

seconds (average of 12 seconds, standard deviation ± 2.8 seconds). Stimuli were presented within a 

circular region (approximately 8º visual angle) centered at fixation. Neutral faces were selected and 

modified (i.e., converted to black and white, standardized for luminance, contrast, eye position at the 

centre of the image, and eyes aligned to the horizontal axis of the fixation cross) from a standard 

dataset (Ebner 2008). Radial motion stimuli were generated using Psychtoolbox 3, and consisted of 

white dots (~ 0.2º diameter) moving radially outward from the centre of the screen. The velocity of 

each dot was proportional to its distance from the centre of the screen (6/200 pixels per frame 

multiplied by pixel distance from the centre). Once the dots reached the border of the 8º central 

region, they were re-spawned at a new random position within the region. Both stimulus types began 

at 0% visibility (100% transparent) and gradually increased in contrast over 1000 ms until they 

became fully visible (100% opaque). Stimuli remained visible for 2000 ms, before progressively 

reducing in contrast over 1000 ms until they disappeared (see SMovie for examples).  

 

Functional MR data  

For both fMRI sessions, whole brain echo-planar images were acquired using a multi-band sequence 

(acceleration factor of four) developed and optimized in collaboration with Siemens Healthcare 

(Siemens WIP770 sequence). Each imaging sequence lasted approximately 20 minutes (44 axial 

slices, 1705 volumes, slice thickness = 3 mm; matrix size = 64 × 64, in-plane resolution = 3 × 3 mm2, 

repetition time = 700 ms, echo time = 28 ms, flip angle = 54°, FOV = 192 × 192 mm2). T1 images 

were acquired using the following parameters: 192 axial slices; slice thickness = 0.9 mm; matrix size 

= 512 × 512, in-plane resolution = 0.4492 × 0.4492 mm2, repetition time = 1900 ms, flip angle = 9°, 

echo time = 2.32 ms, FOV = 230 × 230 mm2. 

 

Preprocessing 

Imaging data were preprocessed using the Matlab (MathWorks, USA) toolbox Data Processing 

Assistant for Resting-State fMRI A [DPARSF, (Chao-Gan and Yu-Feng 2010)]. The first 14 image 
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volumes (9.8 seconds) were discarded to allow tissue magnetization to reach a steady-state and let 

participants adapt to the scanner environment. DICOM images were first converted to Nifti format. 

T1 images were manually re-oriented, skull-stripped, and co-registered to the Nifti functional images. 

Segmentation and the DARTEL algorithm were used to improve the estimation of non-neural signal 

(see below) and spatial normalization (Ashburner 2007). Single-subject functional images were 

normalized to standard MNI space and smoothed using a Gaussian function with an 8 mm full width 

at half maximum (FWHM) kernel. Data processing steps also involved filtering [0.01-0.15 Hz; this 

low-frequency component of the BOLD signal was selected because it is known to be sensitive to 

both rest and task-based functional connectivity (Bassett et al. 2015; Boubela et al. 2013; Niazy et al. 

2011; Sun et al. 2004)], exclusion of undesired linear trends and regression of signals from the six 

head motion parameters from each voxel’s time series. The CompCor method (Behzadi et al. 2007) 

was used to regress out residual signal unrelated to neural activity such as heart rate and respiration 

(i.e., five principal components derived from single subject white matter and cerebrospinal fluid 

masks generated by the segmentation). This method has been shown to be more efficient in removing 

physiological noise than methods requiring external monitoring of such parameters (Behzadi et al. 

2007). Note that we previously demonstrated that fluctuations in global network efficiency are not due 

to changes in physiological noise (Zalesky et al. 2014). To further control for potential confounds 

related to micro-head motion, frames with a volume-level mean of frame-to-frame displacements 

greater than 0.25 mm (including the preceding and the two subsequent frames) were removed and 

interpolated using a cubic spline function (Power et al. 2012; Power et al. 2014). Overall, the number 

of interpolated volumes using this stringent frame-to-frame movement threshold was small and 

similar between the two fMRI sessions (interpolated volumes session 1: 2.8%, session 2: 3.5%, p = 

0.5). 

 

General linear model 

Statistical analyses were performed by adopting the general linear model (GLM) as implemented in 

the Matlab toolbox SPM8 (http://www.fil.ion.ucl.ac.uk/spm/software/spm8/). At the first level 

(within-subject analysis), the conditions of interest were modeled as boxcar functions convolved with 
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a canonical hemodynamic response function. The first-level model comprised regressors for the face 

epochs (4 seconds) and the motion epochs (4 seconds). The resulting first-level contrast images 

(motion > faces and faces > motion) were carried over to second-level random-effects analyses (one-

sample t-test, p < 0.05 FDR corrected at the cluster level, with an uncorrected high threshold of p = 

0.02. This lenient search threshold was used to generate a comprehensive mask of the regions of 

interest for the classifier – see below for details). 

 

Time-resolved analysis of global functional connectivity  

Time-resolved functional connectivity was estimated exactly as described in our previous work 

(Zalesky et al. 2014). Briefly, we tested the top 20% of all 6,670 connections defined by the 116-

region Automated Anatomical Labeling (AAL) atlas for evidence of time-varying connectivity 

(Tzourio-Mazoyer et al. 2002). A tapered sliding-window was adopted to enhance the suppression of 

spurious correlations and reduce sensitivity to outliers. The window length was set to 60 seconds and 

the exponent was set to a third of the window length (Leonardi and Van De Ville 2015; Pozzi et al. 

2012; Zalesky and Breakspear 2015). To ensure that global efficiency values were not significantly 

different across brain parcellations, we performed the same analyses on a finer grained brain 

parcellation [200 volumetrically similar ROIs, top 20% of the 39,800 possible connections (Craddock 

et al. 2012)]. Efficiency values across time were highly correlated between the two brain 

parcellations. 

 

Searchlight decoding 

For each participant, we implemented a spherical searchlight approach to decode between face and 

motion stimuli (Kriegeskorte et al. 2006). For each location within the whole brain mask, the voxel at 

the centre and its neighbors contained within the searchlight sphere (5 voxel diameter, 57 voxels 

volume) were extracted. The fMRI data from the resulting subset of voxels constituted the input to a 

linear support vector machine (Chang and Lin 2013). The fMRI data consisted of the 2 x k 3D 

volumes, where 2 is the number of fMRI sessions and k the total number of temporal subdivisions 

(i.e., 47). In each of the two fMRI sessions there were 48 trials (24 faces and 24 motion), each lasting 
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for an average of 12 seconds. One trial was lost due to the use of the sliding window approach to 

measure dynamic functional connectivity, leaving a total of 47 trials in each fMRI session. Single-

subject data from the second half of the first fMRI session and the first half of the second fMRI 

session were used to train the classifier (Fig. 1). Conversely, data from the first half of the first session 

and second half of the second session were used to test the classifier (Fig. 1). Single-subject maps 

consisted of values of decoding accuracy resulting from the cross-validation procedure (decimal 

values from 0 to 1, with 1 indicating 100% of correct labels). To evaluate decoding accuracy relative 

to chance (50% for the two stimulus categories of faces and motion), we employed permutation tests 

to construct a null distribution for each participant. A category-specific permutation was generated by 

shuffling the trial labels (i.e., face and motion). A whole brain, single-subject searchlight analysis was 

subsequently performed on the permuted data to create single-subject chance accuracy maps. This 

procedure, comprising permutation and searchlight analysis, was repeated 100 times per participant. 

Previous analyses have indicated that this number of repetitions is sufficient to achieve reliable 

estimation of false positive results (Stelzer et al. 2013).   

 

To isolate brain regions containing significant information about the two stimulus categories at the 

group level (with one participant left out) in each leave-one-out run (Friedman et al. 2001), we 

adopted a validated non-parametric method (Stelzer et al. 2013). The voxel-wise average of the non-

permuted accuracy maps over the group formed an observed group level accuracy map. Then a 

bootstrapping method was used to construct a null distribution of the voxel-wise group level accuracy 

map from the 100 chance accuracy maps obtained previously. Each participant’s accuracy maps 

obtained from the permutations were recombined into group-level chance accuracy maps. This was 

achieved by randomly selecting one of the 100 chance accuracy maps for each participant. This 

selection was averaged to one permuted group-level accuracy map, and the bootstrapping procedure 

was repeated 105 times. From the 105 permuted maps arising from the bootstrapping procedure, a 

voxel-wise null distribution map of the observed group-level accuracy was built. For each voxel an 

accuracy threshold corresponding to p < 0.001 was then estimated to construct a voxel-wise observed 

significance threshold map. This initial p-value was established based on previous analyses (Stelzer et 
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al. 2013). A voxel with an accuracy above the p < 0.001 threshold meant that it had better decoding 

performance than chance at the group level. The resulting map was used to binarise the observed 

group level accuracy map and the 105 permuted maps. A cluster search was then performed on the 

observed and permuted binarised maps. In the cluster search algorithm two voxels were considered 

part of the same cluster if, and only if, they shared a face. We recorded all occurring cluster sizes in 

the observed and permuted maps. This procedure allowed us to estimate the probability of cluster size 

occurrence in the observed map. For each cluster size, a p-value was assigned and a significance 

threshold of cluster size was determined. Multiple comparison correction was implemented on all 

cluster p-values based on False Discovery Rate (FDR). A FDR-corrected cluster size threshold was 

then applied to the observed group level accuracy map. The resulting clusters formed an accuracy 

map comprising voxels with significant decoding at the group level (p < 0.05 FDR corrected). This 

map was used in subsequent region-based decoding for the left out participant. 

 

Effect of fluctuations in global efficiency on decoding   

In each of the 20 leave-one-out runs, the significant group-level map defined using the searchlight 

approach (see above) was used as a feature set to calculate decoding accuracy as a function of changes 

in global network efficiency (for a schematic of the procedure, see SFig. 1). The BOLD signal of the 

left-out participant was used to both train (using the training epochs) and test (on the test epochs) a 

linear classifier. This procedure ensured that the selected regions of interest (ROI) within the 

thresholded map were significant at the group-level, and could be generalized to the whole cohort. 

Note, however, that the classifier was run within-participants (i.e., for each classifier, the training and 

the test sets were from the same participant). Decoding accuracy for a specific ROI in the left-out 

participant was calculated using the fMRI data corresponding separately to epochs of low global 

efficiency (lower 35%, 16 epochs) and high global efficiency (top 35%, 16 epochs) (SFig. 1). 

Significant differences in average ROI-based decoding performance between the low- and high-global 

efficiency states were tested for the 20 participants using a right-tailed nonparametric approach (based 

on the a priori prediction – recorded at the beginning of the study - that states of high global 

efficiency should increase neural decoding accuracy; see Introduction).  
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Results 

Brain activity evoked by face and motion stimuli  

Standard univariate analyses contrasting neural activity evoked by the two stimulus categories (face 

minus motion, and vice versa) showed that passive viewing of face stimuli evoked greater blood-

oxygen-level dependent (BOLD) signal in bilateral fusiform gyrus [corresponding to the fusiform face 

area (Kanwisher et al. 1997)] than viewing of visual motion. Conversely, passive viewing of radial 

dot motion elicited greater BOLD responses in the middle temporal gyrus and the banks of the 

inferior temporal sulcus [corresponding to functional area MT (Annese et al. 2005; Walters et al. 

2003)] than viewing of faces (p < 0.05 FDR corrected at cluster level; see Fig. 2). These results 

replicate what has been consistently observed in previous fMRI work assessing functionally 

specialised brain areas involved in the processing of human faces and visual motion (DeAngelis et al. 

1998; Grill-Spector et al. 2006; Haxby et al. 2001; McGugin et al. 2012).   

 

Decoding analyses of evoked responses to face and motion stimuli 

Results of the decoding analyses revealed a widespread set of visual and non-visual brain regions with 

above-chance (> 53%) accuracy in distinguishing face and motion stimuli (Fig. 3). The bilateral 

fusiform gyri, area MT, and lateral portions of the inferior occipital cortex showed significant and 

very high (90-96%) decoding accuracy for the two categories of visual stimulus (p < 0.05 FDR 

corrected, Fig. 3). High (~ 80%) decoding accuracy was also observed in the occipital, inferior 

parietal, and posterior temporal cortices (Fig. 3). On the other hand, cortical clusters comprising 

prefrontal, frontal, mid-anterior temporal and superior parietal cortices displayed significant but 

relatively modest decoding accuracy (~ 55-70%, Fig. 3).  These findings highlight the different degree 

of specialization in processing the two categories of visual stimuli, with sensory visual areas showing 

high specialization and associative regions showing a low degree of specialization. 
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Time-resolved functional brain connectivity 

Time-resolved functional connectivity was analysed using a sliding-window correlation approach. In 

line with recent methodological work (Leonardi and Van De Ville 2015; Zalesky and Breakspear 

2015), we used a tapered 60-second window (86 time points per window; details in the Materials and 

Methods section). For each participant, this yielded a time series of functional connectivity estimates 

at a temporal resolution of 700 ms over a 20-min interval. Functional connectivity (Fig. 4a) and 

global efficiency (Fig. 4b) showed regular transitions between both highly and poorly connected 

neural states over time during the experimental session. As previously shown in a canonical resting-

state context (Zalesky et al. 2014), our results revealed that spatially distributed brain regions transit 

in and out of states of global coordination over a timescale of several seconds. We previously showed 

that such changes in global neural states are not merely due to non-neural influences such as 

uncontrolled changes in blood pressure, respiration, heart rate or other physiological confounds 

(Zalesky et al. 2014). Furthermore, we found that dynamic fluctuations in functional connectivity 

obtained using two commonly used brain parcellations, the AAL (Tzourio-Mazoyer et al. 2002) and 

the “Craddock- 200” (Craddock et al. 2012), were highly correlated across participants and sessions 

(median r > 0.86, p < 0.001). Subsequent analyses were performed using network efficiency values 

derived from the AAL parcellation.    

 

The two categories of visual stimulus (24 face and 24 motion stimuli in each fMRI session) were 

homogeneously distributed across the two fMRI sessions (see orange and blue lines in Fig. 4b). 

Stimulus onset times were not significantly correlated with peaks (volumes preceding a shift in the 

efficiency trend) in efficiency (Fig. 4) for any participants in the first or second fMRI sessions, except 

for one significant correlation out of 760. Likewise, the onsets of the highest (35%) and lowest (35%) 

states of global network efficiency (Fig. 4) were not correlated with the onsets of the stimuli. Thus, 

while the presented stimuli evoked the expected pattern of neural activity in functionally specialised 

brain clusters (Fig. 2 and Fig. 3), stimulus onsets themselves did not influence slow fluctuations in 

global network activity.  
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Impact of global network efficiency on stimulus decoding across the cortex 

A significant difference in classifier performance was found between the high and low global 

efficiency states (p = 0.02 familywise error corrected, FWE; Fig. 5a). This performance difference in 

discriminating between faces and motion was identified in a map comprising all clusters showing 

significant decoding performance (Fig. 3), excluding regions isolated by the mean subtraction 

analysis shown in Fig. 2. Specifically, the analysis showed that states of high whole-brain efficiency 

were associated with significantly better stimulus decoding performance than states of low global 

efficiency (Fig. 5a and Fig. 5b). Further analyses indicated that decoding accuracies within brain 

regions displaying different capacities to discriminate between face and motion events (i.e., 80 - 85% 

and 85 - 90% accuracy) across epochs were significantly correlated (r = 0.79, p = ~10-10). The absence 

of a difference in decoding performance in the clusters isolated by the univariate subtraction analysis 

was due to the very high accuracy of decoding in many of these brain regions (see Fig. 2 and Fig. 3 

for decoding accuracy in the regions of interest) causing a ceiling effect in which the variance in 

performance was artificially limited. In fact, in these clusters the classifier’s accuracy was above 90% 

even in states of low global efficiency. These findings highlight the negligible impact of global 

fluctuations in functional connectivity on activity of highly specialised regions (such as the fusiform 

gyrus for face processing). On the other hand, less specialised brain regions evidently altered their 

activity patterns for the two stimulus categories as a function of changes in global network efficiency. 

Note that the variance in classifier performance was also very small in regions that showed close to 

chance decoding accuracy (53-55%, Fig. 5b). Removing these regions from the comparison map 

further increased the difference in decoding accuracy between states of high and low global 

efficiency.     

 

To ensure that changes in global network efficiency were not simply related to a global change in the 

voxel-wise amplitude of the BOLD signal, we tested for a possible relationship between these two 

measures. There was no significant correlation between voxel-wise fluctuations in global efficiency 

and mean BOLD signal (p > 0.05). Furthermore, neither the mean BOLD signal across all grey matter 

voxels, nor the mean variance of the BOLD signal, differed significantly between high and low states 
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of global efficiency (t-tests, p > 0.05 with Bonferroni correction, with the exception of the variance of 

the BOLD signal for one participant, p = 0.0005). These results further support the notion that 

changes in global network efficiency (and decoding) are not due merely to fluctuations in the overall 

strength or variability of the BOLD signal (Zalesky et al. 2014).  

 

Finally, we tested whether the observed difference in neural decoding as a function of global 

efficiency states could be explained by changes in non-neural signals. We examined decoding 

performance of head motion parameters (six values per time point) using a linear SVM and leave-one-

out cross validation. Mean decoding accuracy across participants was close to chance for both global 

efficiency states (0.57 ±0.15 for the low efficiency state, and 0.52 ±0.15 for the high efficiency 

states), and there was no significant difference in mean decoding accuracy between them (t-test, p = 

0.30). We also tested decoding performance of the white matter signal [values from 6321 voxels 

identified as white matter in the ICBM-DTI-81 white-matter labels atlas (Hua et al. 2008)] using a 

linear SVM and leave-one-out cross validation. Mean decoding accuracy across participants was 0.38 

±0.14 for the low efficiency state and 0.35 ±0.13 for the high efficiency state. There was no 

significant difference in mean decoding accuracy between states (t-test, p = 0.60). These findings 

further support the notion that dynamic changes in global functional connectivity are driven by neural 

sources (Zalesky et al. 2014).  
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Discussion 

The brain is a complex, dynamic (non-stationary) network with rich spatiotemporal dynamics (Allen 

et al. 2014; Bassett et al. 2015; Gonzalez-Castillo et al. 2015; Shine et al. 2016; Zalesky et al. 2014). 

Disentangling interactions between neural dynamics occurring at different spatiotemporal scales 

remains a major endeavor for neuroscience. By combining time-resolved fMRI, network science, and 

a novel linear classification approach, we have shown that ultra-slow (< 0.15 Hz) time-varying 

fluctuations in global network efficiency modulate the extent to which local neural processes evoked 

by face and motion stimuli can be decoded from patterns of brain activity as measured with fMRI.    

The functional link between ongoing global changes in brain connectivity and segregated decoding is 

reminiscent of findings from electroencephalography (EEG) studies, which suggest that global 

fluctuations in cortical synchrony preceding stimulus onset can facilitate local neural processes and 

visual perception. Typically, evidence for such facilitation has been found for transitions in brain 

rhythms comprising theta (Busch et al. 2009; Busch and VanRullen 2010; Landau and Fries 2012), 

alpha [(Mathewson et al. 2009; van Dijk et al. 2008), for a review see (Hanslmayr et al. 2011)], beta 

(Hipp et al. 2011), and gamma (Hipp et al. 2011) frequency bands. For example, participants’ 

perception of ambiguous audiovisual stimuli, and integration of auditory and visual information, is 

facilitated by enhanced beta and gamma band synchronization across widespread neural networks 

(Hipp et al. 2011). Our findings add to this emerging literature by suggesting that much slower 

spontaneous transitions in global neural synchronization can influence patterns of local neural activity 

elicited by two distinct categories of visual stimulus. This result opens the intriguing possibility that 

ultra-slow (< 0.15 Hz) global brain rhythms may play a causal role in the emergence of stimulus 

awareness in resting, and possibly active task, contexts, and is in line with recent work suggesting that 

global changes in fMRI connectivity relate to cognitive performance supported by segregated brain 

regions and systems (Shine et al. 2016). 

Our analyses revealed that in addition to the fusiform gyrus (Haxby et al. 2001; Haxby et al. 1999) 

and area MT (Grossman and Blake 2002; Hong et al. 2012; Peelen et al. 2006; Seymour et al. 2009) a 
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widespread set of visual and non-visual cortical regions is involved in discriminating human face and 

motion stimuli (Fig. 3). As such, the encoding of these distinct visual stimuli appears to rely on a 

diffuse neural network comprising regions at different levels of the cortical hierarchy. Specifically, 

our findings reveal that ongoing changes in global efficiency enhance the voxel-to-voxel mapping of 

stimulus-related information in brain regions comprising a diffuse set of visual and non-visual 

regions. The significant change in decoding performance across high- and low-efficiency states was 

not detected in category-specific regions such as the fusiform gyrus or area MT (Fig. 2), but instead 

was manifested in higher-level visual and non-visual regions such as the inferior parietal cortex and 

the frontal cortex (Fig. 5c). These findings suggest that the patterns of neural activity that distinguish 

face and motion stimuli are more evident across a widespread cortical network during states of high 

global efficiency (Fig. 5c), which might in turn be driven by enhanced communication between high-

order cortical areas and low-level visual areas.   

The sparse display of visual stimuli during scanning did not significantly influence global fluctuations 

in functional connectivity and efficiency. Moreover, the pseudorandom onsets of the two categories of 

visual stimulus were not related to fluctuations in pairwise functional connectivity and global 

efficiency. Likewise, in spite of an identical stimulus presentation sequence, dynamic fluctuations in 

connectivity were not correlated across fMRI sessions or participants. Thus, although slow 

fluctuations in network efficiency have a significant impact on local patterns of activity in both visual 

and non-visual areas, the opposite does not hold (i.e., the occasional appearance of visual events does 

not affect global network efficiency). Although this null effect of stimulus onset upon global network 

efficiency should be interpreted with caution, the apparent lack of influence of stimulus onsets on 

global efficiency fluctuations is consistent with recent computational work suggesting that global 

neural dynamics operating at ultra-slow timescales are relatively insensitive to faster dynamics in 

sensory nodes (Gollo et al. In press; Gollo et al. 2015; Kringelbach et al. 2015). Whether ultra-slow 

global fluctuations in connectivity isolated using fMRI are functionally independent or intermingled 

with faster, stimulus-evoked dynamics will require further investigation.  
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In this study we deliberately chose distinct categories of visual stimulus – faces and motion – to 

maximize the likelihood of uncovering significant differences in the strength of decoding across 

widespread regions of the cortex, given our sparse event-related design and relatively short resting 

scans. As a consequence, those cortical areas specialised for processing faces and motion – the 

fusiform region and area MT, respectively – showed ceiling-level decoding performance, as expected. 

In future work it will be important to determine whether the global changes in connectivity dynamics 

we report here also affect decoding accuracy for more subtle, within-category distinctions (e.g., 

between different facial expressions or motion directions). Based on the current results, it might be 

predicted that fluctuations in global brain connectivity should also modulate decoding accuracy for 

more subtle between-category distinctions, such as male versus female faces (Kaul et al. 2011) or 

different directions of visual motion (van Kemenade et al. 2014). Finally, while the current study was 

designed exclusively to assess physiological changes in local decoding across different states of 

global network efficiency, future work should determine whether participants’ behavioural 

performance (e.g., discrimination threshold) varies with fluctuations in network efficiency 

(Sadaghiani et al. 2015).  

In summary, we have shown that decoding of neural activity elicited by two distinct categories of 

visual stimulus is facilitated during states of high- versus low-global efficiency. This boost in 

physiological changes linked to fMRI decoding was apparent in both visual and non-visual brain areas 

across several levels of the cortical hierarchy. Overall, our findings are in line with an emerging view 

that slow fluctuations in spontaneous neural activity underpinning global network efficiency play a 

critical role in modulating local patterns of neural activity while maintaining global network stability 

(Deco and Jirsa 2012; Deco et al. 2011; Gollo et al. In press; Gollo et al. 2015; Shine et al. 2016).      
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Figure Legends 

Figure 1. Schematic representation of the experimental design. Participants underwent two separate 

fMRI sessions. In each session they were asked to lie in the scanner, relax, and keep their eyes on a 

fixation cross presented at the centre of the screen. Participants were instructed to ignore stimuli (face 

and motion) presented at the centre of the visual display. Stimuli were presented sparsely (one every 

12 seconds on average) and in a pseudorandom order. To test the hypothesis of altered local activity 

patterns during epochs of high (purple) versus low (red) global efficiency, we used a linear classifier 

to isolate brain regions showing significant decoding between the two stimulus categories. Trials in 

each fMRI session were divided in two and intermingled to train and test the classifier on independent 

datasets. We characterised dynamic fluctuations in global (whole-brain) efficiency (black line) using 

tools from network science (Zalesky et al. 2014). We tested for differences in decoding accuracy 

when stimuli occurred during states of high efficiency versus states of low efficiency. 

 

Figure 2. Univariate results. Brain regions showing significantly higher group-level (N = 20) activity 

during the presentation of face stimuli (yellow shading) than motion stimuli, and vice versa (orange 

shading) (second experimental session). Clusters were isolated using a standard general linear model 

framework (p < 0.05 False Discovery Rate corrected at the cluster level). As expected, the appearance 

of faces elicited greater activation in the fusiform gyrus bilaterally, whereas the motion stimuli 

elicited greater activation along the bank of the inferior temporal sulcus corresponding to human 

functional area MT (Annese et al. 2005; Walters et al. 2003). The appearance of motion stimuli was 

also associated with greater activation in regions comprising the middle temporal gyrus and frontal 

cortex. T = t-statistics.  

 

Figure 3. Multivariate results. Cortical regions showing reliable decoding between face and motion 

stimuli (group level map on the full sample). Decoding accuracy varied between 54% (> 54% 

depicted for illustration purposes) and 96%, as indicated by differences in red-yellow shading. The 
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map was generated using a standard searchlight decoding approach and a novel method allowing 

second level inferences (details in the Methods section). 

Figure 4. Dynamic functional connectivity. (a) Fluctuations in the time-series correlations of two 

representative participants, for a first and second fMRI session. Timeseries of correlation coefficients 

relating to the top-100 most dynamic connections (each colored line corresponds to a pairwise 

connection). Thick black lines represent mean functional connectivity. Functional connectivity across 

the two 20-minute fMRI sessions changes spontaneously, causing the emergence of global states of 

high and low network efficiency. (b) The orange and blue vertical lines indicate the presentation times 

of the two categories of visual stimuli (faces and motion). Stimuli were different within and between 

sessions. The thick black line represents fluctuations in global efficiency based on all pairwise 

connections (116 x 115= 13,340). Stimulus onset times were not correlated with peaks (top 35%, in 

purple; bottom 35%, in red) in global efficiency.  

Figure 5. Decoding performance as a function of global efficiency. (a) Decoding accuracy between 

face and motion stimuli was significantly higher during epochs of high- versus low-global efficiency 

(* p = 0.02, familywise error corrected- FWE; error bars represent the SEM). (b) The observed main 

effect is based upon a consistent difference across accuracy thresholds, except for similar stimulus 

decoding accuracy at near-chance thresholds (53-55% accuracy). (c) Brain regions showing 

significant changes in decoding as a function of fluctuations in global brain efficiency. Note that 

regions with higher decoding accuracy were localised in the visual sensory areas, with fusiform gyrus 

and MT showing a decoding accuracy above 90% (not depicted) in both low and high network 

efficiency states. 
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Supplementary Information 

SFigure 1. Analysis flowchart: testing of decoding accuracy for faces versus motion in states of high 

and low global network efficiency. Overview of the analysis pipeline. 

SMovie. Video presentation of a trial example. Neutral human faces or radially moving dots 

sporadically and gradually appeared and disappeared. Participants were instructed to maintain their 

gaze on the white fixation cross, relax and ignore the stimuli. There was no task and no responses 

were required. 
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