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Abstract9

Model-free learning creates stimulus-response associations. But what constitutes a stimu-10

lus? Are there limits to types of stimuli a model-free or habitual system can operate over? Most11

experiments on reward learning in humans and animals have used discrete sensory stimuli, but12

there is no algorithmic reason that model-free learning should be restricted to external stimuli,13

and recent theories have suggested that model-free processes may operate over highly abstract14

concepts and goals. Our study aimed to determine whether model-free learning processes can15

operate over environmental states defined by information held in working memory. Specifi-16

cally, we tested whether or not humans can learn explicit temporal patterns of individually17

uninformative cues in a model-free manner. We compared the data from human participants18

in a reward learning paradigm using (1) a simultaneous symbol presentation condition or (2)19

a sequential symbol presentation condition, wherein the same visual stimuli were presented si-20

multaneously or as a temporal sequence that required working memory. We found a significant21

effect of reward on human behavior in the sequential presentation condition, indicating that22

model-free learning can operate on information stored in working memory. Further analyses,23

however, revealed that the behavior of the participants contradicts the basic assumptions of24

our hypotheses, and it is possible that the observed effect of reward was generated by model-25

based rather than model-free learning. Thus it is not possible to draw any conclusions from26
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out study regarding model-free learning of temporal sequences held in working memory. We27

conclude instead that careful thought should be given about how to best explain two-stage28

tasks to participants.29

1 Introduction30

Reinforcement learning theory and the computational algorithms associated with it have been ex-31

tremely influential in the behavioral, biological, and computer sciences. Reinforcement learning32

theory describes how an agent learns by interacting with its environment [1]. In a typical reinforce-33

ment learning paradigm, the agent selects an action and the environment responds by presenting34

rewards and taking the agent to the next situation, or state. A reinforcement learning algorithm35

determines how the agent changes its action selection strategy as a result of experience, with the36

goal of maximizing future rewards. Depending on how algorithms accomplish this goal, they are37

classified as model-free or model-based [1]. Model-based algorithms acquire beliefs about how the38

environment generates outcomes in response to their actions and select actions according to their39

predicted consequences. By contrast, model-free algorithms generate a propensity to perform, in40

each state of the world, actions that were more rewarding in previous visits to that environmen-41

tal state. Model-free reinforcement learning algorithms are of considerable interest to behavioral42

and biological scientists, in part because they offer a compelling account of the phasic activity43

of dopamine neurons, but also more generally can explain many observed patterns of behavior in44

human and non-human animals [2, 3, 4, 5, 6, 7].45

A key concept in reinforcement learning theory is the environmental state. Typically, empiri-46

cal tests of reinforcement learning algorithms use discrete sensory stimuli to define environmental47

states. However, there is no theoretical or algorithmic constraint to define the states of the en-48

vironment exclusively by sensory stimuli. State definitions may also include the agent’s internal49

stimuli, such as its memory of past events, thirst or hunger level, or even subjective characteristics50

such as happiness or sadness [1]. Thus, model-free reinforcement learning might operate over a51

wide variety of both external and internal factors.52

Indeed, recent work suggests that model-free learning algorithms can support a large set of53

cognitive processes and behaviors beyond the formation of habitual response associations with54

discrete sensory stimuli [8, 9, 10]. For instance, it has been proposed that the model-free system55

can perform the action of selecting a goal for goal-directed planning [11] or conversely that a model-56

based decision can trigger a habitual action sequence [12, 13, 14, 15]. Model-free algorithms have57

also been suggested to gate working memory [16]. However, many of these important theoretical58
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proposals about model-free algorithms have not been directly tested empirically.59

Here, we determine the ability of model-free reinforcement learning algorithms to operate over60

states defined by information held in working memory, an internal state. Specifically, we use61

an experimental paradigm and computational modeling framework designed to dissociate model-62

free from model-based influences on behavior [17] to test if temporally separated sequences of63

individually uninformative cues can drive model-free learning and behavior. If an agent can store64

the elements of a temporal sequence in its memory to form a unique and predictive cue and use the65

memorized information as the state definition, then, theoretically, it can use model-free algorithms66

to learn the associations between a specific sequence of individually uninformative cues and action67

outcomes [18].68

Our approach has several important facets. First, we use an experimental paradigm that69

allows us to determine not only if our participants learn from information in working memory,70

but also whether that learning is supported by model-based or model-free algorithms. Second, the71

cues in our temporal sequences are individually uninformative; in other words, any single cue in72

isolation provides no information about which response is correct. It is well-known that model-73

free algorithms can shift response associations to the earliest occurring predictor of the correct74

response in a temporal sequence of informative cues and can integrate predictive information across75

individual cues. Neither of these mechanisms is possible in our paradigm because the individual76

cues themselves contain no information about the previous or subsequent cues or which response77

is best.78

Temporal pattern learning is a fundamental and early developing human cognitive ability. It79

allows people to form predictions about what will happen from what has happened and select80

their actions accordingly. Humans can learn patterns both explicitly and implicitly in the absence81

of specific instructions or conscious awareness [19]. Moreover, they can do so as early as two82

months of age [20]. In fact, people identify patterns even when, in reality, no pattern exists [21].83

These empirical results together with the theoretical potential for model-free learning to operate84

over internal stimuli suggest that temporal pattern learning could be supported by model-free85

processes. However, to date, studies of reinforcement learning and decision making have focused86

primarily on tasks in which the relevant stimuli are presented simultaneously just prior to or at87

the time of decision-making, or on implicit motor sequence learning, wherein participants learn88

a sequence of movements automatically, without full awareness (for instance, 22, 23, 24, 25, 26).89

Thus, the degree to which model-free processes do in fact operate over temporal sequences or any90

other information stored in working memory has not yet been directly tested and compared with91

model-free learning from traditionally employed external, static environmental cues.92
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Figure 1: Timelines of events in a trial. The two symbols that represent the initial state are
presented simultaneously in the simultaneous condition (left) and separately as a temporal sequence
in the sequential condition (right). In this example, AB is the initial state. The simultaneous
condition participant goes to the pink final state and receives a reward (signaled by the green $
symbol). The sequential condition participant goes to the blue final state and does not receive a
reward (signaled by the black X symbol).

Here, we directly test whether model-free processes can access and learn from information93

stored in working memory. We adapted a decision-making paradigm originally developed by Daw94

et al. [17] that can behaviorally dissociate the influence of model-free and model-based learning95

on choice. The task was performed by two groups of human participants either in a simultaneous96

condition (i.e. static and external), wherein visual stimuli were presented simultaneously, or in a97

sequential condition, wherein the same visual stimuli were presented as a temporal sequence that98

required working memory processing.99

2 Results100

2.1 Determining model-free and model-based influences on choice be-101

havior102

Forty-one young adult human participants completed a behavioral task adapted from Daw et al.103

[17]. In our task, participants began each trial in a randomly selected initial state represented by104

one of four possible sequences of two symbols: AA, AB, BA, or BB (Figure 1). At this initial state,105

participants chose one of two possible actions: going left or going right. They were then taken to106

one of two possible final states, the blue state or the pink state. If they had gone left, they were107

taken with 0.8 probability to the final state given by the rule AA→ blue, AB→ pink, BA→ pink,108
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AA AB

BA BB

Figure 2: Common state transitions in the behavioral task’s model. These graphics
highlight the uninformative nature of each single element (i.e. A or B symbols) in the simultaneous
or sequential cues. Knowledge of only the first or final element of the combined cue provides no
indication of how likely the right and left responses are to lead to a specific state.

BB → blue or with 0.2 probability to the other final state. If they had gone right, they were taken109

with 0.8 probability to the final state not given by the previous rule or with 0.2 probability to the110

other final state. The common (most probable) transitions between the initial and final states are111

shown in Figure 2. To predict the final state accurately, participants had to know both elements112

of the sequence. If they knew only one, the final state might have been either blue or pink with 0.5113

probability and they would not be able to perform above chance. This feature is key and separates114

our work from others in which each element of a sequence is predictive on its own.115

One of the final states delivered a monetary reward with 0.7 probability and the other with116

0.3 probability. The optimal strategy was to always select the action that led with 0.8 probability117

to the final state with 0.7 reward probability. Initially, participants were instructed to learn the118

common transitions between the initial and final states in the absence of rewards. They were told119

that each final state might be rewarded with different probabilities, but not what the probabilities120

were nor that they were fixed. The task comprised 250 trials and participants received the total121

reward they obtained at the end.122

Twenty-one participants were randomly allocated to a simultaneous condition and twenty to a123

sequential condition (Figure 1). In the simultaneous condition, both symbols that represented the124

initial state were displayed simultaneously on the screen. In the sequential condition, each symbol125

was displayed consecutively by itself, as a temporal sequence. The specific objective of this study126
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was to determine if participants in the sequential condition could use states represented in working127

memory to learn the task in a model-free way or if their learning was necessarily model-based. The128

simultaneous condition is already known to support model-free learning as well as model-based129

learning [17, 27, 28, 29, 30]. We thus sought to determine the difference between the standard130

simultaneous and working-memory dependent sequential conditions.131

The two-stage task we used can differentiate between model-free and model-based learning132

because algorithms that implement them make different predictions about how a reward received133

in a trial impacts a participant’s choices in subsequent trials. The SARSA (λ = 1) model-free134

algorithm learns this task by strengthening or weakening associations between initial states and135

initial-state actions depending on whether the action is followed by a reward or not [1]. Therefore,136

it simply predicts that an initial-state action that resulted in a reward is more likely to be repeated137

in the next trial with the same initial state [17]. On the other hand, the model-based algorithm138

considered in this study uses an internal model of the task’s structure to determine the initial-139

state choice that will most likely result in a reward [17]. To this end, it considers which final state,140

pink or blue, was most frequently rewarded in recent trials and selects the initial-state action, left141

or right, that will most likely lead there. Therefore, the model-free algorithm predicts that the142

participant will choose the mostly frequently rewarded action in past trials with the same initial143

state, while the model-based algorithm predicts that the participant will choose the action with the144

highest probability of leading to the mostly frequently rewarded final state in past trials, regardless145

of their initial states.146

The model-free and model-based algorithms thus generate different predictions about the stay147

probability, which is the probability that in two consecutive trials the participant will stay with148

their first choice and take the same initial-state action in the second trial. For instance, if the149

participant chose left in two consecutive trials, this was considered a stay. The model-free and150

model-based predictions are different if the letters presented in one trial are the same or different151

than the letters presented in the other trial, so we ran four separate analyses on the data from each152

condition, dividing consecutive trial pairs into four subsets: “same letters” if both letters presented153

in the first trial are the same as the letters presented in the second trial (for example, AB for the154

first trial and AB again for the second trial), “same first letter” if the first letters presented in each155

trial are the same but the second letters are different (for example, AB and AA), “same second156

letter” if the second letters are the same but the first letters are different (for example, AB and157

BB), and “different letters” if both the first letters and the second letters are different (for example,158

AB and BA).159

In all cases, we analyzed the data using Bayesian hierarchical logistic regression analyses. In160
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Figure 3: Stay probabilities of simulated agents and human participants for consecutive
trial pairs in the “same letters” subset. A- Stay probabilities of purely model-free simulated
agents. B- Stay probabilities of purely model-based simulated agents. C- Stay probabilities of
human participants in the simultaneous condition. D- Stay probabilities of human participants in
the sequential condition. The error bars correspond to the 95% credible interval.
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Figure 4: Stay probabilities of simulated agents and human participants for consecutive
trial pairs in the “same first letter” subset. A- Stay probabilities of purely model-free simu-
lated agents. B- Stay probabilities of purely model-based simulated agents. C- Stay probabilities
of human participants in the simultaneous condition. D- Stay probabilities of human participants
in the sequential condition. The error bars correspond to the 95% credible interval.
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Figure 5: Stay probabilities of simulated agents and human participants for consecutive
trial pairs in the “same second letter” subset. A- Stay probabilities of purely model-
free simulated agents. B- Stay probabilities of purely model-based simulated agents. C- Stay
probabilities of human participants in the simultaneous condition. D- Stay probabilities of human
participants in the sequential condition. The error bars correspond to the 95% credible interval.
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Figure 6: Stay probabilities of simulated agents and human participants for consecutive
trial pairs in the “same letters” subset. A- Stay probabilities of purely model-free simulated
agents. B- Stay probabilities of purely model-based simulated agents. C- Stay probabilities of
human participants in the simultaneous condition. D- Stay probabilities of human participants in
the sequential condition. The error bars correspond to the 95% credible interval.
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Figure 7: Logistic regression coefficients of simulated agents and human participants
for consecutive trial pairs in the “same letters” subset. A- Logistic regression coefficients of
purely model-free and purely model-based simulated agents. B- Difference between the coefficients
of purely model-based and purely model-free simulated agents. C- Logistic regression coefficients
of human participants in the simultaneous and sequential conditions. D- Difference between the
coefficients of human participants in the simultaneous and sequential conditions. The error bars
correspond to the 95% credible interval.
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Figure 8: Logistic regression coefficients of simulated agents and human participants for
consecutive trial pairs in the “same first letter” subset. A- Logistic regression coefficients of
purely model-free and purely model-based simulated agents. B- Difference between the coefficients
of purely model-based and purely model-free simulated agents. C- Logistic regression coefficients
of human participants in the simultaneous and sequential conditions. D- Difference between the
coefficients of human participants in the simultaneous and sequential conditions. The error bars
correspond to the 95% credible interval.
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Figure 9: Logistic regression coefficients of simulated agents and human participants
for consecutive trial pairs in the “same second letter” subset. A- Logistic regression coef-
ficients of purely model-free and purely model-based simulated agents. B- Difference between the
coefficients of purely model-based and purely model-free simulated agents. C- Logistic regression
coefficients of human participants in the simultaneous and sequential conditions. D- Difference
between the coefficients of human participants in the simultaneous and sequential conditions. The
error bars correspond to the 95% credible interval.
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Figure 10: Logistic regression coefficients of simulated agents and human participants
for consecutive trial pairs in the “different letters” subset. A- Logistic regression coeffi-
cients of purely model-free and purely model-based simulated agents. B- Difference between the
coefficients of purely model-based and purely model-free simulated agents. C- Logistic regression
coefficients of human participants in the simultaneous and sequential conditions. D- Difference
between the coefficients of human participants in the simultaneous and sequential conditions. The
error bars correspond to the 95% credible interval.
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addition to examining the stay choice probabilities, we directly examined the logistic regression161

coefficients for each condition and trial pair subset. Because in our task the mean reward probability162

associated with one final state is higher than the mean reward probability associated with the163

other final state, we did not use the logistic regression model proposed by Daw et al. [17]—as164

several studies demonstrate, if the reward probabilities are not the same, a reward by transition165

interaction does not uniquely characterizes model-based agents, but also appears in purely model-166

free results [31, 32, 33, 34]. We thus used instead an extended logistic regression model we had167

previously proposed that corrects for different reward probabilities by adding two control predictors:168

a binary variable that indicates whether or not the chosen initial-state action in the first trial169

leads commonly to the final state with the highest reward probability, and a binary variable that170

indicates whether or not the agent visited in the first trial the final state with the highest reward171

probability [34]. For comparison with the behavior of human participants, we fitted model-free172

and model-based algorithms to the experimental data, used the obtained parameter estimates to173

simulate purely model-free and purely model-based agents performing our task, and analyzed the174

resulting data using the same logistic regression procedure. The stay probabilities obtained for175

both simulated agents and human participants are shown in Figures 3, 4, 5, and 6, and the logistic176

regression coefficients obtained for both simulated agents and human participants are shown in177

Figures 7, 8, 9, and 10.178

As can be seen in Figure 7A, if the letters are the same, for example AB for both trials, the179

model-free prediction is that the stay probability will increase if the first trial was rewarded and180

decrease if it was not; i.e., model-free learning creates a positive reward effect. The model-based181

prediction, on the other hand, is that the stay probability will increase if either the first trial was182

rewarded and the transition was common or the first trial was unrewarded and the transition was183

rare, and decrease otherwise; i.e. model-based learning creates a positive reward by transition184

interaction [17]. If the consecutive trials have different initial-state letters, the predictions will185

be different depending on the condition (simultaneous or sequential) and the assumed hypothesis186

regarding model-free learning of temporal sequences. In the simultaneous condition, the model-187

free prediction is that the stay probability will not change, because learning does not generalize188

among different initial states (Figures 8A, 9A, and 10A). In the sequential condition, if we assume189

that model-free learning can learn from temporal sequences, then the prediction is that the stay190

probability will also not change (Figures 8A, 9A, and 10A). If, however, we assume that model-free191

learning cannot learn from temporal sequences, then the model-free system may associate the first192

letter or the second letter to previously received rewards. Assuming, for example, that the second193

letter is associated with rewards, if the two consecutive trials have the same second letter, the194

15

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 26, 2018. ; https://doi.org/10.1101/107698doi: bioRxiv preprint 

https://doi.org/10.1101/107698
http://creativecommons.org/licenses/by-nd/4.0/


stay probability should increase if the previous trial was rewarded and decrease if the previous195

trial was unrewarded; if the two consecutive trials have different second letters, however, the stay196

probability should not change. The simulated results for the latter hypothesis are not shown; in197

the Figures above, we assumed that model-free learning can learn from temporal sequences. For198

model-based learning, the prediction is that the reward by transition interaction will the positive199

if both letters are the same or both letters are different for the two trials (for example, the first200

trial’s letters are AB and the second trial’s letters are either AB or BA—see Figures 7A and 10A),201

because in this case the common and rare transitions are the same for both trials. If one letter202

is the same but the other letter is different (for example, the first trial’s letters are AB and the203

second trial’s letters are AA or BB—see Figures 8A and 9A), the model-based prediction is that204

the reward by transition interaction will be negative, because in this case the common and rare205

transitions are switched between the trials, so if the left action commonly leads to pink state in206

the first trial, for instance, it commonly leads to the blue state in the second trial.207

For our sample of the human participants and trial pairs in the “same letters” subset, behavior208

was influenced by both reward and reward by transition interaction regardless of whether the states209

were defined by external sensory cues or internal working-memory representations (Figures 7C). We210

thus found no evidence that sequentially presented, working-memory-dependent state cues shift the211

balance of model-based and model-free effects on choice behavior compared to traditional, static,212

external cues. However, the results obtained for other trial pair subsets show unpredicted effects,213

namely: (1) there is a negative effect of reward for the sequential condition in the “same second214

letter” subset (Figure 9C); the estimated value of this coefficient is −0.20 (95% CI [−0.39,−0.01]);215

and (2) there is a positive effect of reward for the simultaneous condition in the “different letters”216

subset (Figure 10C); the estimated value of this coefficient is 0.23 (95% CI [0.02, 0.43]). Because of217

these unexpected results, we decided to replicate our experiment using a task that had geometric218

figures rather than letters to identify the different initial states (see Appendix on page 29). 32219

human participants performed that task in both the simultaneous and sequential conditions. We220

again observed in the replicated data a negative reward effect for the sequential condition in the221

“same first letter” and “same second letter” subsets, as well as a positive reward effect for both the222

sequential and the simultaneous condition in the “different letters” subset.223

3 Discussion224

In this study, we empirically tested the hypothesis that human participants can develop model-free225

associations between temporal sequences of stimuli stored in working memory and a motor response.226

16

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 26, 2018. ; https://doi.org/10.1101/107698doi: bioRxiv preprint 

https://doi.org/10.1101/107698
http://creativecommons.org/licenses/by-nd/4.0/


To that end, we developed a behavioral task based on a previous decision-making paradigm that227

can determine the model-free and model-based influences on choice [17]. The participants in228

the simultaneous condition performed this task with the two visual symbols presented together229

simultaneously and those in the sequential condition performed it with the same two visual symbols230

presented as a temporal sequence that had to be held in working memory. A key element of our231

experimental paradigm is that the individual symbols within each temporal sequence convey no232

information about the best response in isolation. This fact rules out the possibility that the233

sequential condition’s model-free effect is due to an association between a single symbol in the234

sequence and a response rather than one between the entire sequence and a response. Each sequence235

element is completely uninformative by itself: it cannot predict reward delivery above chance.236

Therefore, the task cannot be learned by simple stimulus-response associations with individual237

symbols in the temporal sequence.238

At first glance, our results support the hypothesis that model-free learning can operate on239

stimuli stored in working memory. Two findings, however, cannot be explained by the assumed240

model of hybrid reinforcement learning, adapted to the two-stage task by Daw et al. [17]. Since241

model-free learning is assumed to be unable to generalize between distinct states (see Doll et al.242

35, Kool et al. 36 for example studies that critically depend on this assumption) and model-based243

learning is assumed to generate only a reward by transition interaction, there should not be a244

reward effect for consecutive trials with different initial-state symbols. Yet, we observed a positive245

reward effect for trial pairs in the “different letters” subset both in the data presented here and in246

the follow-up replication study using a different initial-state representation. A possible explanation247

for this finding is that, after all, model-free learning is able to generalize between different state248

representations. It is possible that participants reduced the two-letter sequence to an abstract249

representation such as “the two letters were the same” (either AA or BB) or “the two letters were250

different” (either AB or BA). This abstraction is sufficient to determine the common and rare251

transitions, and we know from direct reports that at least some participants used it to memorize252

the transition rules. If model-free learning can operate on stimuli stored in working memory,253

it is also conceivable it can also operate on abstract representations stored in working memory.254

However, the use of abstract state representations cannot explain our second unpredicted finding:255

a negative effect of reward observed for the sequential condition in the “same second letter” subset256

and, in the replication study, also in the “same first letter” subset. Under the assumed model of257

hybrid learning, the reward effect can never be negative. The TD(λ = 1) algorithm used here to258

model model-free learning in the brain foresees no circumstances under which rewarding one action259

would decrease the probability of choosing that action again in the future.260
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The unpredicted reward effects we observed in some analyses raise a question about the pre-261

dicted reward effect observed in other analyses: Does a reward effect truly indicate model-free262

learning in our data set? Is it not possible that at least some of these effects are generated by263

model-based learning instead? It is commonly assumed that model-based learning does not gen-264

erate a reward effect, because it is assumed that participants make model-based decisions using265

a specific model of the task structure. It is possible, however, that the model they are using is266

different from the assumed one and can generate positive as well as negative reward effects. For267

example, a participant might think that their initial-state choices influence the reward probabil-268

ity, even if they are told this is not the case—they might have misunderstood or forgotten the269

instructions or thought the instructions were misleading.270

Given that at least some of the observed reward effects may be generated by model-based rather271

than model-free learning, we cannot conclude that our data presents evidence for or against the272

hypothesis that model-free learning can operate over information held in working memory. In order273

to study this or other hypotheses involving model-free learning, it is crucial that participants are274

using a model of the task structure for model-based learning that does not generate reward effects.275

Future research may thus concentrate on developing more detailed and precise instructions, as well276

as tutorials and tests, to make sure that participants really understood the task and what they277

have to do. It is also essential that the data are checked for violations of the assumed model using278

multiple analyses.279

4 Methods280

4.1 Participants281

Forty-one healthy young adults participated in the experiment, 21 (13 female) randomly assigned282

by a random number generator to the simultaneous condition and 20 (13 female) to the sequential283

condition. The inclusion criterion was speaking English and no participants were excluded from284

the analysis. The sample size was chosen by the precision for research planning method [37, 38], by285

comparing the estimated differences between participant groups in the logistic regression analysis286

with those between model-free and model-based simulated agents.287

The experiment was conducted in accordance with the Zurich Cantonal Ethics Commission’s288

norms for conducting research with human participants, and all participants gave written informed289

consent.290
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4.2 Task291

The task’s state transition model defines four possible initial states, which were randomly selected292

with uniform distribution in each trial and represented by four different stimuli, each composed of293

two symbols: AA, AB, BA, or BB. At the initial state, two actions were available to the participant:294

pressing the left or the right arrow keys. By pressing one of the keys, the participant was taken295

to a final state, which might be either the blue state or the pink state. If the left arrow key was296

pressed, the participant was taken to the final state given by the rule AA → blue, AB → pink,297

BA → pink, BB → blue with 0.8 probability or to the other state with 0.2 probability; if the right298

arrow key was pressed, the participant was taken to the final state not given by the previous rule299

with 0.8 probability or to the other state with 0.2 probability. There was no choice of action at the300

final state, but participants were required to make a button press to potentially earn the reward.301

Each final state was rewarded according to an associated probability, which was 0.7 for one state302

and 0.3 for the other. The highest reward probability was associated with the blue state for half303

of the participants and to the pink state for the other half. Participants were told that each final304

state might be rewarded with different probabilities, but not what the probabilities were nor that305

they were fixed.306

In contrast with our task design, in which the final states’ reward probabilities were fixed, in307

the original task design proposed by Daw et al. [17] the reward probabilities slowly drifted over308

time, because those authors were interested in the trade-off between model-based and model-free309

mechanisms, which is assumed to happen on the basis of their relative uncertainties. In this study310

we were interested instead in testing if model-free learning of temporal patterns is possible and311

keeping the task environment stable helps making the model-free associations stronger and more312

likely to influence choice [39, 40].313

Participants were initially instructed to learn the common transitions between the initial and314

the final states in the absence of reward. Participants then performed the task defined by the model315

above in the simultaneous or sequential condition. Half of the participants were randomly allocated316

to the simultaneous condition and the other half to the sequential condition (Figure 1). In the317

simultaneous condition, both symbols that define the initial state were displayed simultaneously318

on the screen for 3 seconds. In the sequential condition, each symbol is an element of a sequence319

and each element was presented for 1 second, but never conjointly, and with a 1-second delay320

(blank screen) in between. Two triangles pointing left and right then appeared and the participant321

was given 2 seconds to make a decision about whether to press the left or the right arrow keys;322

if they did not press any keys, the word SLOW was displayed for 1 second, and the trial was323
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aborted and omitted from analysis. A blue or pink rectangle appeared immediately afterward,324

indicating the final state. The participant then pressed the up-arrow key and, if the final state was325

rewarded, a green dollar sign appeared on the screen for 2 seconds; otherwise, a black X appeared326

for 2 seconds. The task comprised 250 trials, with a break every 50 trials, and participants received327

the total reward they obtained by the end of the task (0.18 CHF per reward).328

4.3 Model-free algorithm329

The SARSA model-free algorithm with replacing eligibility traces [1, 17] was used to simulate330

model-free learning agents. For each action a and state s, it estimated the value Q(s, a) of per-331

forming that action in that state. The task’s initial states si were AA, AB, BA, and BB, and332

the actions ai available at the initial states were left and right . The final states were pink and333

blue, and the only action af available at those states was up. The initial value of Q(s, a) for every334

state and action was 0.5. In each trial t, the simulated agent at the initial state si chose left as335

its initial-state action with probability pleft and right with probability 1 − pleft , according to the336

following equation:337

pleft =
1

1 + e−β[Q(si,left)−Q(si,right)]
, (1)

where β > 0 is an inverse temperature parameter that determines the algorithm’s propensity to338

choose the option with the highest estimated value. After the final state sf was observed and339

a reward r ∈ {0, 1} was received, state-action values were updated according to the following340

equations:341

Q(si, ai) = (1− α1)Q(si, ai) + α1Q(sf , up) + α1λ[r −Q(sf , up)], (2)

Q(sf , up) = (1− α2)Q(sf , up) + α2r, (3)

where 0 ≤ α1, α2, λ ≤ 1 are parameters: α1 is the initial learning rate, α2 is the final learning rate,342

and λ is the eligibility trace [1, 17].343

In the special case where λ = 1, the update of initial state-action values becomes344

Q(si, ai) = (1− α1)Q(si, ai) + α1r, (4)

that is, the estimated values of choosing left and right in each initial state are updated indepen-345

dently of the final state’s estimated value. Thus, SARSA (λ = 1) ignores the identity of the final346

state when making initial-state decisions, and an initial-state action that resulted in a reward will347

necessarily lead to a higher stay probability when the respective initial state recurs. This is true348
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even if the action will probably lead to the final state with the lowest value.349

4.4 Model-based algorithm350

In simulations of model-based agents [17], values were assigned to initial-state actions and to final351

states. The value V of a final state s ∈ {pink , blue} in the first trial t = 1 was V (s, 1) = 0.5. An352

initial-state choice c ∈ {left , right} in trial t had a value V given by353

V (c, t) = Pr(c→ pink)V (pink , t) + Pr(c→ blue)V (blue, t), (5)

where Pr(c → s) is the probability that choosing c will lead to the final state s, which might be354

0.8 or 0.2 according to the task’s transition model. The value of an initial-state choice can thus be355

understood as the expected value of the final state the agent will go to after making that choice.356

If V (left , t) > V (right , t), the agent was more likely to choose left and vice-versa.357

In each trial t, the agent’s initial state action was left with probability pleft and right with358

probability 1− pleft , given by359

pleft =
1

1 + e−β[V (left,t)−V (right,t)]
, (6)

where β is an inverse temperature parameter. After the agent made its initial-state choice and360

went to a final state s, that final state’s value was updated according to the following equation:361

V (s, t+ 1) = (1− α)V (s, t) + αr(t), (7)

where r(t) ∈ {0, 1} indicates if the agent received a reward and 0 ≤ α ≤ 1 is a learning-rate362

parameter of the model. The value of a final state is thus the moving average of the rewards363

received in that state.364

4.5 Data analysis by logistic regression365

For each human participant or simulated agent, we calculated the stay probability in pairs of366

consecutive trials as a function of reward, transition, initial-state choice and visited final state in367

the first trial [34]. In the second trial of each pair, if the human participant or simulated agent368

chose an action (left or right) that was the same as that chosen in the previous trial, this was369

considered a stay. For each trial pair, the second trial’s choice was coded as the random variable y370

and classified as a stay (y = 1) or not a stay (y = 0). For each condition, trial pairs were divided371
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into four subsets: “same letters” (if the letters presented in the first trial were the same as the372

letters presented in the second trial; for example, AB for the first trial, AB for the second), “same373

first letter” (if the first letter presented in the first trial was the same as the first letter presented374

in the second trial, but the second letter was different; for example, AB for the first trial, AA for375

the second), “same second letter” (if the second letter presented in the first trial was the same as376

the second letter presented in the second trial, but the first letter was different; for example, AB377

for the first trial, BB for the second), and “different letters” (if both letters presented in the first378

trial were different from the letters presented in the second trial; for example, AB for the first trial,379

BA for the second). For each trial pair subset, a separate analysis was performed.380

We then analyzed the resulting data using a hierarchical logistic regression model whose pa-381

rameters were estimated through Bayesian computational methods. The dependent variable was382

pstay, the stay probability for a given trial, and the independent variables were xr, which indicated383

whether a reward was received or not in the previous trial (+1 if the previous trial was rewarded,384

−1 otherwise), xt, which indicated whether the transition in the previous trial was common or385

rare (+1 if it was common, −1 if it was rare), the interaction between the two, xc, which indicated386

whether in the previous trial the participant chose or not the initial-state choice with the highest387

reward probability (+1 if the choice had the highest reward probability, −1 otherwise), and xf ,388

which indicated whether in the pervious trial the participant visited the final state with the highest389

reward probability (+1 if the final state had the highest reward probability, −1 otherwise). Thus,390

for each condition, we determined a intercept βp0 for each participant and five fixed coefficients391

that are shown in the following equation:392

pstay =
1

1 + exp[−(βp0 + βrxr + βtxt + βr×txrxt + βcxc + βfxf )]
. (8)

The distribution of y was Bernoulli(pstay). The distribution of the ~β vectors was N ( ~µc, ~σ2) if the393

participant was in the simultaneous condition and N ( ~µe, ~σ2) if the participant was in the sequen-394

tial condition; in other words, the subset means for each ~β were allowed to vary independently.395

The parameters of the ~β distribution were given vague prior distributions based on preliminary396

analyses—the ~µ vectors’ components were given a N (µ = 0, σ2 = 25) prior, and the ~σ2 vector’s397

components were given a Half-normal(0, 25) prior. Other vague prior distributions for the model398

parameters were tested and the results did not change significantly.399

To obtain parameter estimates from the model’s posterior distribution, we coded the model into400

the Stan modeling language [41, 42] and used the PyStan Python package [43] to obtain 80,000401

samples of the joint posterior distribution from four chains of length 40,000 (warmup 20,000).402
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Convergence of the chains was indicated by R̂ ≈ 1.0 for all parameters.403

4.6 Fitting of the algorithms to experimental data404

For comparison with the participant data, we fitted the SARSA model-free algorithm and the405

model-based algorithm to the experimental data and generated replicated data using the fitted406

parameters. The parameters were obtained by fitting both algorithms to all participants. To that407

end, we used a Bayesian hierarchical model, which allowed us to pool data from all participants to408

improve individual parameter estimates.409

The parameters of the model-based algorithm for the ith participant were αi and βi. They410

were given a Beta(aα, bα) and lnN (µβ , σ
2
β) prior distributions respectively. The hyperparameters411

aα and bα were themselves given a noninformative Half-normal(0, 104) prior and the hyperparam-412

eters µβ and σ2
β were given a noninformative N (0, 104) and Half-normal(0, 104) priors respectively.413

The parameters of the model-free algorithm for the ith participant were αi1, αi2, λi, and βi. They414

were given a Beta(aα1
, bα1

), Beta(aα2
, bα1

), Beta(aλ, bλ) and lnN (µβ , σ
2
β) prior distributions re-415

spectively. The hyperparameters aα1
, aα2

, aλ, bα1
, bα2

, and bλ were themselves given a noninfor-416

mative Half-normal(0, 104) prior and the hyperparameters µβ and σ2
β were given a noninformative417

N (0, 104) and Half-normal(0, 104) priors respectively. We then coded the models into the Stan418

modeling language [41, 42] and used the PyStan Python package [43] to obtain 40,000 samples of419

the joint posterior distribution from one chain of length 80,000 (warmup 40,000). Convergence of420

the chains was indicated by R̂ ≈ 1.0 for all parameters.421

4.7 Code and data availability422

All the behavioral data used in this study are available at https://github.com/carolfs/mf_wm423
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Figure 11: Timeline of a replication of the current study using figures to identify the initial states
rather than letters. The two final states were the blue state and the yellow state.
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Figure 12: In our replication task, participants saw two figures on the screen, an upper figure and
a lower figure (A). They were instructed to imagine how the two figures would fit together in other
to determine the common and rare transitions (B). If, for instance, the participant saw one of the
upper pair of figures shown in panel B, pressing left would commonly take them to the blue final
state and pressing right would commonly take them to the yellow final state. If instead they saw
one of the lower pair of figures in panel B, pressing right would commonly take them to yellow
state and vice versa.
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Figure 13: Logistic regression coefficients of human participants in our replication experiment for
consecutive trial pairs in the “same letters” subset. The error bars correspond to the 95% credible
interval.
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Figure 14: Logistic regression coefficients of human participants in our replication experiment for
consecutive trial pairs in the “same first letter” subset. The error bars correspond to the 95%
credible interval.
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Figure 15: Logistic regression coefficients of human participants in our replication experiment for
consecutive trial pairs in the “same second letter” subset. The error bars correspond to the 95%
credible interval.

34

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 26, 2018. ; https://doi.org/10.1101/107698doi: bioRxiv preprint 

https://doi.org/10.1101/107698
http://creativecommons.org/licenses/by-nd/4.0/


Intercept Reward Transition Reward x Transition
Coefficient

2

1

0

1

2

Simultaneous

Intercept Reward Transition Reward x Transition
Coefficient

2

1

0

1

2

Sequential

Intercept Reward Transition Reward x Transition
Coefficient

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Difference (Sequential  Simultaneous)

Figure 16: Logistic regression coefficients of human participants in our replication experiment for
consecutive trial pairs in the “different letters” subset. The error bars correspond to the 95%
credible interval.
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