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Abstract1

Model-free learning creates stimulus-response associations, but are there limits to the types2

of stimuli it can operate over? Most experiments on reward-learning have used discrete sensory3

stimuli, but there is no algorithmic reason to restrict model-free learning to external stimuli,4

and theories suggest that model-free processes may operate over highly abstract concepts and5

goals. Our study aimed to determine whether model-free learning can operate over environ-6

mental states defined by information held in working memory. We compared the data from7

human participants in two conditions that presented learning cues either simultaneously or8

as a temporal sequence that required working memory. There was a significant influence of9

model-free learning in the working memory condition. Moreover, both groups showed greater10

model-free effects than simulated model-based agents. Thus, we show that model-free learn-11

ing processes operate not just in parallel, but also in cooperation with canonical executive12

functions such as working memory to support behavior.13
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1 Introduction14

Reinforcement learning theory and the computational algorithms associated with it have been ex-15

tremely influential in the behavioral, biological, and computer sciences. Reinforcement learning16

theory describes how an agent learns by interacting with its environment [1]. In a typical reinforce-17

ment learning paradigm, the agent selects an action and the environment responds by presenting18

rewards and taking the agent to the next situation, or state. A reinforcement learning algorithm19

determines how the agent changes its action selection strategy as a result of experience, with the20

goal of maximizing future rewards. Depending on how algorithms accomplish this goal, they are21

classified as model-free or model-based [1]. Model-based algorithms acquire beliefs about how the22

environment generates outcomes in response to their actions and select actions according to their23

predicted consequences. By contrast, model-free algorithms generate a propensity to perform, in24

each state of the world, actions that were more rewarding in previous visits to that environmen-25

tal state. Model-free reinforcement learning algorithms are of considerable interest to behavioral26

and biological scientists, in part because they offer a compelling account of the phasic activity27

of dopamine neurons, but also more generally can explain many observed patterns of behavior in28

human and non-human animals [2, 3, 4, 5, 6, 7].29

A key concept in reinforcement learning theory is the environmental state. Typically, empiri-30

cal tests of reinforcement learning algorithms use discrete sensory stimuli to define environmental31

states. However, there is no theoretical or algorithmic constraint to define the states of the en-32

vironment exclusively by sensory stimuli. State definitions may also include the agent’s internal33

stimuli, such as its memory of past events, thirst or hunger level, or even subjective characteristics34

such as happiness or sadness [1]. Thus, model-free reinforcement learning might operate over a35

wide variety of both external and internal factors.36

Indeed, recent work suggests that model-free learning algorithms can support a large set of37

cognitive processes and behaviors beyond the formation of habitual response associations with38

discrete sensory stimuli [8, 9, 10]. For instance, it has been proposed that the model-free system39

can perform the action of selecting a goal for goal-directed planning [11] or conversely that a model-40

based decision can trigger a habitual action sequence [12, 13, 14, 15]. Model-free algorithms have41

also been suggested to gate working memory [16]. However, many of these important theoretical42

proposals about model-free algorithms have not been directly tested empirically.43

Here, we determine the ability of model-free reinforcement learning algorithms to operate over44

states defined by information held in working memory, an internal state. Specifically, we use45

an experimental paradigm and computational modeling framework designed to dissociate model-46
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free from model-based influences on behavior [17] to test if temporally separated sequences of47

individually uninformative cues can drive model-free learning and behavior. If an agent can store48

the elements of a temporal sequence in its memory to form a unique and predictive cue and use the49

memorized information as the state definition, then, theoretically, it can use model-free algorithms50

to learn the associations between a specific sequence of individually uninformative cues and action51

outcomes [18].52

Our approach has several important facets. First, we use an experimental paradigm that53

allows us to determine not only if our participants learn from information in working memory,54

but also whether that learning is supported by model-based or model-free algorithms. Second, the55

cues in our temporal sequences are individually uninformative; in other words, any single cue in56

isolation provides no information about which response is correct. It is well-known that model-57

free algorithms can shift response associations to the earliest occurring predictor of the correct58

response in a temporal sequence of informative cues and can integrate predictive information across59

individual cues. Neither of these mechanisms is possible in our paradigm because the individual60

cues themselves contain no information about the previous or subsequent cues or which response61

is best.62

Temporal pattern learning is a fundamental and early developing human cognitive ability. It63

allows people to form predictions about what will happen from what has happened and select64

their actions accordingly. Humans can learn patterns both explicitly and implicitly in the absence65

of specific instructions or conscious awareness [19]. Moreover, they can do so as early as two66

months of age [20]. In fact, people identify patterns even when, in reality, no pattern exists [21].67

These empirical results together with the theoretical potential for model-free learning to operate68

over internal stimuli suggest that temporal pattern learning could be supported by model-free69

processes. However, to date, studies of reinforcement learning and decision making have focused70

primarily on tasks in which the relevant stimuli are presented simultaneously just prior to or at71

the time of decision-making, or on implicit motor sequence learning, wherein participants learn72

a sequence of movements automatically, without full awareness (for instance, 22, 23, 24, 25, 26).73

Thus, the degree to which model-free processes do in fact operate over temporal sequences or any74

other information stored in working memory has not yet been directly tested and compared with75

model-free learning from traditionally employed external, static environmental cues.76

Here, we directly test whether model-free processes can access and learn from information77

stored in working memory. We adapted a decision-making paradigm originally developed by Daw78

et al. [17] that can behaviorally dissociate the influence of model-free and model-based learning79

on choice. The task was performed by two groups of human participants either in a simultaneous80
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Figure 1: Timelines of events in a trial. The two symbols that represent the initial state are
presented simultaneously in the simultaneous condition (left) and separately as a temporal sequence
in the sequential condition (right). In this example, AB is the initial state. The simultaneous
condition participant goes to the pink final state and receives a reward (signaled by the green $
symbol). The sequential condition participant goes to the blue final state and does not receive a
reward (signaled by the black X symbol).

condition (i.e. static and external), wherein visual stimuli were presented simultaneously, or in a81

sequential condition, wherein the same visual stimuli were presented as a temporal sequence that82

required working memory processing. We also simulated a series of experiments in which artifi-83

cial model-based agents whose behavioral processes we determined were compared to the human84

participants. Our analysis indicates that our temporal sequences, and consequently information85

stored in working memory, can trigger model-free learning. Moreover, we found no evidence that86

the degree to which model-free learning influenced behavior differed between conditions in which87

environmental states were defined by external sensory stimuli compared to those defined by inter-88

nal representations stored in working memory. Our findings support the theoretical proposition89

that model-free learning can act on stimuli internally represented in working memory as well as on90

external ones.91

2 Results92

2.1 Determining model-free and model-based influences on choice be-93

havior94

Forty-one young human participants completed a behavioral task adapted from Daw et al. [17].95

In our task, participants began each trial in a randomly selected initial state represented by one96
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Figure 2: Common state transitions in the behavioral task’s model. These graphics highlight the
uninformative nature of each single element (i.e. A or B symbols) in the simultaneous or sequential
cues. Knowledge of only the first or final element of the combined cue provides no indication of
how likely the right and left responses are to lead to a specific state.

of four possible sequences of two symbols: AA, AB, BA, or BB (Figure 1). At this initial state,97

participants chose one of two possible actions: going left or going right. They were then taken to98

one of two possible final states, the blue state or the pink state. If they had gone left, they were99

taken with 0.8 probability to the final state given by the rule AA→ blue, AB→ pink, BA→ pink,100

BB → blue or with 0.2 probability to the other final state. If they had gone right, they were taken101

with 0.8 probability to the final state not given by the previous rule or with 0.2 probability to the102

other final state. The common (most probable) transitions between the initial and final states are103

shown in Figure 2. To predict the final state accurately, participants had to know both elements104

of the sequence. If they knew only one, the final state might have been either blue or pink with 0.5105

probability and they would not be able to perform above chance. This feature is key and separates106

our work from others in which each element of a sequence is predictive on its own.107

One of the final states delivered a monetary reward with 0.7 probability and the other with108

0.3 probability. The optimal strategy was to always select the action that led with 0.8 probability109

to the final state with 0.7 reward probability. Initially, participants were instructed to learn the110

common transitions between the initial and final states in the absence of rewards. They were told111

that each final state might be rewarded with different probabilities, but not what the probabilities112

were nor that they were fixed. The task comprised 250 trials and participants received the total113

reward they obtained at the end.114
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Twenty-one participants were randomly allocated to a simultaneous condition and twenty to a115

sequential condition (Figure 1). In the simultaneous condition, both symbols that represented the116

initial state were displayed simultaneously on the screen. In the sequential condition, each symbol117

was displayed consecutively by itself, as a temporal sequence. The specific objective of this study118

was to determine if participants in the sequential condition could use states represented in working119

memory to learn the task in a model-free way or if their learning was necessarily model-based. The120

simultaneous condition is already known to support model-free learning as well as model-based121

learning [17, 27, 28, 29, 30]. We thus sought to determine the difference between the standard122

simultaneous and working-memory dependent sequential conditions.123

The two-stage task we used can differentiate between model-free and model-based learning124

because algorithms that implement them make different predictions about how a reward received125

in a trial impacts a participant’s choices in subsequent trials. The SARSA (λ = 1) model-free126

algorithm learns this task by strengthening or weakening associations between initial states and127

initial-state actions depending on whether the action is followed by a reward or not [1]. Therefore,128

it simply predicts that an initial-state action that resulted in a reward is more likely to be repeated129

in the next trial with the same initial state [17]. On the other hand, the model-based algorithm130

considered in this study uses an internal model of the task’s structure to determine the initial-131

state choice that will most likely result in a reward [17]. To this end, it considers which final state,132

pink or blue, was most frequently rewarded in recent trials and selects the initial-state action, left133

or right, that will most likely lead there. Therefore, the model-free algorithm predicts that the134

participant will choose the mostly frequently rewarded action in past trials with the same initial135

state, while the model-based algorithm predicts that the participant will choose the action with the136

highest probability of leading to the mostly frequently rewarded final state in past trials, regardless137

of their initial states.138

The model-free and model-based algorithms thus generate different predictions about the stay139

probability, which is the probability that in the next trial with the same initial state the participant140

will stay with their previous choice and take the same initial-state action. For instance, if in a141

given trial whose initial state was AA the participant chose left, and in the next trial with AA142

as the initial state the participant also chose left, this was considered a stay. The model-free143

prediction is that the stay probability will increase if the previous trial with the same initial state144

was rewarded and decrease if it was not. The model-based prediction, on the other hand, depends145

on the transition structure of the task and how the estimated reward probabilities of the two final146

states have changed since the previous trial with the same initial state (see Methods for a detailed147

description of how model-based predictions were calculated).148
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Figure 3: Stay probabilities for simulated agents and human participants as a function of mode-free
and model-based predictions. The bar graphs show the choice probabilities derived from the logistic
regressions as a function of model-free (separated along the x-axis) and model-based predictions
(indicated by the color of the bars). The four panels demonstrate the behavior of A) model-free
simulations (N = 10,000), B) model-based simulations (N = 10,000), C) human participants
in the simultaneous condition (N = 21) and D) human participants in the sequential condition
(N = 20). Error bars on the data from human participants represent the 95% highest density
interval.
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Figure 4: The relative effects of model-free and model-based learning on choice behavior. A) The
regression coefficients from a logistic regression on stay vs switch choices for the model-free (blue;
N = 10,000) and the model-based simulations (purple; N = 10,000). B) The difference between
model-based and model-free simulation coefficients (i.e. red minus blue from panel A). C) Logistic
regression coefficients from the same model used for panel A, but here estimated on choices from
the simultaneous (blue; N = 21) and sequential condition (purple; N = 20) participants. D)
The difference between sequential and simultaneous condition participants’ coefficients (i.e. red
minus blue from panel C). In all panels, β0 is the logistic regression’s intercept, βmb is the model-
based coefficient, βmf is the model-free coefficient, and βmb×mf is the coefficient of the interaction
between the model-based and model-free effects. Error bars on the data from human participants
represent the 95% highest density interval.

We simulated model-free and model-based agents performing this task for comparison with the149

behavior of human participants in each condition. In all cases, we analyzed the data using Bayesian150

hierarchical logistic regression analyses. The correspondence between theoretical predictions of the151

model-free and model-based algorithms and choices of the simulated agents are shown in the top152

row of Figure 3. The correspondence between theoretical predictions of the model-free and model-153

based algorithms and choices of the human participants in each experimental condition are shown154

in the bottom row of Figure 3.155

In addition to examining the stay choice probabilities, we directly tested the degree to which the156

human participants’ and simulated agents’ choices were influenced by model-based and model-free157

signals. The coefficients of these logistic regression analyses are shown in Figure 4. The positive158

value of the intercept β0 indicates that the stay probabilities tended to be above 0.5, i.e., simulated159

agents and human participants were more likely to repeat their previous choice than switch to the160
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other choice in the next trial with the same initial state. This is also visible in the stay probabilities161

shown in Figure 3. The coefficients for the regressions on the simulated agents’ choices show the162

expected pattern with the model-free and model-based coefficients primarily determining behavior163

for the model-free and model-based agents, respectively (Figure 4A) and differing substantially164

between agent types (Figure 4C).165

In the human participants, behavior was influenced by both model-based and model-free pro-166

cesses regardless of whether the states were defined by external sensory cues or internal working-167

memory representations. The model-based and model-free coefficients, βmb and βmf , were positive168

for both the simultaneous and sequential conditions with 0.999 posterior probability (Figure 4B).169

The model-based coefficient was 0.32 (95% highest density interval [0.18, 0.47]) for the simultaneous170

condition and 0.25 (95% HDI [0.10, 0.40]) for the sequential condition, and the model-free coefficient171

was 0.41 (95% HDI [0.30, 0.54]) for the simultaneous condition and 0.45 (95% HDI [0.33, 0.58]) for172

the sequential condition. The differences between the sequential and simultaneous conditions were173

−0.07 (95% HDI [−0.28, 0.14]) for the model-based coefficient and 0.04 (95% HDI [−0.13, 0.21])174

for the model-free coefficient. The posterior probability that the model-free coefficient is smaller in175

the sequential group than in the simultaneous group is 0.32, and the posterior probability that the176

model-based coefficient is greater in the sequential group than in the simultaneous group is 0.24177

(Figure 4D). Thus, we find no evidence that sequentially presented, working-memory-dependent178

state cues shift the balance of model-based and model-free effects on choice behavior compared to179

traditional, static, external cues.180

The model-based predictions in our two-stage decision task differ from those reported in pre-181

vious work using similar tasks. In the version of the two-stage task used by Daw et al. [17], the182

model-based prediction is that the heights of the two orange bars should be (nearly) equal to one183

another and that the heights of the two green bars should be (nearly) equal as well (note, that the184

precise prediction depends on the exact parameterization of the model). However, in our task the185

model-based prediction includes a reward effect. Consequently, we find that the stay probabilities186

in the model-based agent simulations are influenced by the outcome of the most recent trial with187

the same initial state as can be seen in the differences in magnitude between the two inner, orange188

bars as well as the two outer, green bars in Figure 3B. Specifically, if the previous matching-state189

trial was rewarded, then the stay probabilities are greater than if it was not rewarded. This reward190

effect in the model-based choices is similar to a model-free effect, but not identical because the191

model-based value updating procedure incorporates the transition probabilities while the model-192

free algorithm does not. However, the reward-effect does lead to model-free-like choice patterns193

in the data that result in a small, but significant model-free coefficient in the logistic regressions194
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on model-based agents’ choices (Figure 4A). Therefore, small model-free-like patterns in the stay195

probabilities do not necessarily indicate the influence of model-free learning, because we know the196

model-based agents do not use this learning algorithm. We directly address the potential for spu-197

rious effects mimicking the influence of a model-free algorithm in our human participants in the198

working-memory-dependent sequential condition in the following paragraphs.199

2.2 Direct comparisons between human participants and simulated model-200

based agents201

Our goal was to test the hypothesis that working-memory-dependent, temporal patterns can be202

learned through a model-free process in humans. Given that our model-based simulations showed203

a reward effect that shared some properties with a model-free learning process, we sought to204

determine if the same results obtained by the human participants in the sequential condition,205

including the estimated model-free effect, could have been generated through the use of a model-206

based algorithm alone. Despite the fact that we find no evidence for differences in behavior between207

participants in the sequential and simultaneous conditions, this additional test is important because208

as Figures 3 and 4 show, the model-based simulated agents exhibited behavior that mimicked a209

model-free effect even though they operated solely on the basis of a model-based algorithm by210

design.211

This raises the question, could purely model-based agents exhibit a model-free effect as large212

as the participants in the sequential condition? To this end, we fitted the model-based algorithm213

to the sequential condition results using a Bayesian hierarchical model. We then simulated 10,000214

experiments in which we first created behavior for 20 simulated model-based agents (replacing the215

20 sequential condition human participants) and then combined those data with that from the216

21 human participants in the simultaneous condition and estimated the same hierarchical logistic217

regression on stay/switch choices described above and summarized in Figure 4. These 10,000218

regressions give us a measure of what the coefficients in the sequential condition participants219

would be if they were purely model-based.220

We found that while the simulated purely-model-based (PMB) agents showed a level of model-221

based influence comparable to participants in the sequential condition, the degree of model-free222

influence in PMB agents was substantially lower. The mean value of the model-based coefficient,223

βmb , was 0.23 (95% HDI [0.05, 0.49]), which, as expected, is very close to the mean value of224

0.25 from the sequential participants’ behavior. Likewise, the mean difference across simulations225

between the PMB agents and the participants in the simultaneous condition for βmb was −0.09226

10

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 11, 2017. ; https://doi.org/10.1101/107698doi: bioRxiv preprint 

https://doi.org/10.1101/107698
http://creativecommons.org/licenses/by-nd/4.0/


(95% HDI [−0.28, 0.15]), similar to the −0.07 value for the difference between the sequential and227

simultaneous conditions in humans. In contrast, the mean value of the model-free coefficient, βmf ,228

in the simulated agents was 0.15 (95% HDI [0.07, 0.23]), and it was smaller than 0.45, the mean229

value obtained for the sequential condition, in more than 99.9% (in fact all 10,000) of the simulated230

experiments. Furthermore, the mean difference between the PMB agents and the participants in231

the simultaneous condition for βmf (i.e. the difference corresponding to Figure 4D) was −0.26 (95%232

HDI [−0.34,−0.18]), and more than 99.9% (in fact all 10,000) of simulated experiments yielded233

a difference for βmf smaller than 0.04, the observed difference between human participants in the234

sequential and simultaneous conditions. In summary, the model-free coefficient observed in the235

sequential condition is three times the size one would expect to see from a purely model-based236

agent, which strongly suggests that the observed effect is due to a true model-free influence and237

not mimicked by the reward-effect.238

3 Discussion239

In this study, we empirically tested the hypothesis that human participants can develop model-free240

associations between temporal sequences of stimuli stored in working memory and a motor response.241

To that end, we developed a behavioral task based on a previous decision-making paradigm that242

can determine the model-free and model-based influences on choice [17]. The participants in the243

simultaneous condition performed this task with the two visual symbols presented together simul-244

taneously and those in the sequential condition performed it with the same two visual symbols245

presented as a temporal sequence that had to be held in working memory. The model-free effect246

estimated for the sequential condition was similar to the one estimated for the simultaneous condi-247

tion and higher than that predicted by a purely model-based algorithm. Our results suggest that248

both model-based and model-free learning influenced the participants’ choices whether they saw249

the entire set of stimuli at once or saw each stimulus by itself at separate times. Our study thus250

provides experimental support to proposed model-free algorithms of temporal pattern learning [18]251

and the view that model-free learning and habituation can be triggered by external or internal252

stimuli [8, 9, 10]253

A key element of our experimental paradigm is that the individual symbols within each temporal254

sequence convey no information about the best response in isolation. This fact rules out the255

possibility that the sequential condition’s model-free effect is due to an association between a single256

symbol in the sequence and a response rather than one between the entire sequence and a response.257

Each sequence element is completely uninformative by itself: it cannot predict reward delivery258
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above chance. Therefore, the task cannot be learned by simple stimulus-response associations with259

individual symbols in the temporal sequence.260

Model-free learning processes support habit formation, and thus our results suggest that stim-261

uli stored in working memory can trigger habitual responses. To the best of our knowledge, no262

study has yet tested for habituation to temporal sequences directly, using procedures such as con-263

tingency degradation or outcome devaluation. Although two-stage choice tasks similar to the one264

we use here have been reported to share construct validity with outcome devaluation measures of265

habitual responding [31], direct tests of outcome devaluation and contingency degradation follow-266

ing temporal sequence learning are still needed. If such additional tests show positive evidence for267

habituation, this would indicate that habits can be triggered by internally generated stimuli as well268

as by external ones. Conversely, if no evidence is found for habituation to temporal sequences, this269

would indicate that model-free learning processes can use internal stimuli, but do not necessarily270

produce habits. Experimental evidence already suggests that habits are not exclusively learned in271

a model-free way [32]; it may also be true that habituation involves additional mechanisms beyond272

the model-free caching of state-action-reward contingencies. Our study also raises the question273

of which neural systems are commonly versus distinctly recruited in order to learn from stimuli274

represented in working memory (e.g. temporal sequences) compared to purely external stimuli in275

a reinforcement learning task. While numerous studies have investigated the neural systems medi-276

ating reinforcement learning over externally presented stimuli (see 33 for a review), to date, only a277

single study has investigated brain activity involved in temporal pattern learning using fMRI [21].278

However, the sequence of events in that study was random, and any pattern that occurred was279

spurious. Moreover, participants were required to respond to the stimuli instead of predicting280

them, and might thus be implicitly learning a motor sequence. It remains to be determined what281

brain regions support explicit learning from temporal sequences, or other stimuli held in working282

memory, and to what degree these systems overlap with those shown to underlie learning from ex-283

ternal environmental cues. In conclusion, we have presented experimental evidence that temporal284

pattern learning, and consequently learning from internal stimuli held in working memory, can be285

model-free.286

Our study has helped delineate the contexts that support model-free learning—a subject of cur-287

rent debate. Temporal pattern learning is a fundamental aspect of human cognition and model-free288

learning and habit formation are subjects of immediate relevance for research on typical learning289

as well as for the study of neuropsychiatric disorders ranging from addiction, obsessive-compulsive290

disorder, and Tourette syndrome to anxiety disorders and major depression [34]. It is thus impor-291

tant to continue investigating temporal pattern learning, including whether the model-free learning292
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of temporal sequences produces outcome-insensitive, habitual responses and how such learning is293

implemented in the brain.294

4 Methods295

4.1 Participants296

Forty-one healthy young adults participated in the experiment, 21 (13 female) randomly assigned297

by a random number generator to the simultaneous condition and 20 (13 female) to the sequential298

condition. The inclusion criterion was speaking English and no participants were excluded from299

the analysis. The sample size was chosen by the precision for research planning method [35, 36], by300

comparing the estimated differences between participant groups in the logistic regression analysis301

with those between model-free and model-based simulated agents.302

The experiment was conducted in accordance with the Zurich Cantonal Ethics Commission’s303

norms for conducting research with human participants, and all participants gave written informed304

consent.305

4.2 Task306

The task’s state transition model defines four possible initial states, which were randomly selected307

with uniform distribution in each trial and represented by four different stimuli, each composed of308

two symbols: AA, AB, BA, or BB. At the initial state, two actions were available to the participant:309

pressing the left or the right arrow keys. By pressing one of the keys, the participant was taken310

to a final state, which might be either the blue state or the pink state. If the left arrow key was311

pressed, the participant was taken to the final state given by the rule AA → blue, AB → pink,312

BA → pink, BB → blue with 0.8 probability or to the other state with 0.2 probability; if the right313

arrow key was pressed, the participant was taken to the final state not given by the previous rule314

with 0.8 probability or to the other state with 0.2 probability. There was no choice of action at the315

final state, but participants were required to make a button press to potentially earn the reward.316

Each final state was rewarded according to an associated probability, which was 0.7 for one state317

and 0.3 for the other. The highest reward probability was associated with the blue state for half318

of the participants and to the pink state for the other half. Participants were told that each final319

state might be rewarded with different probabilities, but not what the probabilities were nor that320

they were fixed.321

In contrast with our task design, in which the final states’ reward probabilities were fixed, in322
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the original task design proposed by Daw et al. [17] the reward probabilities slowly drifted over323

time, because those authors were interested in the trade-off between model-based and model-free324

mechanisms, which is assumed to happen on the basis of their relative uncertainties. In this study325

we were interested instead in testing if model-free learning of temporal patterns is possible and326

keeping the task environment stable helps making the model-free associations stronger and more327

likely to influence choice [37, 38].328

Participants were initially instructed to learn the common transitions between the initial and329

the final states in the absence of reward. Participants then performed the task defined by the model330

above in the simultaneous or sequential condition. Half of the participants were randomly allocated331

to the simultaneous condition and the other half to the sequential condition (Figure 1). In the332

simultaneous condition, both symbols that define the initial state were displayed simultaneously333

on the screen for 3 seconds. In the sequential condition, each symbol is an element of a sequence334

and each element was presented for 1 second, but never conjointly, and with a 1-second delay335

(blank screen) in between. Two triangles pointing left and right then appeared and the participant336

was given 2 seconds to make a decision about whether to press the left or the right arrow keys;337

if they did not press any keys, the word SLOW was displayed for 1 second, and the trial was338

aborted and omitted from analysis. A blue or pink rectangle appeared immediately afterward,339

indicating the final state. The participant then pressed the up-arrow key and, if the final state was340

rewarded, a green dollar sign appeared on the screen for 2 seconds; otherwise, a black X appeared341

for 2 seconds. The task comprised 250 trials, with a break every 50 trials, and participants received342

the total reward they obtained by the end of the task (0.18 CHF per reward).343

4.3 Model-free algorithm344

The SARSA model-free algorithm with replacing eligibility traces [1, 17] was used to simulate345

model-free learning agents. For each action a and state s, it estimated the value Q(s, a) of per-346

forming that action in that state. The task’s initial states si were AA, AB, BA, and BB, and347

the actions ai available at the initial states were left and right . The final states were pink and348

blue, and the only action af available at those states was up. The initial value of Q(s, a) for every349

state and action was 0.5. In each trial t, the simulated agent at the initial state si chose left as350

its initial-state action with probability pleft and right with probability 1 − pleft , according to the351

following equation:352

pleft =
1

1 + e−β[Q(si,left)−Q(si,right)]
, (1)
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where β > 0 is an inverse temperature parameter that determines the algorithm’s propensity to353

choose the option with the highest estimated value. After the final state sf was observed and354

a reward r ∈ {0, 1} was received, state-action values were updated according to the following355

equations:356

Q(si, ai) = (1− α1)Q(si, ai) + α1Q(sf , up) + α1λ[r −Q(sf , up)], (2)

Q(sf , up) = (1− α2)Q(sf , up) + α2r, (3)

where 0 ≤ α1, α2, λ ≤ 1 are parameters: α1 is the initial learning rate, α2 is the final learning rate,357

and λ is the eligibility trace [1, 17].358

In the special case where λ = 1, the update of initial state-action values becomes359

Q(si, ai) = (1− α1)Q(si, ai) + α1r, (4)

that is, the estimated values of choosing left and right in each initial state are updated indepen-360

dently of the final state’s estimated value. Thus, SARSA (λ = 1) ignores the identity of the final361

state when making initial-state decisions, and an initial-state action that resulted in a reward will362

necessarily lead to a higher stay probability when the respective initial state recurs. This is true363

even if the action will probably lead to the final state with the lowest value.364

4.4 Model-based algorithm365

In simulations of model-based agents [17], values were assigned to initial-state actions and to final366

states. The value V of a final state s ∈ {pink , blue} in the first trial t = 1 was V (s, 1) = 0.5. An367

initial-state choice c ∈ {left , right} in trial t had a value V given by368

V (c, t) = Pr(c→ pink)V (pink , t) + Pr(c→ blue)V (blue, t), (5)

where Pr(c → s) is the probability that choosing c will lead to the final state s, which might be369

0.8 or 0.2 according to the task’s transition model. The value of an initial-state choice can thus be370

understood as the expected value of the final state the agent will go to after making that choice.371

If V (left , t) > V (right , t), the agent was more likely to choose left and vice-versa.372

In each trial t, the agent’s initial state action was left with probability pleft and right with373
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probability 1− pleft , given by374

pleft =
1

1 + e−β[V (left,t)−V (right,t)]
, (6)

where β is an inverse temperature parameter. After the agent made its initial-state choice and375

went to a final state s, that final state’s value was updated according to the following equation:376

V (s, t+ 1) = (1− α)V (s, t) + αr(t), (7)

where r(t) ∈ {0, 1} indicates if the agent received a reward and 0 ≤ α ≤ 1 is a learning-rate377

parameter of the model. The value of a final state is thus the moving average of the rewards378

received in that state.379

4.4.1 Model-based predictions380

Our method of determining model-based predictions for the stay probability was different from381

the method used by Daw et al. [17]. In that study, there was only one initial state and the model-382

based and model-free algorithms predicted how the stay probability would change from one trial383

to the next. The present study’s task, on the other hand, had four initial states and the model-free384

algorithm made predictions about how rewards would affect the participant’s choices from one trial385

to the next trial with the same initial state, which is not necessarily the next trial. We therefore386

had to devise an alternative method of calculating the model-based predictions.387

Our method relies directly on how the model-based algorithm estimates the reward probabilities388

of the initial-state choices, which either increase or decrease from one trial to the next with the same389

initial state depending on what happened, and was therefore learned about reward probabilities, in390

the intervening trials. If the participant’s initial-state choice in a trial t1 was left , for instance, the391

model-based prediction was that in a future trial t2 with the same initial state the stay probability392

should increase if V (left , t2)−V (right , t2 ) > V (left , t1 )−V (right , t1 ) and decrease otherwise. The393

model-based predictions depended on the parameter α. The data analysis results were obtained by394

setting α = 0.4, as this was the mean value that Daw et al. [17] found in their experiment by fitting395

to their experimental data an expanded reinforcement learning model that combines model-based396

and model-free learning. For comparison, we tried other values for α, but the analysis results did397

not vary significantly.398
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4.5 Data analysis by logistic regression399

For each human participant or simulated agent, we calculated the stay probability as a function of400

model-free and model-based predictions. In each trial, if the human participant or simulated agent401

chose an action that was the same as that chosen in the previous trial with the same initial state,402

this was considered a stay. The four initial-state choices following the first occurrence of an initial403

state were not analyzed. The remaining initial-state choices were coded as the random variable y404

and classified as a stay (y = 1) or not a stay (y = 0).405

We then analyzed the resulting data using a hierarchical logistic regression model whose pa-406

rameters were estimated through Bayesian computational methods. The dependent variable was407

pstay, the stay probability for a given trial, and the independent variables were xmf , which indi-408

cated what the model-free algorithm predicted about pstay (+1 if it predicted an increase, −1 if it409

predicted a decrease), xmb , which indicated what the model-based algorithm predicted about pstay410

(+1 if it predicted an increase, −1 if it predicted a decrease), and the interaction between the two.411

Thus, for each participant, we determined a four-dimensional vector ~β whose components were the412

β coefficients of the following equation:413

pstay =
1

1 + exp[−(β0 + βmbxmb + βmfxmf + βmb×mf xmf xmb)]
. (8)

The distribution of y was Bernoulli(pstay). The distribution of the ~β vectors was N ( ~µc, ~σ2) if414

the participant was in the simultaneous condition and N ( ~µe, ~σ2) if the participant was in the415

sequential condition; in other words, the group means for each ~β were allowed to vary independently.416

The parameters of the ~β distribution were given vague prior distributions based on preliminary417

analyses—the ~µ vectors’ components were given a N (µ = 0, σ2 = 25) prior, and the ~σ2 vector’s418

components were given a Half-normal(0, 25) prior. Other vague prior distributions for the model419

parameters were tested and the results did not change significantly.420

To obtain parameter estimates from the model’s posterior distribution, we coded the model421

into the Stan modeling language version 2.14.0 [39, 40] and used the PyStan Python package [41]422

to obtain 100,000 samples of the joint posterior distribution from four chains of length 50,000423

(warmup 25,000). Convergence of the chains was indicated by R̂ ≈ 1.0 for all parameters. The424

minimum effective sample size for the parameters of interest ~µc, ~µe, and ~µe − ~µc was 31785.425

4.6 Fitting of the algorithms to experimental data426

For comparison with the participant data, we fitted the SARSA model-free algorithm and the427

model-based algorithm to the experimental data and generated replicated data using the fitted pa-428
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rameters. The parameters were obtained by fitting both algorithms to all participants (to generate429

Figures 3 and 4) and the model-based algorithm to the participants in the sequential condition (to430

perform the simulated experiments). To that end, we used a Bayesian hierarchical model, which431

allowed us to pool data from all participants to improve individual parameter estimates.432

The parameters of the model-based algorithm for the ith participant were αi and βi. They433

were given a Beta(aα, bα) and lnN (µβ , σ
2
β) prior distributions respectively. The hyperparameters434

aα and bα were themselves given a noninformative Half-normal(0, 104) prior and the hyperpa-435

rameters µβ and σ2
β were given a noninformative N (0, 104) and Half-normal(0, 104) priors respec-436

tively. The parameters of the model-free algorithm for the ith participant were αi1, αi2, λi, and437

βi. They were given a Beta(aα1
, bα1

), Beta(aα2
, bα1

), Beta(aλ, bλ) and lnN (µβ , σ
2
β) prior distri-438

butions respectively. The hyperparameters aα1 , aα2 , aλ, bα1 , bα2 , and bλ were themselves given a439

noninformative Half-normal(0, 104) prior and the hyperparameters µβ and σ2
β were given a non-440

informative N (0, 104) and Half-normal(0, 104) priors respectively. We then coded the models into441

the Stan modeling language version 2.14.0 [39, 40] and used the PyStan Python package [41] to442

obtain 50,000 samples of the joint posterior distribution from one chain of length 60,000 (warmup443

10,000). Convergence of the chains was indicated by R̂ ≈ 1.0 for all parameters. The minimum444

effective sample size was 1481 for all hyperparameters. The results were used to generate Figures 2445

and 3.446

4.7 Simulated experiments447

Given that this study’s aim was to determine if working memory-dependent temporal pattern learn-448

ing is necessarily model-based or can be model-free, we sought to determine if the results obtained449

for the sequential condition could have been generated by the model-based algorithm. To this end,450

we simulated 10,000 experiments wherein, in each simulated experiment, the 21 participants in451

the simultaneous condition were compared to a different group of 20 simulated purely-model-based452

agents (as replacements for the 20 human participants in the sequential condition).453

The model-based algorithm was first fitted to the sequential condition results using the Bayesian454

hierarchical method described above to obtain 200,000 samples of the posterior distribution from455

four chains of length 60,000 (warmup 10,000). Convergence of the chains was indicated by R̂ ≈456

1.0 for all parameters. The minimum effective sample size was 16467 for all hyperparameters.457

For each simulated experiment, a point was randomly selected from the posterior distribution458

of hyperparameters (aα, bα, µβ , σβ) and 20 sets of algorithm parameters (α, β) were randomly459

generated using the selected values, i.e. α ∼ Beta(aα, bα), β ∼ lnN (µβ , σ
2
β). For each (α, β)460

parameter set, the model-based algorithm was run for 250 trials of the experimental task to generate461
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results for a simulated purely-model-based agent. These simulated agents were then compared with462

the actual participants in the simultaneous condition using the same logistic regression analysis463

described above, except that, for computational efficiency, only 600 samples from one chain of 800464

samples (warmup 200) was obtained from the posterior distribution.465

The entire analysis procedure was replicated several times with differing parameter values and466

prior distributions to ensure that the results and conclusions remained the same under a wide set467

of assumptions. In all cases, the results were nearly identical and supported the same conclusions.468

4.8 Code and data availability469

All the computer code and behavioral data used in this study are available at https://github.com/carolfs/mf_wm470
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