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1 Abstract

2 Model-free learning creates stimulus-response associations, but are there limits to the types
3 of stimuli it can operate over? Most experiments on reward-learning have used discrete sensory
4 stimuli, but there is no algorithmic reason to restrict model-free learning to external stimuli,
5 and theories suggest that model-free processes may operate over highly abstract concepts and
6 goals. Our study aimed to determine whether model-free learning can operate over environ-
7 mental states defined by information held in working memory. We compared the data from
8 human participants in two conditions that presented learning cues either simultaneously or
° as a temporal sequence that required working memory. There was a significant influence of
10 model-free learning in the working memory condition. Moreover, both groups showed greater
11 model-free effects than simulated model-based agents. Thus, we show that model-free learn-
12 ing processes operate not just in parallel, but also in cooperation with canonical executive
13 functions such as working memory to support behavior.
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« 1 Introduction

15 Reinforcement learning theory and the computational algorithms associated with it have been ex-
16 tremely influential in the behavioral, biological, and computer sciences. Reinforcement learning
1z theory describes how an agent learns by interacting with its environment [I]. In a typical reinforce-
1s  ment learning paradigm, the agent selects an action and the environment responds by presenting
1o rewards and taking the agent to the next situation, or state. A reinforcement learning algorithm
20 determines how the agent changes its action selection strategy as a result of experience, with the
21 goal of maximizing future rewards. Depending on how algorithms accomplish this goal, they are
22 classified as model-free or model-based [I]. Model-based algorithms acquire beliefs about how the
23 environment generates outcomes in response to their actions and select actions according to their
2« predicted consequences. By contrast, model-free algorithms generate a propensity to perform, in
2s each state of the world, actions that were more rewarding in previous visits to that environmen-
26 tal state. Model-free reinforcement learning algorithms are of considerable interest to behavioral
2z and biological scientists, in part because they offer a compelling account of the phasic activity
2s of dopamine neurons, but also more generally can explain many observed patterns of behavior in
20 human and non-human animals |2}, Bl 4] 5] 6] [7].

30 A key concept in reinforcement learning theory is the environmental state. Typically, empiri-
51 cal tests of reinforcement learning algorithms use discrete sensory stimuli to define environmental
2 states. However, there is no theoretical or algorithmic constraint to define the states of the en-
33 vironment exclusively by sensory stimuli. State definitions may also include the agent’s internal
32 stimuli, such as its memory of past events, thirst or hunger level, or even subjective characteristics
35 such as happiness or sadness [I]. Thus, model-free reinforcement learning might operate over a
3e wide variety of both external and internal factors.

37 Indeed, recent work suggests that model-free learning algorithms can support a large set of
s cognitive processes and behaviors beyond the formation of habitual response associations with
30 discrete sensory stimuli [8, [9] [T0]. For instance, it has been proposed that the model-free system
20 can perform the action of selecting a goal for goal-directed planning [IT] or conversely that a model-
a1 based decision can trigger a habitual action sequence [12] [I3] 14} [15]. Model-free algorithms have
a2 also been suggested to gate working memory [16]. However, many of these important theoretical
a3 proposals about model-free algorithms have not been directly tested empirically.

aa Here, we determine the ability of model-free reinforcement learning algorithms to operate over
s states defined by information held in working memory, an internal state. Specifically, we use

s an experimental paradigm and computational modeling framework designed to dissociate model-
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a7 free from model-based influences on behavior [I7] to test if temporally separated sequences of
ss individually uninformative cues can drive model-free learning and behavior. If an agent can store
s the elements of a temporal sequence in its memory to form a unique and predictive cue and use the
so memorized information as the state definition, then, theoretically, it can use model-free algorithms
51 to learn the associations between a specific sequence of individually uninformative cues and action
s2 outcomes [I8].

53 Our approach has several important facets. First, we use an experimental paradigm that
sa allows us to determine not only if our participants learn from information in working memory,
ss but also whether that learning is supported by model-based or model-free algorithms. Second, the
se cues in our temporal sequences are individually uninformative; in other words, any single cue in
sz isolation provides no information about which response is correct. It is well-known that model-
ss free algorithms can shift response associations to the earliest occurring predictor of the correct
se response in a temporal sequence of informative cues and can integrate predictive information across
so individual cues. Neither of these mechanisms is possible in our paradigm because the individual
e1 cues themselves contain no information about the previous or subsequent cues or which response
62 is best.

63 Temporal pattern learning is a fundamental and early developing human cognitive ability. It
ea allows people to form predictions about what will happen from what has happened and select
es their actions accordingly. Humans can learn patterns both explicitly and implicitly in the absence
es of specific instructions or conscious awareness [I9]. Moreover, they can do so as early as two
ez months of age [20]. In fact, people identify patterns even when, in reality, no pattern exists [21].
es These empirical results together with the theoretical potential for model-free learning to operate
eo over internal stimuli suggest that temporal pattern learning could be supported by model-free
70 processes. However, to date, studies of reinforcement learning and decision making have focused
72 primarily on tasks in which the relevant stimuli are presented simultaneously just prior to or at
72 the time of decision-making, or on implicit motor sequence learning, wherein participants learn
73 a sequence of movements automatically, without full awareness (for instance, 22] 23], [24], 25, [26)).
7a  Thus, the degree to which model-free processes do in fact operate over temporal sequences or any
75 other information stored in working memory has not yet been directly tested and compared with
7e model-free learning from traditionally employed external, static environmental cues.

77 Here, we directly test whether model-free processes can access and learn from information
7s stored in working memory. We adapted a decision-making paradigm originally developed by Daw
7o et al. [I7] that can behaviorally dissociate the influence of model-free and model-based learning

so on choice. The task was performed by two groups of human participants either in a simultaneous
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Figure 1: Timelines of events in a trial. The two symbols that represent the initial state are
presented simultaneously in the simultaneous condition (left) and separately as a temporal sequence
in the sequential condition (right). In this example, AB is the initial state. The simultaneous
condition participant goes to the pink final state and receives a reward (signaled by the green $
symbol). The sequential condition participant goes to the blue final state and does not receive a
reward (signaled by the black X symbol).

a1 condition (i.e. static and external), wherein visual stimuli were presented simultaneously, or in a
s2 sequential condition, wherein the same visual stimuli were presented as a temporal sequence that
sz required working memory processing. We also simulated a series of experiments in which artifi-
sa cial model-based agents whose behavioral processes we determined were compared to the human
ss participants. Our analysis indicates that our temporal sequences, and consequently information
ss stored in working memory, can trigger model-free learning. Moreover, we found no evidence that
sz the degree to which model-free learning influenced behavior differed between conditions in which
ss environmental states were defined by external sensory stimuli compared to those defined by inter-
se nal representations stored in working memory. Our findings support the theoretical proposition
oo that model-free learning can act on stimuli internally represented in working memory as well as on

o1 external ones.

- 2 Results

s 2.1 Determining model-free and model-based influences on choice be-

04 havior

os  Forty-one young human participants completed a behavioral task adapted from Daw et al. [17].

os In our task, participants began each trial in a randomly selected initial state represented by one
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Figure 2: Common state transitions in the behavioral task’s model. These graphics highlight the
uninformative nature of each single element (i.e. A or B symbols) in the simultaneous or sequential

cues. Knowledge of only the first or final element of the combined cue provides no indication of
how likely the right and left responses are to lead to a specific state.

o B>

oz of four possible sequences of two symbols: AA, AB, BA, or BB (Figure [l)). At this initial state,
0s participants chose one of two possible actions: going left or going right. They were then taken to
oe one of two possible final states, the blue state or the pink state. If they had gone left, they were
100 taken with 0.8 probability to the final state given by the rule AA — blue, AB — pink, BA — pink,
102 BB — blue or with 0.2 probability to the other final state. If they had gone right, they were taken
102 with 0.8 probability to the final state not given by the previous rule or with 0.2 probability to the
103 other final state. The common (most probable) transitions between the initial and final states are
10 shown in Figure [2| To predict the final state accurately, participants had to know both elements
105 of the sequence. If they knew only one, the final state might have been either blue or pink with 0.5
106 probability and they would not be able to perform above chance. This feature is key and separates
107 our work from others in which each element of a sequence is predictive on its own.

108 One of the final states delivered a monetary reward with 0.7 probability and the other with
100 (0.3 probability. The optimal strategy was to always select the action that led with 0.8 probability
110 to the final state with 0.7 reward probability. Initially, participants were instructed to learn the
111 common transitions between the initial and final states in the absence of rewards. They were told
112 that each final state might be rewarded with different probabilities, but not what the probabilities
13 were nor that they were fixed. The task comprised 250 trials and participants received the total

14 reward they obtained at the end.
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115 Twenty-one participants were randomly allocated to a simultaneous condition and twenty to a
1s  sequential condition (Figure . In the simultaneous condition, both symbols that represented the
117 initial state were displayed simultaneously on the screen. In the sequential condition, each symbol
1s was displayed consecutively by itself, as a temporal sequence. The specific objective of this study
110 was to determine if participants in the sequential condition could use states represented in working
120 memory to learn the task in a model-free way or if their learning was necessarily model-based. The
122 simultaneous condition is already known to support model-free learning as well as model-based
122 learning [I7, 27, 28] 29, [30]. We thus sought to determine the difference between the standard
123 simultaneous and working-memory dependent sequential conditions.

124 The two-stage task we used can differentiate between model-free and model-based learning
125 because algorithms that implement them make different predictions about how a reward received
126 In a trial impacts a participant’s choices in subsequent trials. The SARSA (A = 1) model-free
127 algorithm learns this task by strengthening or weakening associations between initial states and
12s  initial-state actions depending on whether the action is followed by a reward or not [I]. Therefore,
120 it simply predicts that an initial-state action that resulted in a reward is more likely to be repeated
130 in the next trial with the same initial state [I7]. On the other hand, the model-based algorithm
131 considered in this study uses an internal model of the task’s structure to determine the initial-
132 state choice that will most likely result in a reward [I7]. To this end, it considers which final state,
133 pink or blue, was most frequently rewarded in recent trials and selects the initial-state action, left
134 or right, that will most likely lead there. Therefore, the model-free algorithm predicts that the
135 participant will choose the mostly frequently rewarded action in past trials with the same initial
136 state, while the model-based algorithm predicts that the participant will choose the action with the
137 highest probability of leading to the mostly frequently rewarded final state in past trials, regardless
138 of their initial states.

130 The model-free and model-based algorithms thus generate different predictions about the stay
10 probability, which is the probability that in the next trial with the same initial state the participant
11 will stay with their previous choice and take the same initial-state action. For instance, if in a
142 given trial whose initial state was AA the participant chose left, and in the next trial with AA
13 as the initial state the participant also chose left, this was considered a stay. The model-free
1aa  prediction is that the stay probability will increase if the previous trial with the same initial state
s was rewarded and decrease if it was not. The model-based prediction, on the other hand, depends
16 on the transition structure of the task and how the estimated reward probabilities of the two final
17 states have changed since the previous trial with the same initial state (see Methods for a detailed

18 description of how model-based predictions were calculated).
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Figure 3: Stay probabilities for simulated agents and human participants as a function of mode-free
and model-based predictions. The bar graphs show the choice probabilities derived from the logistic
regressions as a function of model-free (separated along the z-axis) and model-based predictions
(indicated by the color of the bars). The four panels demonstrate the behavior of A) model-free
simulations (N = 10,000), B) model-based simulations (N = 10,000), C) human participants
in the simultaneous condition (N = 21) and D) human participants in the sequential condition
(N = 20). Error bars on the data from human participants represent the 95% highest density
interval.
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Figure 4: The relative effects of model-free and model-based learning on choice behavior. A) The
regression coefficients from a logistic regression on stay vs switch choices for the model-free (blue;
N = 10,000) and the model-based simulations (purple; N = 10,000). B) The difference between
model-based and model-free simulation coefficients (i.e. red minus blue from panel A). C) Logistic
regression coefficients from the same model used for panel A, but here estimated on choices from
the simultaneous (blue; N = 21) and sequential condition (purple; N = 20) participants. D)
The difference between sequential and simultaneous condition participants’ coefficients (i.e. red
minus blue from panel C). In all panels, 5y is the logistic regression’s intercept, 3,5 is the model-
based coeflicient, B, is the model-free coefficient, and Bp,4xms is the coefficient of the interaction
between the model-based and model-free effects. Error bars on the data from human participants
represent the 95% highest density interval.

149 We simulated model-free and model-based agents performing this task for comparison with the
150 behavior of human participants in each condition. In all cases, we analyzed the data using Bayesian
151 hierarchical logistic regression analyses. The correspondence between theoretical predictions of the
152 model-free and model-based algorithms and choices of the simulated agents are shown in the top
153 row of Figure[3] The correspondence between theoretical predictions of the model-free and model-
1sa  based algorithms and choices of the human participants in each experimental condition are shown
15 in the bottom row of Figure

156 In addition to examining the stay choice probabilities, we directly tested the degree to which the
157 human participants’ and simulated agents’ choices were influenced by model-based and model-free
s signals. The coefficients of these logistic regression analyses are shown in Figure [} The positive
1o value of the intercept 3y indicates that the stay probabilities tended to be above 0.5, i.e., simulated

10 agents and human participants were more likely to repeat their previous choice than switch to the
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1e1  other choice in the next trial with the same initial state. This is also visible in the stay probabilities
12 shown in Figure ] The coefficients for the regressions on the simulated agents’ choices show the
163 expected pattern with the model-free and model-based coefficients primarily determining behavior
16 for the model-free and model-based agents, respectively (Figure ) and differing substantially
1es  between agent types (Figure [4C).

166 In the human participants, behavior was influenced by both model-based and model-free pro-
17 cesses regardless of whether the states were defined by external sensory cues or internal working-
16s memory representations. The model-based and model-free coefficients, (3,,;, and 3,,r, were positive
160 for both the simultaneous and sequential conditions with 0.999 posterior probability (Figure )
170 The model-based coefficient was 0.32 (95% highest density interval [0.18,0.47]) for the simultaneous
i condition and 0.25 (95% HDI [0.10, 0.40]) for the sequential condition, and the model-free coefficient
172 was 0.41 (95% HDI [0.30,0.54]) for the simultaneous condition and 0.45 (95% HDI [0.33,0.58]) for
173 the sequential condition. The differences between the sequential and simultaneous conditions were
e —0.07 (95% HDI [—0.28,0.14]) for the model-based coeflicient and 0.04 (95% HDI [—0.13,0.21])
1zs  for the model-free coefficient. The posterior probability that the model-free coeflicient is smaller in
176 the sequential group than in the simultaneous group is 0.32, and the posterior probability that the
17z model-based coefficient is greater in the sequential group than in the simultaneous group is 0.24
i7s  (Figure ) Thus, we find no evidence that sequentially presented, working-memory-dependent
17e  state cues shift the balance of model-based and model-free effects on choice behavior compared to
1.0 traditional, static, external cues.

181 The model-based predictions in our two-stage decision task differ from those reported in pre-
1s2  vious work using similar tasks. In the version of the two-stage task used by Daw et al. [I7], the
183 model-based prediction is that the heights of the two orange bars should be (nearly) equal to one
18« another and that the heights of the two green bars should be (nearly) equal as well (note, that the
1ss  precise prediction depends on the exact parameterization of the model). However, in our task the
1ss model-based prediction includes a reward effect. Consequently, we find that the stay probabilities
1z in the model-based agent simulations are influenced by the outcome of the most recent trial with
188 the same initial state as can be seen in the differences in magnitude between the two inner, orange
1o bars as well as the two outer, green bars in Figure [BB. Specifically, if the previous matching-state
100 trial was rewarded, then the stay probabilities are greater than if it was not rewarded. This reward
101 effect in the model-based choices is similar to a model-free effect, but not identical because the
102 model-based value updating procedure incorporates the transition probabilities while the model-
103 free algorithm does not. However, the reward-effect does lead to model-free-like choice patterns

10a in the data that result in a small, but significant model-free coefficient in the logistic regressions
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105 on model-based agents’ choices (Figure ) Therefore, small model-free-like patterns in the stay
106 probabilities do not necessarily indicate the influence of model-free learning, because we know the
107 model-based agents do not use this learning algorithm. We directly address the potential for spu-
108 rious effects mimicking the influence of a model-free algorithm in our human participants in the

100 working-memory-dependent sequential condition in the following paragraphs.

20 2.2 Direct comparisons between human participants and simulated model-

201 based agents

202 Our goal was to test the hypothesis that working-memory-dependent, temporal patterns can be
203 learned through a model-free process in humans. Given that our model-based simulations showed
20¢  a reward effect that shared some properties with a model-free learning process, we sought to
205 determine if the same results obtained by the human participants in the sequential condition,
206 including the estimated model-free effect, could have been generated through the use of a model-
207 based algorithm alone. Despite the fact that we find no evidence for differences in behavior between
208 participants in the sequential and simultaneous conditions, this additional test is important because
200 as Figures [3] and [f] show, the model-based simulated agents exhibited behavior that mimicked a
210 model-free effect even though they operated solely on the basis of a model-based algorithm by
211 design.

212 This raises the question, could purely model-based agents exhibit a model-free effect as large
213 as the participants in the sequential condition? To this end, we fitted the model-based algorithm
214 to the sequential condition results using a Bayesian hierarchical model. We then simulated 10,000
215 experiments in which we first created behavior for 20 simulated model-based agents (replacing the
216 20 sequential condition human participants) and then combined those data with that from the
217 21 human participants in the simultaneous condition and estimated the same hierarchical logistic
218 regression on stay/switch choices described above and summarized in Figure These 10,000
210 regressions give us a measure of what the coefficients in the sequential condition participants
220 would be if they were purely model-based.

221 We found that while the simulated purely-model-based (PMB) agents showed a level of model-
222 based influence comparable to participants in the sequential condition, the degree of model-free
223 influence in PMB agents was substantially lower. The mean value of the model-based coefficient,
224 Bmp, was 0.23 (95% HDI [0.05,0.49]), which, as expected, is very close to the mean value of
225 0.25 from the sequential participants’ behavior. Likewise, the mean difference across simulations

226 between the PMB agents and the participants in the simultaneous condition for g,,, was —0.09

10
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227 (95% HDI [—0.28,0.15]), similar to the —0.07 value for the difference between the sequential and
22s  simultaneous conditions in humans. In contrast, the mean value of the model-free coefficient, 3y,
220 in the simulated agents was 0.15 (95% HDI [0.07,0.23]), and it was smaller than 0.45, the mean
230 value obtained for the sequential condition, in more than 99.9% (in fact all 10,000) of the simulated
2:1 experiments. Furthermore, the mean difference between the PMB agents and the participants in
232 the simultaneous condition for 3, (i.e. the difference corresponding to Figure4D) was —0.26 (95%
233 HDI [—0.34, —0.18]), and more than 99.9% (in fact all 10,000) of simulated experiments yielded
23 a difference for 3, smaller than 0.04, the observed difference between human participants in the
235 sequential and simultaneous conditions. In summary, the model-free coefficient observed in the
236 sequential condition is three times the size one would expect to see from a purely model-based
237 agent, which strongly suggests that the observed effect is due to a true model-free influence and

238 not mimicked by the reward-effect.

= 3 Discussion

2a0  In this study, we empirically tested the hypothesis that human participants can develop model-free
2a1  associations between temporal sequences of stimuli stored in working memory and a motor response.
222 To that end, we developed a behavioral task based on a previous decision-making paradigm that
2a3  can determine the model-free and model-based influences on choice [I7]. The participants in the
224 simultaneous condition performed this task with the two visual symbols presented together simul-
2a5  taneously and those in the sequential condition performed it with the same two visual symbols
226 presented as a temporal sequence that had to be held in working memory. The model-free effect
227 estimated for the sequential condition was similar to the one estimated for the simultaneous condi-
2as  tion and higher than that predicted by a purely model-based algorithm. Our results suggest that
220 both model-based and model-free learning influenced the participants’ choices whether they saw
20 the entire set of stimuli at once or saw each stimulus by itself at separate times. Our study thus
251 provides experimental support to proposed model-free algorithms of temporal pattern learning [18]
22 and the view that model-free learning and habituation can be triggered by external or internal
253 stimuli 8] @] [10]

254 A key element of our experimental paradigm is that the individual symbols within each temporal
255  sequence convey no information about the best response in isolation. This fact rules out the
256 possibility that the sequential condition’s model-free effect is due to an association between a single
257 symbol in the sequence and a response rather than one between the entire sequence and a response.

28 Rach sequence element is completely uninformative by itself: it cannot predict reward delivery

11
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250 above chance. Therefore, the task cannot be learned by simple stimulus-response associations with
260 individual symbols in the temporal sequence.

261 Model-free learning processes support habit formation, and thus our results suggest that stim-
262 uli stored in working memory can trigger habitual responses. To the best of our knowledge, no
263 study has yet tested for habituation to temporal sequences directly, using procedures such as con-
262 tingency degradation or outcome devaluation. Although two-stage choice tasks similar to the one
265 we use here have been reported to share construct validity with outcome devaluation measures of
266 habitual responding [31], direct tests of outcome devaluation and contingency degradation follow-
267 ing temporal sequence learning are still needed. If such additional tests show positive evidence for
268 habituation, this would indicate that habits can be triggered by internally generated stimuli as well
260 as by external ones. Conversely, if no evidence is found for habituation to temporal sequences, this
270 would indicate that model-free learning processes can use internal stimuli, but do not necessarily
2n1 produce habits. Experimental evidence already suggests that habits are not exclusively learned in
a2 a model-free way [32]; it may also be true that habituation involves additional mechanisms beyond
273 the model-free caching of state-action-reward contingencies. Our study also raises the question
274 of which neural systems are commonly versus distinctly recruited in order to learn from stimuli
ars represented in working memory (e.g. temporal sequences) compared to purely external stimuli in
276 a reinforcement learning task. While numerous studies have investigated the neural systems medi-
a7z ating reinforcement learning over externally presented stimuli (see [33]for a review), to date, only a
ars - single study has investigated brain activity involved in temporal pattern learning using fMRI [21].
270 However, the sequence of events in that study was random, and any pattern that occurred was
20 spurious. Moreover, participants were required to respond to the stimuli instead of predicting
2s1 them, and might thus be implicitly learning a motor sequence. It remains to be determined what
282 brain regions support explicit learning from temporal sequences, or other stimuli held in working
263 memory, and to what degree these systems overlap with those shown to underlie learning from ex-
28  ternal environmental cues. In conclusion, we have presented experimental evidence that temporal
25 pattern learning, and consequently learning from internal stimuli held in working memory, can be
28s model-free.

287 Our study has helped delineate the contexts that support model-free learning—a subject of cur-
28 rent debate. Temporal pattern learning is a fundamental aspect of human cognition and model-free
280 learning and habit formation are subjects of immediate relevance for research on typical learning
200 as well as for the study of neuropsychiatric disorders ranging from addiction, obsessive-compulsive
201 disorder, and Tourette syndrome to anxiety disorders and major depression [34]. It is thus impor-

202 tant to continue investigating temporal pattern learning, including whether the model-free learning
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203 Of temporal sequences produces outcome-insensitive, habitual responses and how such learning is

20s implemented in the brain.

»s 4 Methods

ws 4.1 Participants

207 Forty-one healthy young adults participated in the experiment, 21 (13 female) randomly assigned
20s by a random number generator to the simultaneous condition and 20 (13 female) to the sequential
200 condition. The inclusion criterion was speaking English and no participants were excluded from
300 the analysis. The sample size was chosen by the precision for research planning method [35] [36], by
3o comparing the estimated differences between participant groups in the logistic regression analysis
302 with those between model-free and model-based simulated agents.

303 The experiment was conducted in accordance with the Zurich Cantonal Ethics Commission’s
30« norms for conducting research with human participants, and all participants gave written informed

305 consent.

06 4.2 Task

soz  The task’s state transition model defines four possible initial states, which were randomly selected
308 with uniform distribution in each trial and represented by four different stimuli, each composed of
300 two symbols: AA, AB, BA, or BB. At the initial state, two actions were available to the participant:
310 pressing the left or the right arrow keys. By pressing one of the keys, the participant was taken
s to a final state, which might be either the blue state or the pink state. If the left arrow key was
;12 pressed, the participant was taken to the final state given by the rule AA — blue, AB — pink,
313 BA — pink, BB — blue with 0.8 probability or to the other state with 0.2 probability; if the right
314 arrow key was pressed, the participant was taken to the final state not given by the previous rule
s1s with 0.8 probability or to the other state with 0.2 probability. There was no choice of action at the
s16  final state, but participants were required to make a button press to potentially earn the reward.
;17 Bach final state was rewarded according to an associated probability, which was 0.7 for one state
s1s and 0.3 for the other. The highest reward probability was associated with the blue state for half
310 of the participants and to the pink state for the other half. Participants were told that each final
320 state might be rewarded with different probabilities, but not what the probabilities were nor that
321 they were fixed.

322 In contrast with our task design, in which the final states’ reward probabilities were fixed, in
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323 the original task design proposed by Daw et al. [I7] the reward probabilities slowly drifted over
324 time, because those authors were interested in the trade-off between model-based and model-free
s2s  mechanisms, which is assumed to happen on the basis of their relative uncertainties. In this study
26 we were interested instead in testing if model-free learning of temporal patterns is possible and
327 keeping the task environment stable helps making the model-free associations stronger and more
a8 likely to influence choice [37], B38].

320 Participants were initially instructed to learn the common transitions between the initial and
330 the final states in the absence of reward. Participants then performed the task defined by the model
;1 above in the simultaneous or sequential condition. Half of the participants were randomly allocated
a2 to the simultaneous condition and the other half to the sequential condition (Figure [I). In the
333 simultaneous condition, both symbols that define the initial state were displayed simultaneously
s3a  on the screen for 3 seconds. In the sequential condition, each symbol is an element of a sequence
335 and each element was presented for 1 second, but never conjointly, and with a 1-second delay
ass  (blank screen) in between. Two triangles pointing left and right then appeared and the participant
337 was given 2 seconds to make a decision about whether to press the left or the right arrow keys;
s3s  if they did not press any keys, the word SLOW was displayed for 1 second, and the trial was
330 aborted and omitted from analysis. A blue or pink rectangle appeared immediately afterward,
30 indicating the final state. The participant then pressed the up-arrow key and, if the final state was
a1 rewarded, a green dollar sign appeared on the screen for 2 seconds; otherwise, a black X appeared
sa2  for 2 seconds. The task comprised 250 trials, with a break every 50 trials, and participants received

sa3  the total reward they obtained by the end of the task (0.18 CHF per reward).

s 4.3 Model-free algorithm

ses The SARSA model-free algorithm with replacing eligibility traces [Il I7] was used to simulate
ass  model-free learning agents. For each action a and state s, it estimated the value Q(s,a) of per-
a7 forming that action in that state. The task’s initial states s; were AA, AB, BA, and BB, and
s the actions a; available at the initial states were left and right. The final states were pink and
sa0  blue, and the only action ay available at those states was up. The initial value of Q(s, a) for every
0 state and action was 0.5. In each trial ¢, the simulated agent at the initial state s; chose left as
s its initial-state action with probability pir; and right with probability 1 — pis, according to the

2 following equation:
1
Pleft = 7 + e—BlQ(si,left)—Q(si,right)]’ (1)
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3 where S > 0 is an inverse temperature parameter that determines the algorithm’s propensity to
ssa  choose the option with the highest estimated value. After the final state s; was observed and
s a reward r € {0,1} was received, state-action values were updated according to the following

36 equations:

Q(si;a;) = (1 —a1)Q(si,a;) +1Q(sy, up) + crA[r — Q(sy, up)], (2)

Q(Sf,up) = (1 _QQ)Q(sfvup) + aer, (3)

57 where 0 < a1, as, A < 1 are parameters: g is the initial learning rate, as is the final learning rate,
sss  and A is the eligibility trace [T, [17].

350 In the special case where A = 1, the update of initial state-action values becomes

Q(siya:;) = (1 —a1)Q(s4,a;) + arry (4)

se0 that is, the estimated values of choosing left and right in each initial state are updated indepen-
sr  dently of the final state’s estimated value. Thus, SARSA (A = 1) ignores the identity of the final
se2  state when making initial-state decisions, and an initial-state action that resulted in a reward will
3e3  necessarily lead to a higher stay probability when the respective initial state recurs. This is true

sea even if the action will probably lead to the final state with the lowest value.

ss 4.4 Model-based algorithm

ses  In simulations of model-based agents [I7], values were assigned to initial-state actions and to final
ser  states. The value V of a final state s € {pink, blue} in the first trial ¢ = 1 was V(s,1) = 0.5. An

ses  initial-state choice ¢ € {left, right} in trial ¢ had a value V' given by

Ve, t) = Pr(c — pink)V (pink,t) + Pr(c — blue)V (blue, t), (5)

seo  where Pr(c — s) is the probability that choosing ¢ will lead to the final state s, which might be
s7o 0.8 or 0.2 according to the task’s transition model. The value of an initial-state choice can thus be
s understood as the expected value of the final state the agent will go to after making that choice.
sz If V(left,t) > V(right,t), the agent was more likely to choose left and vice-versa.

373 In each trial ¢, the agent’s initial state action was left with probability p;.x and right with
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s7za probability 1 — pies, given by

1
Pleft = 4 e=BIV(ieft,t)—V (right.t)] (6)

375 where 3 is an inverse temperature parameter. After the agent made its initial-state choice and

76 went to a final state s, that final state’s value was updated according to the following equation:

Vis,t+1) = (1—a)V(s,t) + ar(t), (7)

srm where 7(t) € {0,1} indicates if the agent received a reward and 0 < a < 1 is a learning-rate
s7s  parameter of the model. The value of a final state is thus the moving average of the rewards

s7e  received in that state.

0 4.4.1 Model-based predictions

ss1 Our method of determining model-based predictions for the stay probability was different from
sz the method used by Daw et al. [I7]. In that study, there was only one initial state and the model-
ss3 based and model-free algorithms predicted how the stay probability would change from one trial
ssa  t0 the next. The present study’s task, on the other hand, had four initial states and the model-free
sss  algorithm made predictions about how rewards would affect the participant’s choices from one trial
sss  to the next trial with the same initial state, which is not necessarily the next trial. We therefore
sz had to devise an alternative method of calculating the model-based predictions.

388 Our method relies directly on how the model-based algorithm estimates the reward probabilities
3o Of the initial-state choices, which either increase or decrease from one trial to the next with the same
30 initial state depending on what happened, and was therefore learned about reward probabilities, in
se1  the intervening trials. If the participant’s initial-state choice in a trial ¢; was left, for instance, the
322 model-based prediction was that in a future trial ¢ with the same initial state the stay probability
ses  should increase if V(left, to) —V (right, t2) > V(left, t;) — V(right, t;) and decrease otherwise. The
3ea  model-based predictions depended on the parameter a. The data analysis results were obtained by
ses  setting a = 0.4, as this was the mean value that Daw et al. [I7] found in their experiment by fitting
306 to their experimental data an expanded reinforcement learning model that combines model-based
3oz and model-free learning. For comparison, we tried other values for «, but the analysis results did

ses N0t vary significantly.
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o 4.5 Data analysis by logistic regression

a0 For each human participant or simulated agent, we calculated the stay probability as a function of
a0 model-free and model-based predictions. In each trial, if the human participant or simulated agent
a2 chose an action that was the same as that chosen in the previous trial with the same initial state,
s03 this was considered a stay. The four initial-state choices following the first occurrence of an initial
a4 state were not analyzed. The remaining initial-state choices were coded as the random variable y
s0s and classified as a stay (y = 1) or not a stay (y = 0).

406 We then analyzed the resulting data using a hierarchical logistic regression model whose pa-
207 rameters were estimated through Bayesian computational methods. The dependent variable was
a0s  Dstay, the stay probability for a given trial, and the independent variables were x,,;, which indi-
s cated what the model-free algorithm predicted about pstay (41 if it predicted an increase, —1 if it
a0 predicted a decrease), Ty, which indicated what the model-based algorithm predicted about pgtay
ain (41 if it predicted an increase, —1 if it predicted a decrease), and the interaction between the two.
a1z Thus, for each participant, we determined a four-dimensional vector E whose components were the

a1z 3 coefficients of the following equation:

1
1+ exp[*(ﬂo + mezmb + 5mfxmf + ﬁmbxmfxmfzmb)] .

(®)

Pstay =

a1e The distribution of y was Bernoulli(pstay). The distribution of the E vectors was N (/;;70_'2) if
a5 the participant was in the simultaneous condition and N (/fe,a_é) if the participant was in the
a6 sequential condition; in other words, the group means for each 5 were allowed to vary independently.
a1z The parameters of the 5 distribution were given vague prior distributions based on preliminary
ms  analyses—the ji vectors’ components were given a N (u = 0,02 = 25) prior, and the o2 vector’s
a1e  components were given a Half-normal(0, 25) prior. Other vague prior distributions for the model
a20 parameters were tested and the results did not change significantly.

421 To obtain parameter estimates from the model’s posterior distribution, we coded the model
a2 into the Stan modeling language version 2.14.0 [39, [40] and used the PyStan Python package [41]
423 to obtain 100,000 samples of the joint posterior distribution from four chains of length 50,000

a2a  (warmup 25,000). Convergence of the chains was indicated by R =~ 1.0 for all parameters. The

a2s  minimum effective sample size for the parameters of interest pi, iz, and i, — fi. was 31785.

s 4.6 Fitting of the algorithms to experimental data

a2z For comparison with the participant data, we fitted the SARSA model-free algorithm and the

a2s  model-based algorithm to the experimental data and generated replicated data using the fitted pa-
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220 rameters. The parameters were obtained by fitting both algorithms to all participants (to generate
a0 Figures|3|and [4]) and the model-based algorithm to the participants in the sequential condition (to
an  perform the simulated experiments). To that end, we used a Bayesian hierarchical model, which
a2 allowed us to pool data from all participants to improve individual parameter estimates.

433 The parameters of the model-based algorithm for the ith participant were o and 3°. They
s were given a Beta(aq,bo) and In N (ug, oé) prior distributions respectively. The hyperparameters
s a, and b, were themselves given a noninformative Half-normal(0,10*) prior and the hyperpa-
a3 rameters pg and oj were given a noninformative A'(0,10*) and Half-normal(0, 10*) priors respec-
a7 tively. The parameters of the model-free algorithm for the ith participant were o}, ob, A%, and
sss 3%, They were given a Beta(aa,,ba, ), Beta(aa,,ba, ), Beta(ay,by) and 1n./\f(u[3,ag) prior distri-
a3s  butions respectively. The hyperparameters ao,, Gasy, Gx; Doy, by, and by were themselves given a
o noninformative Half-normal(0, 10*) prior and the hyperparameters g and U?j were given a non-
aar  informative A/(0,10%) and Half-normal(0, 10%) priors respectively. We then coded the models into
a2 the Stan modeling language version 2.14.0 [39, 40] and used the PyStan Python package [41] to
a3 obtain 50,000 samples of the joint posterior distribution from one chain of length 60,000 (warmup
aaa 10,000). Convergence of the chains was indicated by R ~ 1.0 for all parameters. The minimum
ass  effective sample size was 1481 for all hyperparameters. The results were used to generate Figures

ass  and E

w7 4.7 Simulated experiments

ass  Given that this study’s aim was to determine if working memory-dependent temporal pattern learn-
ass  ing is necessarily model-based or can be model-free, we sought to determine if the results obtained
a0 for the sequential condition could have been generated by the model-based algorithm. To this end,
1 we simulated 10,000 experiments wherein, in each simulated experiment, the 21 participants in
a2 the simultaneous condition were compared to a different group of 20 simulated purely-model-based
a3 agents (as replacements for the 20 human participants in the sequential condition).

454 The model-based algorithm was first fitted to the sequential condition results using the Bayesian
ass  hierarchical method described above to obtain 200,000 samples of the posterior distribution from
ase  four chains of length 60,000 (warmup 10,000). Convergence of the chains was indicated by R~
a7 1.0 for all parameters. The minimum effective sample size was 16467 for all hyperparameters.
sss  For each simulated experiment, a point was randomly selected from the posterior distribution
a0 of hyperparameters (aq,bo, pg,03) and 20 sets of algorithm parameters (o, ) were randomly
ss0 generated using the selected values, i.e. a ~ Beta(an,bq), 8 ~ lnN(ug,U%). For each («, )

a1 parameter set, the model-based algorithm was run for 250 trials of the experimental task to generate
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a2 results for a simulated purely-model-based agent. These simulated agents were then compared with
a3 the actual participants in the simultaneous condition using the same logistic regression analysis
sa described above, except that, for computational efficiency, only 600 samples from one chain of 800
ses  samples (warmup 200) was obtained from the posterior distribution.

466 The entire analysis procedure was replicated several times with differing parameter values and
a7 prior distributions to ensure that the results and conclusions remained the same under a wide set

ss Of assumptions. In all cases, the results were nearly identical and supported the same conclusions.

wo 4.8 Code and data availability

azo  All the computer code and behavioral data used in this study are available at https: //github.com/carolfs/mf wm
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