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Abstract  
The development of network inference methodologies that accurately predict 

connectivity in dysregulated pathways may enable the rational selection of patient 

therapies. However, accurately inferring an intracellular network from data remains a 

very challenging problem in molecular systems biology. Living cells integrate extremely 

robust circuits that exhibit significant heterogeneity, but still respond to external stimuli 

in predictable ways. This phenomenon allows us to introduce a network inference 

methodology that integrates measurements of protein activation from perturbation 

experiments. The methodology relies on logic-based networks to provide a predictive 

approximation of the transfer of signals in a network. The approach presented was 

validated in silico with a set of test networks and applied to investigate the epidermal 

growth factor receptor signaling of a breast epithelial cell line, MFC10A. In our analysis, 

we predict the potential signaling circuitry most likely responsible for the experimental 

readouts of several proteins in the mitogen activated protein kinase and 

phosphatidylinositol-3 kinase pathways. The approach can also be used to identify 

additional necessary perturbation experiments to distinguish between a set of possible 

candidate networks.  
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Introduction  
It is increasingly likely that the large number of off-target effects associated with 

targeted therapeutics is largely due to the complex interactions and emergent behaviors 

intrinsic to dysregulated signaling pathways in cells. In order to rationally develop 

precise therapeutic avenues to target key dysregulated pathways in diseased cells, it is 

critical to develop methodologies that can help us understand how complex intracellular 

signaling pathways are wired as an integrated network within both normal and aberrant 

cells.  While targeted molecular inhibitors hold great promise for controlling disease, in 

the clinic these drugs are often not as successful as their pre-clinical data indicated.  

The pathways associated with epidermal growth factor (Ben-Hur et al.) receptor 

signaling are of great clinical interested.  EGF receptors can active both the mitogen 

activated protein kinase (MAPK) pathway, which promotes motility, invasion, and 

angiogenic factor production, and the phosphatidylinositol-3 kinase (PI3K) pathway, 

which controls anchorage independent growth and modulates glucose metabolism (Plas 

and Thompson 2005; Robey and Hay 2009; van Golen et al. 2002; Zhang et al. 2003). 

Both the MAPK and PI3K pathways are highly dysregulated in cancer (Halilovic et al. 

2010; McCubrey et al. 2006; Meier et al. 2005; Rommel et al. 1999; Won et al. 2012), 

neuroinflammation (Liu et al. 2014), obesity and type 2 diabetes  (Bernal-Mizrachi et al. 

2014; Kulkarni et al. 2012; Schultze et al. 2012), and developmental disorders (Hong et 

al. 2008; Nie and Chang 2007). Therapeutic targeting of the MAPK pathway has been 

less effective than hoped (McCormick 2011; Won et al. 2012), and several regulatory 

mechanisms have been suggested to explain the apparent cross-talk between the 

MAPK and PI3K pathways (Serra et al. 2011). Understanding precisely how these 

networks are wired in normal and diseased cells would have tremendous clinical 

significance.  

Boolean logic can be used to simulate signal transfer in a network in a manner 

similar to signal transfer in a digital circuit. Boolean logic models of signaling networks 

approximate the sigmoidal regulation of a target molecule by an activator or inhibitor 

(Wynn et al. 2012). They can also be used to explicitly simulate enzyme activation and 

inhibition in a set of biochemical reactions as well as bistability and chemical hysteresis 

(Arkin and Ross 1994; Hjelmfelt and Ross 1995; Hjelmfelt et al. 1993). Logic-based 
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models are powerful tools for studying complex systems, such as intracellular molecular 

networks, because they are qualitatively predictive and do not require parameter 

information or mechanistic details needed for more quantitatively precise kinetic 

methods (Albert et al. 2008; Glass and Kauffman 1973; Thomas 2006; Wynn et al. 

2012). Dynamic signaling models based on logic networks have high predictive power 

only if the underlying logic network is accurately constructed. Of course, this is also true 

of highly quantitative kinetic based differential equation models, which require 

knowledge of the underlying circuitry as well as a very large number of unknown 

parameters. While treating protein activation levels in binary terms of ON and OFF is a 

simplification of the complexity of molecular function within a cell, it is important to 

emphasize what ON and OFF values signify in a logic-based signaling model.  

Specifically, when a node is in an ON or OFF state, the molecule is assumed to be 

above or below, respectively, the threshold needed to induce an appreciable effect in 

the molecule or molecules it regulates (Wynn et al. 2012). This threshold assumption is 

similar to the continuous concentration approach used by Ross and colleagues (Arkin 

and Ross 1994; Hjelmfelt and Ross 1995; Hjelmfelt et al. 1993), where changes in 

concentrations are abrupt and switch from low to high concentration without an effective 

stable intermediate at steady state. 

 A literature and/or curated database search is critical for developing an accurate 

logic network but will never be sufficient to identify the underlying circuitry of an aberrant 

cell given the high number of genetic defects that may be present in such cells. Thus, 

we wondered if it was possible to infer the actual underlying network in a population of 

cells from experimental data routinely collected in the laboratory. To this end, we 

developed an approach to infer the signaling network circuitry inside a cell from 

experimentally measured western blot data using asynchronous Boolean logic 

simulation methods and a heuristic search with genetic algorithms. The objective of the 

approach is to identify the most likely underlying structure of a signaling network by 

minimizing the difference between simulated model output and experimental data 

collected from a series of molecular perturbation experiments. We applied the method 

to experimental data collected from a cell line and validated the general approach with a 

series of in silico tests where the underlying network was known a priori. 
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The ability to accurately infer an intracellular network from data remains a 

significant and difficult problem in molecular systems biology as well as a major 

obstacle to signaling based combination therapies. A variety of reverse engineering 

approaches have been developed (Crampin et al. 2004; Kholodenko et al. 2002; 

Stelniec-Klotz et al. 2012). When reverse engineering a gene, signaling, or metabolic 

network via Boolean approaches, it is necessary to identify a logical interaction between 

each molecule in the network, such that the observed experimental discretized data can 

be explained by the model. While algorithms exist to infer Boolean networks from 

experimental data, including REVEAL (Liang et al. 1998), the Akutsu algorithm (Akutsu 

et al. 1999), and ReBMM (Saeed et al. 2012), each differs in the approach used to 

identify a network. REVEAL uses an information criterion to reduce the network search 

space consistent with the observable data. The Akutsu algorithm uses an enumerating 

approach to find the networks consistent with observable data. ReBMM uses a sparse 

search algorithm based on a Bernoulli mixture model, which is used to determine the 

set of Boolean networks consistent with the observable data. These and similar 

algorithms were largely designed to infer gene regulatory logic networks from gene 

expression data and assume that Boolean networks are subject to deterministic 

synchronous updating.  

In this paper, our objective is different: we are interested in the accurate 

inference of the underlying structure of a signaling network from experimental data of 

protein activation. We also rely on a stochastic and asynchronous logic method to 

simulate a population level response. We use a heuristic search with genetic algorithms 

to identify candidate logic networks consistent with observed data collected from a set 

of perturbation experiments. Our approach is applied to MCF10A cells and its validity is 

explored with a series of in silico network tests.  

 

Materials and Methods  
 

Here we provide a detailed description of the methods used as part of our 

network inference approach based on both in vitro and in silico perturbation 

experiments. 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 10, 2017. ; https://doi.org/10.1101/107730doi: bioRxiv preprint 

https://doi.org/10.1101/107730
http://creativecommons.org/licenses/by/4.0/


6 
 

 
Western blot analysis  

MCF10A cells were serum starved overnight in a 1:1 mix of Ham’s F12 and 

Dulbecco’s modified Eagle medium (DMEM) with 1x Pen-Strep-Glutamine, 2.5 µg/mL 

fungizone, 5 µg/mL gentamycin, 10µg/mL insulin, 0.5µg/mL hydrocortisone, 0.02 µg/mL 

EGF from murine submaxillary gland (Sigma), and 0.1µg/mL cholera toxin. In the 

morning, the media was changed to a 1:1 mix of Ham’s F12 and DMEM containing no 

serum and no supplements, and cells were incubated for 60 min with or without 50 μM 

of LY294002 (Cell Signaling), a PI3K inhibitor, or 1 μM of PD0352901 (Cell Signaling), a 

MEK inhibitor, followed by treatment with or without 0.01 µg/mL EGF human 

recombinant protein (Millipore Cat. 324831) for 10 minutes.  After 70 minutes, cells were 

harvested for protein extraction. Anti-bodies against phospho-AKT (S473 and T308), 

AKT, phospho-PTEN (S380), PTEN, phospho-ERK (T202/T204), ERK, phospho-Raptor 

(S792), Raptor, phospho-mTOR (S2448), mTOR, phospho-TSC2 (T1462) and TSC2 

were obtained from Cell Signaling. 

 

Logic Network Simulations 

All logic network simulations used an asynchronous random order update 

scheme with n replicate networks. Typically, n=100, unless otherwise stated.  

Booleannet (Albert et al. 2008) was used for all asynchronous simulations. Because a 

random order asynchronous update samples many different timescales (in contrast to 

the uniform timescales and deterministic outcomes of synchronous update methods), it 

is appropriate for simulating the heterogeneity in a population of cells (Chaves et al. 

2005; Garg et al. 2008; Thomas 1973; Wynn et al. 2012).   

Simulations ran for a pre-defined number of time steps (long enough for a logical 

steady state, also known as an attractor (Thomas and D'Ari 1990), to be reached). The 

steady state value of all nodes can be determined explicitly in a logic model if the initial 

values of all nodes in the network are known a priori. Because it will rarely be practical 

to measure all molecules in realistic biological networks, our simulation approach 

requires only knowledge of the initial activation state of nodes explicitly perturbed in the 

experiment simulated (e.g., constitutively ON or OFF proteins). All nodes not given an 

initial value at the start of a simulation are assigned random initial values in each of the 
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n replicate networks. The output of an asynchronous simulation (with n replicate 

networks) is a value between 0.0 and 1.0 for each node, indicating the probability a 

node is activated (ON) in the steady state. These probabilities are calculated directly 

from the average state of each node in n networks (Albert et al. 2008). As a direct 

consequence, steady state node probabilities greater than 0.0 but less than 1.0 indicate 

that, for the conditions tested, (a) the node is oscillating as part of a limit cycle attractor, 

(b) the node can be in one of two fixed point attractors, or (c) the node can be in both a 

limit cycle and a fixed point attractor.  

 

Predictive Scores 

Comparison of model readout with experimental data necessitated the 

discretization of experimental western blot data. It is important to note that because a 

phospho western blot is a qualitative assay dependent on many factors (including film 

exposure time), attempts at precise quantitation may be misleading and may not be 

necessary for the modeling approach used here. Values of ON or OFF were assigned to 

indicate the phosphorylation state of proteins in MCF10A cells for each condition tested. 

In general, faint or absent blots were assigned OFF values (0.0) and prominent blots 

were assigned ON values (1.0).  

A predictive score (p-score) was developed to quantify how well simulated model 

output matched experimentally collected data (referred to as expected values). The p-

score is calculated as:   

p − score =  ��  � 𝐵𝐵𝐵𝐵𝐵𝐵�𝑆𝑆𝑆𝑆(𝑖𝑖, 𝑗𝑗)� − 𝐸𝐸𝐸𝐸(𝑖𝑖, 𝑗𝑗)� �
1

𝑁𝑁 × 𝑇𝑇
�

𝑇𝑇

𝑗𝑗=1

𝑁𝑁

𝑖𝑖=1

 

where, i is the node identifier, j is the test condition identifier, N is the total number of 

nodes evaluated in the network, T is the total number of test conditions, SV(i, j) is the 

simulated value of the i-th node in the j-th test condition, EV(i, j) is the expected value of 

the i-th node in the j-th test condition. The function Bin(x), partitions simulated values as 

follows (input  output): 

 1. x = 0.00  0.00 

 2. 0.00 < x < 0.40  0.25 

 3. 0.40 ≤ x ≤ 0.60  0.50 
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 4. 0.60 < x < 1.00  0.75 

 5.  x = 1.00  1.00 

The N nodes evaluated in the p-score include only those nodes for which 

expected values were available. Consequently, N may be smaller than the total network 

node count. The scaled p-score will range from 0.0 (indicating a perfect match with 

experimental data) to 1.00 (indicating that the simulated output was wrong for all 

evaluated nodes in all test conditions).   

 

Genetic Algorithm and Fitness Function 

An implementation of a genetic algorithm (GA) was used to identify candidate 

logic networks from a large search space of possible logic networks. A GA is a type of 

heuristic search that is often used to find optimal solutions in very large search spaces 

that cannot reasonably be searched exhaustively. GAs leverage operations that mimic 

aspects of biological evolution to identify an optimal solution, such as fitness selection, 

reproduction, chromosomal crossover, and random mutation (Crampin et al. 2004; Deb 

1999; Mitchell 1996). While GA operations may appear simple, the search performed is 

considered “highly nonlinear, massively multi-faceted, stochastic, and complex” (Deb 

1999).  Typically, the problem to be optimized is numerically encoded via vectors of 

numbers referred to as chromosomes. A fundamental component of a GA is a fitness 

function that assigns a numerical value based on the relative fitness of each 

chromosome. A GA begins with an initial population of chromosomes and proceeds by 

allowing the population to evolve over many generations.  

We chose to use a GA because the search space in which we were looking for 

an optimal network configuration was often far too large to search exhaustively. In our 

case, the GA attempts to minimize the difference between experimental input data and 

simulated output of candidate logic networks under the same perturbation conditions 

used to collect the experimental data (Figure 1). The output of the fitness function used 

is a p-score. Our GA implementation does not stop when an optimal solution is found 

(i.e., a network with a p-score of 0.0) because we want the population to continue to 

evolve to other local optima, if they exist. The general steps followed in our GA 

implementation are:   
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1. In generation 0, randomly initialize a population of p of chromosomes as a 

numeric vector, where each element of the vector corresponds to a node in 

the network, and each numeric value corresponds to a possible logic 

regulation rule for the node. Each unique chromosome represents a unique 

numeric encoding of a candidate logic network. 

2. In each generation, evaluate the chromosomes in the current population by 

calculating their p-scores via a fitness function. The next generation’s 

population is determined by cross-over via random tournament selection 

(Mitchell 1996)   and mutation rates between 0.2 and 0.5.   

3. Report all networks with an optimal p-score of 0.0.  

4. Run until the number of generations set at the start of the simulation is 

reached.   

For very large search spaces, GA were performed three times for at least 100 

generations each to ensure that adequate coverage of the large search space was 

achieved. If there is uncertainty about the coverage of the search space, the number of 

generations can be increased in our approach. 

 

Logic network search space generation 

 The search space of all possible logic networks searched by the GA consists of 

all logic network combinations that can be made for the regulations possible for each 

node in a network. A script was used to enumerate all logically unique ways a single 

node could be regulated by all or a subset of nodes in a network (depending on whether 

any prior knowledge of the network is available). For m regulatory nodes, which 

represent the maximal set of nodes that can possibly regulate a target node, we 

assume each regulatory node appears no more than one time in a logic rule. Because 

order matters in a logical expression, we generate all permutations of the ways 1 to m 

nodes can by linked by logic operators as well as by parenthetic groupings. Finally, we 

scan all generated rules to check for logical equivalency and remove any redundant 

expressions (that is, any expression that generates a truth table identical to the truth 

table of an expression already included in the set). A unique identifier is assigned to 

each logically unique regulation rule possible for a target node. Table 1 lists the number 
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of unique logic regulations possible when a node is regulated by up to 6 other nodes in 

the network. Table 2 and Supplemental Table 1 show examples of logic regulations 

that make up two a distinct logic network search spaces.  

 

Computing environment 

A custom python library called Netinf was written to support the network 

inference search and implementation of the GA. The library, which makes calls to 

Booleannet (Albert et al. 2008) for asynchronous network simulations, supports 

distributed computing using MPI for Python. All distributed simulations were run on the 

University of Michigan’s high performance computing cluster using Intel Nehalem/i7 

Cores.   

 

Results 
 The objective of the approach presented in this paper is the accurate inference of 

the underlying structure of a signaling network from experimental data. We first consider 

a hypothesized network of EGF based signaling in MCF10A cells. We then evaluate our 

method by testing its ability to identify a series of increasingly complex test networks.   

 

EGFR signaling in MCF10A cells 

A detailed literature search was performed to identify the important regulatory 

components of EGF induced signaling in the PI3K and MAPK pathways (Table 3). From 

this information, a canonical normal interaction network was constructed (Figure 2A).  

Interaction networks provide directional information about a set of regulatory events, but 

do not provide details about the hierarchy of regulations when more than one node 

regulates another node (Vidal et al. 2011; Wynn et al. 2012). For example, the 

interaction network indicates that PIP3 is activated by PI3K and inhibited by PTEN, but 

does not indicate which effect is dominant when both molecules are present. The 

literature supporting each regulation in the interaction network was, therefore, carefully 

considered before deriving a set of hypothesized logic rules (Table 4), which make up 

the hypothesized logic network of normal EGF signaling in MCF10A cells (Figure 2B).  

In general, an AND NOT regulation means the inhibitor will dominate when both an 
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activator and inhibitor are present, while an OR NOT regulation means that the activator 

will dominate when both an activator and inhibitor are present (see (Wynn et al. 2012) 

for a more detailed discussion).   

The correctness of the hypothesized logic network model (Figure 2B) for normal-

like cells was tested by comparing in silico model predictions to experimentally 

measured readouts of phosphorylated AKT (at S473 and T308) and ERK (at 

T202/T204) in the normal-like mammary epithelial MCF10A cell line. Six experimental 

conditions were performed in vitro (Figure 2C) and in silico (Figure 2D): (1) control, 

(Klinke) EGF stimulation, (Duncia et al.) LY294002 (LY) alone, (4) LY followed by EGF 

stimulation, (5) PD0325901 (PD) alone, and (6) PD followed by EGF stimulation. For in 

vitro immunoblot experiments, cells were serum starved overnight and then treated with 

or without PD, a direct inhibitor of MEK (Leyton et al. 2008), or LY, a direct inhibitor of 

PI3K (Qiang et al. 2004) for 1 h, followed by 10 min with or without EGF stimulation.  

For in silico experiments, the control condition was simulated by fixing the EGFR node 

to OFF for the duration of the simulation, while the presence of EGF in test conditions 

was simulated by fixing the EGFR node to ON for the duration of the simulation. The 

presence of LY or PD in test conditions was simulated by fixing PI3K or MEK, 

respectively, to OFF for the duration of the simulation. In all six experimental conditions 

tested, PTEN (which is known to be wild-type in MCF10A cells) was activated (Figure 
2C). As a consequence, the PTEN node was fixed to ON in all simulations of MCF10A 

cells.   

The hypothesized logic network (Figure 2B) correctly predicted the 

phosphorylation of AKTS473, AKTT308, and ERK in all six experimental conditions 

(Figure 2C), producing a p-score of 0.0, which indicates an exact qualitative match 

between experiment and simulation (see Methods). The hypothesized logic model does 

not include inhibitory regulation of RAF by AKT or ERK (Brummer et al. 2003; Ritt et al. 

2010; Rommel et al. 1999; Zimmermann and Moelling 1999) (as indicated by dashed 

red lines in Figure 2B). We hypothesized that the negative regulation of RAF by AKT 

and ERK, which would be the only sources of ERK oscillations in our model, are “late 

effects” (per the term used by Samaga et al. (2009) that will take place much later than 

our experimental timescale of 70 minutes. A longer experiment with multiple time points 
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would be required to effectively measure possible oscillatory changes in ERK activation. 

Some experiments that report rapid growth factor induced oscillations in phosphorylated 

ERK, report changes in the relative ratio of phospho-ERK to total-ERK (Nakayama et al. 

2008; Shankaran et al. 2009). While the ratio may be changing, a robust phospho ERK 

signal is often still observed. When an alternate version of the network that included 

negative regulation of RAF by AKT and ERK was tested, it produced a p-score of 0.08 

(see Supplemental Figure 1).   

These results suggest that the hypothesized model (Figure 2B) may represent 

the underlying circuitry driving EGF based signaling in the PI3K and MAPK pathways in 

MCF10A cells, but do not definitively establish this to be the case. In an attempt to 

confirm or refute the proposed circuitry, we wondered how many other logical 

configurations of the nodes in the hypothesized logic network model could generate a p-

score of 0.0. While an exhaustive search of all logic network configurations was not 

practical for a network of this size (Table 1), an optimized search via a GA (see 

Methods) found hundreds of alternate logic network configurations that can also 

generate a p-score of 0.0 based on the expected values of AKTS473, AKTT308, and 

ERK (Figure 3C). A subset of these networks can be discarded because the 

regulations involved do not represent what is expected in a normal model of the 

pathways considered. For example, all networks with a p-score of 0.0 that include PTEN 

activating (rather than inhibiting) PIP3’s role in the phosphorylation of AKTT308 could 

be rejected. It may be imprudent to make this assumption, however, if we were 

attempting to undercover the signaling network inside of a cancer or aberrant cell with 

unknown signaling adaptations.  

To test if including experimental measurements for all or most nodes in the 

hypothesized network will narrow the list of candidate networks, we constructed a 

smaller 9-node hypothesized logic network (Figure 3A) where PIP3 was the only node 

not directly measured or perturbed experimentally. While this version of the logic 

network also generated a p-score of 0.0 (Figure 3B), it is still not clear that the reduced 

network is an accurate representation of the underlying EGF based signaling circuitry of 

MCF10A cells. If we know which nodes can regulate other nodes in the network with a 

high degree of accuracy, but do not know precisely how these regulations occur, it is 
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possible to reduce the complexity of the search space in which to look for other 

networks that may have a p-score of 0.0. First, EGFR and PTEN can be assumed to be 

input nodes (which means no other node in the network directly regulates them). This 

assumption is justified for PTEN because the phosphorylation of PTEN is unchanged in 

the 6 experimental conditions tested (Figure 2C). From the interaction network (Figure 
2A), it can be assumed that MEK is regulated by EGFR, ERK is regulated by MEK, 

PI3K is regulated by EGFR, PIP3 is regulated by PI3K and/or PTEN, and AKT is 

regulated by some combination of the phosphorylation of its T308 and S473 residues 

(which in turn can be assumed regulated by PIP3 and PI3K, respectively).   

If we assume only that the above regulations are possible, but assume nothing 

about the exact nature of the regulations, then a total of 36 logic regulation rules are 

possible. If the possibility that nodes other than EGFR and PTEN could be input nodes 

is included (in the case of AKTS473 an AKTT308 this would allow for the possibility of 

auto-phosphorylation), then 43 distinct logic regulation rules are possible (Table 2), 

which combine to form a search space of 41,067 distinct logic networks. p-scores were 

calculated after simulating all 41,067 logic networks, and 78 networks were found with a 

p-score of 0.0, leaving additional room for doubt about whether our hypothesized 

network (Figure 3A) can be considered correct.    

Returning to the original hypothesized interaction network (Figure 2A), there are 

3210 (3n(n-1), n = 15) possible interaction networks that can be constructed from the 15 

nodes in this network and many more logic networks. If we make assumptions similar to 

those we made for the reduced network, there are a total of 275 possible logic rules that 

can regulate the 15 nodes, producing a very large search space of 2.4 x 1012 logic 

networks (Supplemental Table 1). Obtaining additional expected values by performing 

additional perturbation experiments will likely improve the probability of finding the 

network that best reflects the network circuitry in the cell. Because laboratory 

experiments are resource intensive, it would be advantageous to be able predict the 

next set experiments that will best inform the network search. To this end, we designed 

a series of in silico experiments to test whether it is possible to infer the underlying 

signaling network from experimental data using a series of increasingly complex in silico 

networks. We also tested whether it is possible to reasonably predict the next best set 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 10, 2017. ; https://doi.org/10.1101/107730doi: bioRxiv preprint 

https://doi.org/10.1101/107730
http://creativecommons.org/licenses/by/4.0/


14 
 

of experiments to perform in the lab to facilitate discovery of the network that best 

represents the underlying signaling circuitry of a given cell type.    

 

Validation of methodology in silico 

We evaluated our network inference methodology with a series of test networks.  

We assume that between any two nodes in a logical circuit there can be, at most, two 

directional edges (depicted as a black dashed line in Figure 4A), where each directional 

edge can be in one of three regulatory states: (0) absent with no regulation, (1) 

inhibiting the target node, or (2) activating the target node. In a two-node network the 

number of interaction networks and logic networks are equivalent (because there are no 

AND or OR operators possible). For n > 2, however, the number of logic networks 

grows faster than the number of possible interaction networks (Table 1).   

The objective of the in silico tests performed was to recover the correct network 

from a large search space of networks (that is, to find a single network with a p-score of 

0.0) using only the expected values generated by the correct network from a set of in 

silico perturbation experiments. The general approach followed was:  

1.  For all nodes in a test network known a priori, create a network search space by 

generating the set of all possible logic rules that may regulate each node (this set 

may be reduced by prior knowledge). 

2. Identify a set of network perturbation experiments to perform in silico. 

3. Run simulations of the test network under each perturbation condition to 

generate expected values.  

4. Search for logic network configurations that can produce the same expected 

values as the target test network did in step 3, under identical perturbation 

conditions (i.e., p-score = 0.0). For large search spaces, the search was 

optimized using a GA, where the fitness function generates a p-score (see 

Methods) for each candidate network in the population each generation.    

5. If multiple networks with a p-score of 0.0 are found, attempt to reduce this 

number by predicting additional perturbation experiments that can differentiate 

between these networks.  Repeat step 3.  
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Two-node test network 

In a two-node network consisting of A and B, a total of 9 possible logic networks 

are possible. These networks can be uniquely identified in vector form as [Ai, Bi], where 

Ai and Bi correspond to one of the three logic rules possible for each node (Figure 4A). 

In this very simple example, the number of interaction and logic networks are equivalent 

(Table 1). For each of the 9 logic networks that can be formed from A and B, expected 

values were generated in silico with the following perturbations: (1) A ON, (Klinke) A 

OFF, (Duncia et al.) B ON, and (4) B OFF (Supplemental Figure 2). The in silico data 

were used as expected values analogous to how the in vitro western blot data was used 

as expected values for the MCF10A cells (Figure 2). For each of the 9 sets of expected 

values, we ran a search that attempted to recover each of the 9 original networks. 

Because the search space is small, it was straightforward to perform an exhaustive 

search. As an example, when network [1, 2] was the target search network (Figure 5), a 

p-score was generated for all 9 candidate networks. In all 9 searches, the correct 

network was the only network with a p-score of 0.0 and, thus, the correct network was 

always recovered based on the expected values generated by perturbing the network.  

 

Three-node test network 

The addition of a single node increases the size of the potential search space 

considerably. In a 3-node circuit consisting of A, B, and C (Figure 4B), there are 729 

interactions and 2,197 logical networks possible (Table 1; and Supplemental Table 2).  

Expected values were generated in silico for 3 test networks: [9, 1, 0], [1, 3, 11], and [3, 
0, 10], where each network is encoded as [Ai, Bi, Ci], and i indicates a unique logic rule 

identifier possible for a given node (Figure 4B). Searches for the 3 three-node networks 

were run using both a GA and an exhaustive search (where all possible 2,197 logic 

networks were simulated). In all cases, a p-score was calculated for each candidate 

network tested. Any network with a p-score of 0.0 was reported as a possible network 

solution. 

Three separate sets of in silico perturbation experiments (Table 5) were used to 

generate expected values for the three-node networks tested. The correct network was 

recovered from the expected values of all 3 sets of in silico perturbation tests for all 3 
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test network searches. Perturbation test sets I and II, however, produced non-unique 

solutions (with many other networks producing a p-score of 0.0). In contrast, 
perturbation test set III uniquely identified the correct network in all 3 target network 

searches (Table 5). 

The three-node network searches performed via a GA were initialized with a 

population size of 100 and were allowed to run for 20 generations, requiring up to 2,000 

simulations for each network search. While 2,000 is only slightly smaller than the 2,197 

simulations needed to perform an exhaustive search, the number of simulations 

performed in 20 generations by the GA was always less than 2,000 because of 

optimizations in the algorithm that prevent unnecessary repeated simulations of 

candidate networks maintained in multiple generations of the GA. In all cases, the GA 

was more efficient at recovering the target network (Table 6). Using perturbation test 

set III, the correct network was found on average in 6 or fewer generations (Table 6). 
The longest GA search (for target network [3, 0, 10]) took an average of 41.7 minutes to 

complete 20 generations, while an exhaustive exploration of the full search space took 

an average of 98 minutes, under otherwise identical computing conditions. 

 

Additional test networks 

 We performed similar tests using increasingly complex networks.  Refer to the 

supplemental material for a detailed discussion about search for a pre-defined Five and 

Ten Node network (Supplemental Figure 3, Supplemental Figure 4, respectively). 

 
Unraveling the MCF10A network  
 Returning to the original hypothesized network of MCF10A signaling, we 

performed additional western blot experiments to obtain readouts representative of 

mammalian target of rapamycin complex 1 (mTORc1) signaling, which may play a 

fundamental role in the cross talk between the MAPK and PI3K signaling pathways 

(Figure 2A-B) (Foster and Fingar 2010; Hay 2005; Sarbassov et al. 2006; Sarbassov et 

al. 2005). Specifically, we measured the phosphorylation of raptor, mTOR and TSC2 

under the same six experimental conditions used previously with MCF10A cells (Figure 
6A). From these data, we concluded that mTORc1 is activated in all 6 experimental 
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conditions, while the TSC1/2 dimer is inactive in all 6 experimental conditions. The 

activation of mTORc1 was inferred ON in all 6 conditions because a band was observed 

in all conditions for phospho-mTOR and phospho-raptor. While the band for phospho-

mTOR was weakest in the control condition, we assume that its activity is above the 

threshold needed for functional activity. For simplicity, we also assumed that the other 

key molecular components of mTORc1 are present and in an active conformation. The 

activation of TSC1/2 was inferred OFF in all 6 conditions because a band representing 

phosphorylation to TSC2 at T1462 was observed in all 6 experimental conditions. 

Phosphorylation of TSC2 at T1462, which inactivates the molecule, is regulated by AKT. 

This residue was phosphorylated even in conditions where AKT was not activated, 

however. We, therefore, hypothesized that TSC2 is either constitutively deactivated in 

MCF10A cells or another key EGFR driven regulator of this residue is missing from our 

model. 

When the expected values for mTORc1 and TSC12 activation were added to the 

expected values for AKTS473, AKTT380, and ERK (Figure 6C), the p-score of the 

original MCF10A hypothesized logic network (Figure 2B) increased from 0.00 to 0.10.  

The change in p-score reflects the difference between the simulated values of the 

hypothesized network and the expected value for TSC12 activation in the control, LY, 

and PD conditions (Figure 6C). We used the GA to search for networks that are 

consistent with the MCF10A expected values in Figure 6C. First, we used the GA 

(generations=100, population=400) to search the informed search space described 

previously as consisting of 275 distinct logic rules and 2.4 x 1012 distinct logic networks 

(Supplemental Table 1). While more than 1,000 networks with a p-score of 0.0 were 

found, they all included one of three regulation rules for TSC1/2, each of which violated 

our literature derived knowledge of AKT and/or ERK inhibition of TSC1/2 (Hahn-

Windgassen et al. 2005; Hay 2005; Jiang and Liu 2008; Manning et al. 2002; Sabatini 

2006). The three TSC1/2 rules contained in all networks found with a p-score of 0.0 

were: (1) TSC12t+1 = AKTt, (Klinke) TSC12t+1 = AKTt and not ERKt, and (Duncia et al.) 

TSC12t+1 = AKTt and ERKt.   

We next searched a larger search space of 5.7 x 1014 possible networks where 

EGFR was added as a potential direct regulator of mTORc1, S6K1, and TSC12. The 
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inclusion of EGFR as a possible regulator of these three nodes allowed us to test for the 

presence of molecules that regulate each of these nodes as a direct consequence of 

EGFR activation without including additional nodes in the network.  In this search, more 

than 5000 networks with a p-score of 0.0 were found in the first GA run (suggesting 

there are likely tens of thousands of networks in this search space that produce steady 

state values that match the expected values). If we could measure the activation of 

every protein in the network under all six perturbation conditions, the number of 

networks consistent with our data would likely be far smaller than the very large set of 

networks found with a p-score of 0.0. To attempt to reduce the set of candidate 

networks in this large search space without performing additional experiments, 

constraints were added to the GA for node regulations that we had high confidence in, 

based on the literature and our experiments. Specifically, the constraints required the 

following to be true:  

1) ERK was only activated by ERKt+1 = MEKt,  

2) RAF was only activated by RAFt+1 = RAS-GTPt ,  

3) PIP3 was only activated by PIP3t+1  = PI3Kt and not PTENt . 

In addition, rules that met any of the following criteria were removed from the search 

space because they violate what we expect in normal canonical signaling in these 

pathways (Table 3):   

1) any potential regulation of mTORc2 that included inhibition by PI3K. 

2) any potential regulation of AKT that included inhibition by the phosphorylation 

of its T308 or S473 residues. 

3) any potential regulation of RAS-GTP that included inhibition by EGFR or 

activation by S6K1. 

4) any potential regulation of PI3K that included inhibition by EGFR or inhibition 

by RAS-GTP. 

While the inclusion of these constraints reduced the effective search space by 5 

orders of magnitude to 2.8 X 109, this still represents an extremely large search space.  

When we searched under these constraints, thousands of networks were again found 

with a p-score of 0.0. One of the networks found, however, was identical to the original 

hypothesized network of normal signaling (Figure 2B) in all but the TSC12 regulation.  

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 10, 2017. ; https://doi.org/10.1101/107730doi: bioRxiv preprint 

https://doi.org/10.1101/107730
http://creativecommons.org/licenses/by/4.0/


19 
 

The TSC12 regulation in this network was TSC12t+1 = EGFRt and (not AKT t and not 
ERKt). The presence of this network is significant because it does not violate our 

literature knowledge of TSC1/2 inhibition by AKT and/or ERK, and it suggests that if the 

rest of our hypothesized network regulations are correct in Figure 2B, then an EGFR 

driven molecule other than AKT and ERK is also important for the regulation of TSC1/2 

activation in MCF10A cells. Because of the closeness of this network to our original 

hypothesized network, we performed a perturbation analysis on this network (Figure 
6D, Supplemental Figure 5). In the perturbation analysis, a single perturbation is made 

to the logic network and the resulting p-score calculated. The reported perturbation 

response is calculated by dividing the p-score of the perturbed network by the maximum 

p-score found by all perturbations of a given type (e.g., node, logic operator, edge, or 

edge regulatory type). The most important regulations in the network were related to the 

regulation mTORc1 and TSC1/2 as well as MEK activation by ERK and mTORc2 

activation by PI3K. 

Finally, we found that if additional constraints were added to the GA that violated 

literature knowledge of signaling interactions in this network, we were ultimately able to 

reduce the number of networks with a p-score of 0.0 to a set that numbered in the 

hundreds rather than the thousands. A large number of these networks are the products 

of experimental uncertainty in some interactions in the network. For example, because 

T308 is never phosphorylated on AKT in MCF10A cells (almost certainly because of the 

presence of activated PTEN in these cells) (Figure 2C), without additional experiments 

that directly perturb this residue in some way, our methodology is not able to distinguish 

between the following two regulations for AKT activation:   

AKTt+1 = AKTS473t  
AKTt+1 = AKTS473t or AKTT308t   

Similarly, because PTEN was activated in all conditions in our experiments, the 

presence of active PI3K is logically unimportant (because inhibitory PTEN dominates 

activating PI3K in one of the rules), and thus the methodology cannot distinguish 

between these two regulations for PIP3: 

PIP3t+1 = not PTENt   
PIP3t+1 = PI3Kt and not PTENt   
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Moreover, the uncertainty in these regulations is reflected in the 0.0 perturbation 

response when the AKTT308 to AKT or the PI3K to PIP3 edge was dropped in the 

perturbation analysis (Figure 6D). 

 

Discussion  

When testing that a network inference approach is predictive, it is important to 

test it in a controlled a way. We began by attempting to infer the logic circuitry of the 

EGF driven PI3K and MAPK networks inside MCF10A cells, a normal-like mammary 

epithelial cell line, and then proceeded to test the general approach with a series of in 

silico tests where the target model network we are trying to discover is known a priori so 

that we could evaluate the method’s performance. In the case of MCF10A cells, we 

relied on phospho-western blot data generated from a series of perturbation 

experiments performed with and without EGF stimulation as the input (in the form of 

expected values) to the search algorithm.  

Our results indicate that the method can be used to help infer the underlying 

signaling circuitry in a population of cells if sufficient experimental data are available. 

The approach developed can be readily applied to very large networks but, to perform a 

series of GA searches for a large network, access to high performance computing 

facilities is recommended. While synchronous simulation takes considerably less time to 

run than the asynchronous simulation approach we used, our testing revealed that 

synchronous simulations could not always find the expected network in a search space. 

For in silico tests, we generated expected values from known test networks and used 

these values as input to the search algorithm. The tests suggest that asynchronous 

logic simulations and a GA search can theoretically be used to identify an unknown 

network from the output of a set of network perturbations. Future development efforts 

are planned to further optimize the algorithm and ideally reduce the computing time 

necessary to converge to an optimal solution in large search spaces. 

Our results also suggest that the more experimental perturbations performed, the 

more likely discovery of the source network is. We previously illustrate this point with a 

systematic perturbation analysis to infer the effects of Honokiol on the Notch signaling 

pathway in SW480 colon cancer cells (Wynn et al. 2014). Not surprisingly, we also 
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observed that it was almost always necessary to obtain a readout of all non-input nodes 

in the network in order to converge on a single correct network in a search space. In a 

perturbation experiment, the state of all input nodes should be known a priori. 

Otherwise, it is not appropriate to treat the node as an input node. It is also clear that as 

the number of nodes in a network increases, the possible ways the nodes may be 

connected in a logic network becomes extremely large. Therefore, if attempting to infer 

the signaling network responsible for observed experimental readouts in a biological 

network, an exhaustive exploration of the search space of all possible logical circuits will 

almost never be possible. To overcome this challenge, our results strongly suggest that 

a GA can provide a reasonable heuristic-based alternative to an exhaustive search. It 

should be emphasized, however, that even with the search optimization provided by the 

GA, to obtain results in less than a day for large search spaces (such as the ones used 

for the 10 node test network or the 15 node hypothesized MCF10A network), it was 

often necessary to distribute the simulations across up to 40 computing cores.   

We relied on phospho-western blots for protein activation readouts. An 

alternative high-throughput approach for measuring protein activation is the use of 

multiplexed bead-based immunoassays, which consist of a set of antibodies bound to 

beads with individual fluorescent signatures, allowing detection of phosphorylation sites 

(Du et al. 2009; Krishhan et al. 2009). Because the multiplex system can detect several 

analytes in a single sample volume in far less time than equivalent data can be 

collected from traditional western blot experiments, this approach holds tremendous 

potential when used in tandem with protein network inference approaches. Saez-

Rodriguez et al. (2009) used the continuous median fluorescence intensity readout of 

phospho bead-based immuno assays as input to another discrete Boolean based 

network inference approach. While their method differed from ours in a few important 

ways, the most significant difference is their use of synchronous Boolean simulations. It 

is worth noting that their inference approach also used a GA, providing additional 

support for the utility of heurictic based approaches for limiting the enormous network 

search spaces encountered in these types of problems. 

 Our approach was able to recover the target model network in all in silico tests 

performed. In some cases, it was necessary to perform additional in silico perturbation 
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experiments in order to identify a single unique and correct network with a p-score of 

0.00. In the case of the 5 node network, the target model network could only be 

distinguished in the informed search space. When we used no prior knowledge of the 

regulation of B, C, D, or E (the uninformed search space), a set of 52 networks with the 

same or nearly the same steady values under all possible perturbations combinations 

was found (Supplemental Figure 3). If this situation is encountered with a real network 

in the laboratory, the expansion of the network to include additional hypothesized nodes 

that are critical to network is recommended.    

Similarly to Saez-Rodriguez et al. (2009), we did not identify one single logic 

network that matched our experimentally measured data. To do so, would require 

performing many additional experimental perturbations as well as obtaining readouts of 

all or most activation states of the proteins in our hypothesized network, which was 

based on an extensive literature search. It is noteworthy that we did find a single 

network that matched the experimental data for all conditions tested except for the 

logical regulation of TSC1/2. Our hypothesized network originally assumed that other 

regulators of TSC1/2 were unimportant relative to AKT and ERK. The network ultimately 

predicted (Figure 6D) suggests that this is not the case and that another EGFR-

regulated molecule may play an important role in TSC1/2 regulation. While this result 

stops short of inferring the most likely “target model” network inside MCF10A cells, it 

provides a tangible prediction for additional laboratory explorations related to the 

regulation of TSC1/2.   

Of course, finding the “target model” network inside a living cell may not be fully 

attainable for any reverse engineering methodology and it may not even be possible 

given the heterogeneity expected within a population of cells. In reality, what we are 

likely to find are mechanisms and models of a set of integrated pathways that have not 

yet been contradicted by experiment. This will be true of all modeling frameworks, not 

just Boolean based network models. Boolean logic, however, provides a predictive 

approximation of the transfer of signals in a circuit and has been used to build predictive 

models of the cell cycle (Davidich and Bornholdt 2008; Li et al. 2004; Ribba et al. 2006), 

gene regulatory networks (Albert and Othmer 2003; Chaves et al. 2005), circadian 

clocks (Akman et al. 2012), and signaling networks (Li et al. 2006; Zhang et al. 2008). 
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Living cells behave as extremely robust integrated circuits that exhibit significant 

heterogeneity, but still respond to external stimuli in predictable ways. The deterministic 

cellular outcome, for example the induction of proliferative programs in response to 

growth factor stimuli or the induction of p53 oscillations in the presence of DNA 

damage, has been compared to digital biological computation (Lahav et al. 2004; 

Tamsir et al. 2011). 

The approach presented here provides a means for inferring and/or validating a 

network hypothesis from experimental data. Our approach could be used to identify 

novel adaptive resistance mechanisms of cancer cells to therapeutic drug targets. The 

reverse engineering methodology presented here can also be implemented to 

investigate the potential differences between normal and cancer cell lines. Ultimately a 

logic-based network model can provide only qualitative dynamics of the predicted order 

of signaling events but cannot, as it stands, provide precision in terms of timescales or 

the size of a response. Two-state Boolean models can predict that a molecule is 

activated but not the degree of activation or signal amplification. While more precise 

approaches with respect to time and signal amplitude are widely used in systems 

biology, the predictive power of these methods is substantially limited by of their 

dependence on a large number of unknown parameters and kinetic mechanisms 

(Mourao et al. 2011; Srividhya et al. 2007; Wang et al. 2013; Wynn et al. 2012) that 

must be assumed prior to simulation. Thus, despite some limitations, when judged in 

the context of other methods, logic network models provide a predictive and robust 

methodology for modeling biochemical regulation without requiring prior knowledge of 

rate constants and reactions mechanisms.   
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Figure Captions 
Figure 1. High-level flow chart of the proposed methodology with genetic 
algorithm. Data from perturbation experiments are determined into an ON or OFF 

value and served as an input for the fitting. Prior knowledge on the network based on 

literature search, if any, defined the input initial search space. The genetic algorithm 

generates and evolves populations of network based on the calculated fitness to the 

input experimental data. The algorithm evolves the output networks and calculates the 

fitness for the user-defined n generations.  

 
Figure 2.  Hypothesized network of epidermal growth factor receptor signaling in 
MCF10A cells.  The hypothesized (A) interaction and (B) logic networks of normal-like 

EGF-driven signaling of the PI3K and MAPK pathways in MCF10A cells are presented. 

Logic network simulations included 15 nodes: EGFR, PTEN, RAS-GTP, RAF, TSC12, 

PIP3, PI3K, S6K1, mTORc1, mTORc2, MEK, AKT, AKTT308, AKTS473, and ERK. 

(C) Western blots of total and phosphorylated AKT, ERK, and PTEN in MCF10A cells in 

six experimental perturbation conditions are presented along with (D) the discretized 

form of these data as logical expected values.  (E) The asynchronously simulated 

output of the hypothesized logic network for each perturbation condition as well as 

predicted steady states as logical values are also presented.  The hypothesized logic 

network produced a p-score of 0.0.   

 

Figure 3:  Simplified form of the hypothesized network of epidermal growth factor 
receptor signaling in MCF10A cells. The hypothesized logic network was simplified to 

9 nodes (EGFR, PTEN, PIP3, PI3K, MEK, AKT, AKTT308, AKTS473, and ERK). The 

steady state output of this network is qualitatively identical to the larger hypothesized 

network (Figure 2B).  The predicted steady sate values (p-score = 0.0) and 

asynchronous simulation results under the six perturbation conditions are presented.  

 

Figure 4. Simple logic networks.  (A) Each black dashed edge between two nodes is 

a directional edge representing one of three regulation states:  (0) no regulation, (1) 

inhibition, or (Klinke) activation.  For a two node network consisting of A and B, the logic 
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rules corresponding to each node are listed.  A total of 9 logic networks can be 

constructed from these rules.  Each logic network can be uniquely encoded as [Ai, Bi], 
where Ai and Bi correspond to one of the three regulation rules possible for each node.  

For example, [0, 0] represents the case where no regulation exists between either node 

(i.e., they are both input nodes), [1, 2] represents the case where A is inhibited by B 

and B is activated by A, and [0, 1] represents the case where A is an input node and B 

is inhibited by A.  (B) Similarly, for a three-node network consisting of A, B, and C, each 

logic network can be uniquely encoded as [Ai, Bi, Ci,]. The logic rules corresponding to 

each node are listed in Supplemental Table 2.  A total of 729 interaction networks and 

2,197 logic networks are possible for these three nodes  

 

Figure 5. Results of the [1,2] network search.  (A) Network [1, 2] is made of the 

following logic regulations:  At+1 = not Bt and Bt+1 = At.  (B) The expected values of 

network [1, 2] were generated based on the steady state values of nodes A and B 

under the following perturbation tests: (1) A ON, (Klinke) A OFF, (Duncia et al.) B ON, 

and (4) B OFF.  (C) In this search, the p-score of each of the 9 logic networks was 

calculated from the simulated output of each network and the expected values of 

network [1, 2].  As expected, in this example only network [1, 2] had a p-score of 0.0, 

indicating an exact match.   

Figure 6.  Predicted network of epidermal growth factor receptor signaling in 
MCF10A cells. (A) Western blot of total and phosphorylated Raptor, mTOR, and TSC2 

in MCF10A cells in six experimental perturbation conditions are presented along with 

(B) the discretized form of these data as logical expected values. Expected values for 

the AKTS473, AKTT308, and ERK network nodes are also included for completeness. 

(C) Based on literature knowledge and a series of constrained genetic algorithm (GA) 

searches, we predict that the network in Figure 2B should also include an EGFR driven 

activator of TSC12. The predicted network generated a p-score of 0.0.  (D) A 

perturbation analysis of the predicted network was performed.  A perturbation response 

(the p-score after a single network perturbation divided by the maximum p-score 

produced by all perturbations of the same type) was calculated for each perturbation.  

The results of a node-based perturbation analysis (where a single node is set to 
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constitutively active and then constitutively inactive) is summarized. The boxes next to 

nodes list the perturbation response when the node was perturbed OFF (-) and ON (+). 

The table on the right summarizes the results of two different perturbation analyses: an 

edge-based perturbation analysis where one regulatory edge is removed and a 

regulatory-based perturbation analysis where each edge is inverted to its opposite 

regulatory type (e.g., activation to inhibition and inhibition to activation).  Perturbations 

that had no effect on the network’s p-score are highlighted in green (0.00), and 

perturbations that had the greatest effect on the network’s p-score are highlighted in red 

(1.00).  
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Tables 
Table 1. The complexity of the network search space grows with the number of 
nodes in the network. 

Nodes in network (n) 2 3 4 5 
 
6 
 

maximum number of 
regulator nodes per node  

(n-1) 
1 2 3 4 

 
5 
 

 
interaction networks possible 

(3n(n-1)) 

 
32 =  

9 

 
36 =  
729 

 
312 = 531,441 

 
320 = 

 3.5 x 109 

 
330 = 

 2.1 x 1014 
 

maximum unique logic 
regulation rule count for a 

single node (r) 

 

3 

 

13 

 

95 

 

1145 

 

20,825 

 
maximum logic network  

count (r n) 

 
32 =  

9 

 
133 =  
2,197 

 
954 =  

1.8 x 1011 

 
1,1455 =  

2.0 x 1015 

 
20,8256 = 
8.2 x 1025 
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Table 2.  All possible logic rules by node in the informed search space of the 
hypothesized PI3K and MAPK signaling network. The 43 rules combine to form an 
informed search space of 41,067 possible networks, which is the product of the 
regulation rule count of each node. All rule identifiers equal to 0 correspond to the case 
where the node is an input node (and no other node in the network regulates its 
activation state).  
 

rule count node rule 
identifier node regulation rule 

1 0 AKT AKTt+1 = AKTt 
2 1 AKT AKTt+1 = not AKTS473t 
3 2 AKT AKTt+1 = AKTS473t 
4 3 AKT AKTt+1 = not AKTT308t 
5 4 AKT AKTt+1 = AKTT308t 
6 5 AKT AKTt+1 = not AKTS473t and not AKTT308t 
7 6 AKT AKTt+1 = not AKTS473t or not AKTT308t 
8 7 AKT AKTt+1 = not AKTS473t and AKTT308t 
9 8 AKT AKTt+1 = not AKTS473t or AKTT308t 

10 9 AKT AKTt+1 = AKTS473t and not AKTT308t 
11 10 AKT AKTt+1 = AKTS47t or not AKTT308t 
12 11 AKT AKTt+1 = AKTS473t and AKTT308t 
13 12 AKT AKTt+1 = AKTS473t or AKTT308t 
14 0 AKTS473 AKTS473t+1 = AKTS473t 
15 1 AKTS473 AKTS473t+1 = not PI3Kt 
16 2 AKTS473 AKTS473t+1 = PI3Kt 
17 0 AKTT308 AKTT308t+1 = AKTT308t 
18 1 AKTT308 AKTT308t+1 = not PIP3t 
19 2 AKTT308 AKTT308t+1 = PIP3t 
20 0 EGFR EGFRt+1 = EGFRt 
21 0 ERK ERKt+1 = ERKt 
22 1 ERK ERKt+1 = not MEKt 
23 2 ERK ERKt+1 = MEKt 
24 0 MEK MEKt+1 = MEKt 
25 1 MEK MEKt+1 = not EGFRt 
26 2 MEK MEKt+1 = EGFRt 
27 0 PI3K PI3Kt+1 = PI3Kt 
28 1 PI3K PI3Kt+1 = not EGFRt 
29 2 PI3K PI3K = EGFRt 
30 0 PIP3 PIP3t+1 = PIP3t 
31 1 PIP3 PIP3t+1 = not PI3Kt 
32 2 PIP3 PIP3t+1 = PI3Kt 
33 3 PIP3 PIP3t+1 = not PTENt 
34 4 PIP3 PIP3t+1 = PTENt 
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rule count node rule 
identifier node regulation rule 

35 5 PIP3 PIP3t+1 = not PI3Kt and not PTENt 
36 6 PIP3 PIP3t+1 = not PI3Kt or not PTENt 
37 7 PIP3 PIP3t+1 = not PI3Kt and PTENt 
38 8 PIP3 PIP3t+1 = not PI3Kt or PTENt 
39 9 PIP3 PIP3t+1 = PI3Kt and not PTENt 
40 10 PIP3 PIP3t+1 = PI3Kt or not PTENt 
41 11 PIP3 PIP3t+1 = PI3Kt and PTENt 
42 12 PIP3 PIP3t+1 = PI3Kt or PTENt 
43 0 PTEN PTENt+1 = PTENt 
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Table 3. Table of key interactions in the PI3K and MAPK signaling pathways.  The 
(+) and (-) symbols indicate activation and inhibition, respectively, of a target molecule 

by a regulator molecule. Source references are available in the Appendix. 

 
Regulator Interaction Target Source(s) 
EGFR (+) recruits and phosphorylates GAB1, which 

phosphorylates PI3K via p85 

PI3K [1-4] [2, 5] 

EGFR (+) direct binding to Grb2/SOS, which catalyzes 

exchange of GDP for GTP on RAS 

RAS-GTP [6] [7, 8] 

PTEN (-) dephosphorylation PIP3 [9] 

RAS-GTP (+) physical association with PI3K PI3K [10-12] 

RAS-GTP (+) membrane recruitment and phosphorylation RAF [12] 

PI3K (+) induces phosphorylation PIP3 [10, 13, 14] 

PI3K (+) via ribosomes mTORc2 [9, 15-17] 

PIP3 (+) phosphorylation AKT-T308 [9, 10, 13, 14] 

mTORc2 (+) phosphorylation AKT-S473 [9, 15, 16, 18] 

RAF (+) phosphorylation MEK [12] 

MEK (+) phosphorylation Erk1/2 [12] 

AKT-T308 (+) activation of AKT by phosphorylation on 

Thr308  

AKT [9, 19-21] 

AKT-S473 (+) activation of AKT by phosphorylation on 

Ser473 

AKT [9, 19-21] 

AKT (-) serine phosphorylation on RAF-1, 14-3-3 

binding 

RAF [22, 23] 

AKT (-) phosphorylation (Thr1462 & Ser939) TSC12 [9, 16, 17, 24, 

25] 

AKT (-) via phosphorylation of BAD Apoptosis [26] 

AKT (+) induce expression Cyclin D1, Cyclin D3, and 

CDK6, which promote proliferation 

Proliferation [27] 

AKT (+) induces expression GLUT, HK, and PFK2, 

which catalyzes the first committed step of 

glycolysis 

Metabolism [11, 28] 

Erk1/2 (-) phosphorylation induces mobility shift RAF [29, 30] 
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Regulator Interaction Target Source(s) 
Erk1/2 (-) phosphorylation (Thr1462) TSC12 [17, 31, 32] 

Erk1/2 (+) stabilization of Cyclin D1 Proliferation [33] 

TSC1/2 (-) inverse inhibitor (Ser2448) mTORc1 [9, 16, 17, 28, 

34] 

mTORc1 

S6K1 

 

 

S6K1 

(+) phosphorylation (Thr389, Ser371) 

(-) via inhibiting phosphorylation (Ser636/639) of 

IRS1 which is physically associated with activation 

of PI3K 

(-) via inhibiting phosphorylation (Ser636/639) of 

IRS1 which activates GRB2/SOS, which catalyzes 

the GDP to GTP reaction on RAS 

S6K1 

PI3K 

 

 

RAS-GTP 

[35] 

[9, 11, 16, 17, 

36] [16] 

 

[9, 11, 16, 17, 

36] [6, 7, 37, 

38] [7, 8] 
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Table 4. Logic function justifications for the hypothesized normal logic network of 
the PI3K and MAPK pathways in MCF10A cells.  Source references are available in 

the Appendix. 
Logic Rule Rule Justification Source(s) 

PTENt+1 =  PTENt PTEN is an input to the model.  Phosphorylated PTEN is always 
present under the conditions tested in MCF10A cells 

[39] 

EGFRt+1 = EGFRt EGF is an input to the model, which stimulated its receptor, EGFR.  
The receptor is assumed to be activated only when EGF is added to 
MCF10A cells.   

[40] 

AKTt+1 = AKT-
T308t OR AKT-
S473t  

While AKT requires phosphorylation at both AKT-T308 and AKT-S473 
for full activation, we assume that partial activation is possible when 
only one is present.  In support of this is data indicating that cells 
expressing PTEN were still able to activate AKT. 

[20] 

AKT-S473t+1 = 
mTORC2t 

There is evidence that mTORc2 is essential for full AKT activation (by 
directly phosphorylating AKT, likely due to PDK2 activity).   We 
assume PDK2 is present in the system but do not include it in the 
model for simplicity. 

[9, 19] 

AKT-T308t+1 = 
PIP3t 

PIP3 recruits AKT to the cell membrane where AKT is activated by 
PDK1.  We assume PDK1 is present in the system but do not include it 
in the model for simplicity. 

[9, 20, 21] 

RAFt+1 = RAS-
GTPt AND NOT 
AKTt AND NOT 
Erk1/2RKt 

RAS-GTP directly activates RAF, and RAF must be phosphorylated 
and dephosphorylated on specific sites to remain active.  Regardless 
of the activation state of RAF, AKT appears able to phosphorylate 
RAF, allowing the small molecule 14-3-3 to bind and reduce activation 
levels. Therefore, the rule is written as RAS-GTP ‘and not AKT’.  In 
addition, Erk1/2 is able to phosphorylate RAF on specific sites that 
induce a mobility shift in RAF, therefore reducing activation levels.  
The interaction between RAF and Erk1/2 appears independent of AKT, 
therefore the rule is written with 'and not Erk1/2'. 

[22, 23] 
[12] [29, 
30] 

Erk1/2t+1 = MEKt ERK1/2 is directly activated by MEK in the MAPK pathway [41] 

MEKt+1 = RAFt RAF is upstream activator of MEK.  The MEK inhibitor, PD0325901, is 
assumed to override activation of MEK by RAF phosphorylation in all 
conditions tested. The inhibitor is not modeled as a separate node in 
the network. 

[41, 42]  
[43] 

mTORC1t+1 =  
S6K1t OR NOT 
TSC12t 

S6K1 has a positive feedback, activating mTORc1 via h6a and h6c 
short isoforms.  TSC1 and TSC2 form a heterodimer that inhibits the 
activity of Rheb.  Rheb is a small GTPase required for activation of 
mTORc1.  Thus, in the model we assume that mTORc1 is activated by 
S6K1 positive feedback or inactivated by TSC1/2 activity. 

[44] [9] 
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Logic Rule Rule Justification Source(s) 

mTORc2t+1 =  
PI3Kt 

Evidence strongly suggests that PI3K is both necessary and sufficient 
for mTORc2 activation to occur via mTORc2 ribosomal binding. We 
assume that the ribosome concentration is above the regulatory 
threshold in the cells and therefore consider mTORc2 activation 
regulated by only PI3K. 

[45, 46] 

PI3Kt+1 =  EGFRt 
OR RAS-GTPt OR 
NOT S6K1t 

This is a particularly complicated regulation.  We simplify the network 
by using EGFR as a direct activator of PI3K instead of detailing the 
chain of activation from EGFR to GAB1, which normally activates PI3K 
by recruiting the p85 subunit.  Erk1/2 negatively regulates PI3K by 
phosphorylating GAB1 and rendering it unable to recruit p85, but we 
assume this negative feedback is not activated within an hour and 
therefore do not include the feedback in the regulation of PI3K.  In 
addition, S6K1 inhibits IRS1, which activates PI3K. Because insulin, 
an activator of IRS1, is not added in our experiments, we assume that 
IRS1 is only regulated by S6K1. Therefore, we simplify the interaction 
by writing S6K1 as an inhibitor of PI3K, independent of EGFR.  Finally, 
RAS-GTP can also activate PI3K and its activation is not affected by 
EGFR or S6K1 levels. Finally, we assume the PI3K inhibitor, 
LY294002, overrides all activators of PI3K and results in complete 
inhibition of PI3K.  The inhibitor is not modeled as a separate node in 
the network. 

[1, 2, 5, 
10, 16, 36, 
47-52] [53] 

PIP3t+1 =  PI3Kt 
AND NOT PTENt 

PI3K activates PIP3 at the cell membrane and PTEN 
dephosphorylates PIP3.  We assume the inhibitor is dominant. 

[9] 

RAS-GTPt+1 =  
EGFRt OR NOT 
S6K1t 

EGFR stimulates RAS-GTP via a GRB2/SOS complex, assumed to be 
present in all cells.  Furthermore, S6K1 inhibits IRS1, which activates 
RAS-GTP.  For simplicity, we leave IRS1 out of our network, as it is 
assumed to be only regulated by S6K1.   

[1, 12] [36] 

S6K1t+1 =  
mTORc1t 

Phosphorylation of S6K1 is induced by mTORc1. [54] 

TSC1/2t+1 =  NOT 
AKTt AND NOT 
Erk1/2t 

AKT inhibits TSC1/2 and Erk1/2 inhibits TSC1/2 through the activation 
of RSK1.  Phosphorylation (Ser1798) of RSK1 inhibits TCS1/2 and 
results in increased mTORc1 expression.  We assume that TSC1/2 is 
only ON when its activator is present and both its inhibitors are absent. 
While there are a number of negative regulators of the TSC1/2 dimer, 
our model only considers Erk1/2 inhibition and AKT inhibition of 
TSC1/2. 

[32] 
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Table 5.  Perturbation tests used to search for three-node networks. Search results 
are summarized for three network searches: [9, 1, 0], [1, 3, 11], and [3, 0, 10]. 
Networks are encoded as [Ai, Bi, Ci] where i indicates the regulation rule present in the 
network for each node (see Supplemental Table 2 for the list of regulation rules by 
node). 

  correct network found? / unique solution found? 

Test  Set Perturbation tests in set [9,1,0] [1,3,11] [3,0,10] 
     
I 1. B OFF 

 
Yes / No Yes / No Yes / No 

II 1. A OFF and B ON 
2. A OFF and C ON 
3. A ON and B OFF 
4. A ON and C OFF 

 

Yes / No Yes / No Yes / No 

III 1. A ON 
2. A OFF 
3. B ON 
4. B OFF 
5. C ON 
6. C OFF 

Yes / Yes Yes / Yes Yes / Yes 
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Table 6.  Comparison of the time to find the correct network in three different three-
node searches. Each search was run three times via genetic algorithm (GA). In addition, 

exhaustive evaluation of all 2,197 networks in the search space was performed three 

times.   All simulations were distributed across 5 Nehalem core processors.  GA tests were 

initialized with population size of 100 and ran for 20 generations. Values listed are the mean 

± the standard deviation of 3 replicates of each network search.  All searches used 

perturbation test set III, which is summarized in Table 5. 
 

 
 

Search for 
[9, 1, 0] 

Search for [1, 
3, 11] 

Search for [3, 
0, 10] 

 generation target network  
found in GA search 

(mean ± std) 
 

3.0 ± 2.0 4.3 ± 2.5 5.7 ± 4.0 

elapsed minutes to run 20 
generations in the GA search 

(mean ± std)  
40.0 ± 12.5 36.3 ± 10.0 41.7 ± 9.2 

    
elapsed minutes to run 

exhaustive search  
(mean ± std) 

98.0 ± 26.9  
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