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The ability to map brain networks at the macroscale in living individuals is fundamental in efforts to chart 
the relation between human behavior, health and disease. We present a framework to encode structural 
brain connectomes and diffusion-weighted magnetic resonance data into multidimensional arrays 
(tensors). The framework overcomes current limitations in building connectomes; it prevents information 
loss by integrating the relation between connectome nodes, edges, fascicles and diffusion data. We 
demonstrate the utility of the framework for in vivo white matter mapping and anatomical computing. The 
framework reduces dramatically storage requirements for connectome evaluation methods, with up to 
40x compression factors. We apply the framework to evaluate 1,980 connectomes, thirteen tractography 
methods, and three data sets.  We describe a general equation to predicts connectome resolution 
(number of fascicles) given data quality and tractography model parameters. Finally, we provide open-
source software implementing the method and data to reproduce the results. 

INTRODUCTION 
A fundamental goal of neuroscience is to develop methods to understand how brain networks support function 
and behavior in individuals across human populations [1–3]. The recent increase in availability of neuroimaging 
data and large scale projects has the potential to empower new ways of discovery by studying large populations 
of human brains [4–22]. Exploiting these large-scale data sets will require advances in measurement, 
computational approaches and theories [23]. 

Innovation in measurement and computational methods for human brain mapping is shifting the in vivo study of 
the white matter and large-scale brain networks beyond qualitative characterization (such as camera lucida 
drawings), toward structural and functional quantification [24–30]. Tractography and diffusion-weighted magnetic 
resonance imaging (dMRI) are the primary methods for mapping structural brain connectivity and white matter 
tissue properties in living human brains. These in vivo investigations have shown that there is much to learn about 
the macrostructural organization of the human brain such that network neuroscience has become one of the 
fastest-growing fields [3,25,28,29,31–39]. 

Tractography algorithms use dMRI data to estimate the three-dimensional trajectory of neuronal axons bundles 
wrapped by myelin sheaths – the white matter fascicles.  Fascicles are normally represented as sets of brain 
coordinates, with coordinates segments spanning anything between 0.01 to 1 mm in length (Fig. 1a top). 
Fascicles have historically been clustered into anatomically cohesive groups called white matter tracts. The 
largest tracts in the human brain are relatively well characterized and associated with names – such as the 
corticospinal tract (CST) and the arcuate fasciculus (Fig. 1b top [40,41]). White matter tracts communicate 
between cytoarchitectonically and functionally distinct areas – such as Broca’s or Wernicke’s areas involved in 
human language processing (Fig. 1c top [42–44]). White matter tracts and brain areas together compose a large-
scale network called the connectome [45]. Within this network, white-matter tracts represent communication 
pathways (the edges; Fig. 1b top) and brain areas units of information processing (the nodes; Fig. 1c-top).  
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Figure 1. Connectome encoding in tensor space.  (a) Top. Two white matter fascicles (𝑓" and 𝑓#) and three voxels (𝑣", 𝑣#
and 𝑣%). Bottom. Tensor encoding of fascicles’ spatial and geometrical properties. Non-zero entries in 𝚽 indicate fascicles
orientation (1st mode), position (voxel, 2nd mode) and identity (3rd mode). (b) Top. Two major human white matter tracts
(connectome edges). The corticospinal tract and Arcuate fasciculus. Bottom. Tensor encoding of connectome edges. The 
corticospinal tract and Arcuate fasciculus are encoded as collections of frontal slices – blue and yellow subtensors. (c) Top. 
Two human cortical areas (connectome nodes). Wernicke’s territory and Broca’s area. Bottom. Tensor encoding of 
connectome nodes. We show examples of a large temporal area comprising also Wernicke’s territory and Broca’s area 
encoded as collections of lateral slices – red and green subtensors (areas defined using Freesurfer [42–44,46]). 

The standard process to map structural brain connectomes is a threefold lossy process. First, dMRI 
measurements are acquired. Second, tractography is used to identify white matter fascicles. Finally, segmented 
brain areas are used to identify the terminations of individual fascicles and build a matrix of brain connections. 
Unfortunately, each of these steps results in loss of information. For example, fascicles are generally estimated 
using the dMRI data, but after that the data is mostly lost and disregarded in subsequent analyses.  Similarly, 
brain connection matrices are built using the fascicles terminations in segmented brain areas. Yet, once a matrix 
is built using such terminations, fascicles information is lost; there is no straightforward method to relate back the 
matrix to the anatomical properties of individual fascicles nor to the dMRI data.   

The loss of information during the connectome mapping process, such as described in the examples above, and 
the lack of frameworks to integrate computations on fascicles, brain areas as well as dMRI data, profoundly limits 
efforts in clarifying the properties of human brain macroscopic connectivity [2,24,25,47] and white matter 
microstructure [26,48,49]. Such limitation is especially important because of the established dependency of 
connectome mapping on brain parcellation schemes and tractography methods [50–57], and the associated need 
for connectome evaluation methods [50,58,59]. We provide a solution that overcomes information loss in mapping 
connectomes. The solution has the potential to open new avenues of investigation and fully exploiting 
opportunities provided by increased data quality and improved tractography methods [60–64]. 
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We propose an integrated connectome encoding framework that prevents information loss during the mapping 
process. The framework can encode altogether, connectome edges, nodes as well as the associated dMRI data 
using multidimensional arrays – also called tensors [65–68].  Below we introduce the multidimensional encoding 
framework and show four applications. First, we use the framework to implement efficiently methods for 
connectome evaluation. Second, we use the framework to derive a general equation that predicts connectome 
resolution; namely the number of fascicles supported by data and tractography parameters. To do this we perform 
a large scale tractography evaluation (13 tracking algorithms, 1,980 brain connectomes, three different data 
sources [50,61,69]). Finally, we present two additional applications by describing how the framework can be used 
to perform efficiently statistical inferences on brain connections and white matter tracts using the recently 
introduced virtual lesion method [50,70] and to chart the reliability and reproducibility in the estimates of the 
geometrical organization of the human white matter [48,71].  

We provide open source software implementing the encoding framework at github.com/brain-life/encode, scripts 
and data to reproduce the analyses in this article at doi:10.5967/K8X63JTX [72,73].

RESULTS
We present a method to encode the anatomical properties of connectome edges and nodes into multidimensional 
arrays, also called tensors (see Methods [68]). We show an encoding scheme that maps fascicles into the three 
dimensions of a sparse tensor, 𝚽 (Fig. 1a bottom). The first dimension of 𝚽 encodes fascicles orientation along 
their trajectory (1st mode). The second dimension encodes spatial position, voxels (2nd mode). The third 
dimension encodes fascicles indices within the connectome (3rd mode). We show how connectome edges (an 
ensemble of fascicles) and nodes (an ensemble of voxels) can be conveniently identified in 𝚽 subtensors, small 
subsets of the total volume (see Fig 1b and c). 

Multidimensional encoding of connectomes provides a variety of computational opportunities. This is because 
direct tensor operations can be applied globally to connectomes. For example, fascicle search, mapping of 
multiple brain areas and their connections or charting anatomical properties of entire fascicles sets such as their 
angle of crossing become trivial operands such as finding indices in tensor 𝚽. Below we demonstrate four 
applications involving such operations.

First application: Efficient connectome evaluation by tensor encoding 

It has been recognized that estimates of brain connectomes can differ substantially depending on the tracking 
method and data type [48,50,58,71]. Such differences motivated measuring accuracy for brain connectomes in 
individual brains in order to identify the best fitting connectome model before further studying its properties 
[50,58].  

A few methods to evaluate connectomes and compute errors have been proposed recently [50,76,77]. One of 
these methods, the Linear Fascicle Evaluation algorithm, or LiFE [50], computes the error of a connectome in 
predicting the demeaned diffusion signal. LiFE takes as input the set of white-matter fascicles generated using 
tractography and returns as output the subset of fascicles that predict the dMRI measurements with smallest error 
(see [50] and Methods). LiFE predicts diffusion measurements (vector 𝐲) in individual brains by combining the 
diffusion prediction from individual fascicles in a connectome (columns of matrix 𝐌) as described in equation (7) in 
Methods and Fig. S2c. The LiFE model is fit to the data by assigning weights to the fascicles in the connectome 
(entries in vector 𝐰; Fig. S2c) via a non-negative least-squares method. We show that the LiFE model based on 
matrix 𝐌, LiFEM can be accurately approximated using tensor decomposition and the framework introduced in 
Fig. 1. 
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Figure 2. Tensor decomposition of the Linear Fascicle Evaluation method.  (a) The tensor decomposition model, LiFET 
(Y ≈ 𝚽	×"𝐃	×%	𝐰., see Supplementary Section 2.1 for details). LiFET uses a dictionary (𝐃) of precomputed diffusion
predictions in combination with the sparse tensor, 𝚽, and a vector of fascicles weights (𝐰) to model the measured dMRI
(matrix Y). (b) Comparison of the error in predicting diffusion. Scatter plot of the global r.m.s error (𝑒012; equation (11),
Methods) in predicting diffusion measurements for LiFEM [50] and LiFET in ten brains, three dataset (HCP3T, STN and 
STN150) and two tracking methods (tensor-based deterministic and probabilistic tractography). The r.m.s is virtually 
identical. (c) Top. LiFET error in approximating the LiFEM matrix  (𝑒𝐌; equation (12); Methods) computed for ten brains
(HCP3T, STN and STN150 datasets, probabilistic tractography, Lmax=10). Bottom. Error (𝑒𝐰; equation (13); Methods) of
LiFET in recovering the fascicle contributions (w) assigned by LiFEM. (N=10, probabilistic tractography Lmax=10) (d) Model
compression. Measured size of LiFEM (𝐌) and the decomposed model, LiFET, (𝚽 and matrix 𝐃; N=20). Matrices and
tensors all stored using double floating-point precision avoiding zero entries [74,75]. 

Fig. 2a depicts the model based on the tensor decomposition, LiFET, where the diffusion measurement (matrix Y,
equation 23) is factorized into: (1) a dictionary matrix 𝐃 in which each atom (column) represents the precomputed 
diffusion prediction for a specific fascicle orientation, evaluated at all gradient directions (𝛉, see equation 20), (2) 
the sparse indicator tensor 𝚽	 (Fig. 1c) and (3) a vector of fascicle weights 𝐰. Supplementary Results Section 
2.1 provides additional details on the decomposition method.  

We measured the accuracy of LiFET in approximating LiFEM using three publicly available data sets: STN, 
STN150 and HCP3T [50,60,61,78,79]. To do so, we built connectomes in ten individual brains using both, 
probabilistic (CSD, Lmax=10 [80,81] and deterministic tractography [82,83], see Methods). We report three main 
results showing that given a sufficient number of dictionary atoms (L>360 in 𝐃; Fig. S2d): (1) the global r.m.s.
error (equation 11) in predicting diffusion is virtually identical between LiFEM and LIFET (Fig. 2b). (2) LIFET 
approximates the LiFEM matrix (𝐌) accurately. Specifically, the Frobenius norm-based relative error, 𝑒𝐌, is less
than 0.1% (Fig. 2c top; Methods, equation 12). (3) The fascicles weights assigned by LiFEM and LIFET are 
virtually identical (Fig. 2c bottom, 𝑒𝐰 < 0.1%). The relative error between weights estimated by LiFEM and LiFET

𝑒𝐰, was computed using the ℓ#-norm (Methods, equation 13).  We show that by increasing decomposition
resolution (L) the difference in r.m.s., as well as 𝑒𝐌 and 𝑒𝐰 decrease. See Fig. S2g, h, i, j and k for additional
results. 

Finally, LiFET requires a fraction of the memory used by LiFEM. To show this, we measured the size of the 
computer memory used by 𝐌 matrix in the LiFEM model (Methods, equation 7) and compared it to that used by 𝐃
and 𝚽	 together in the LiFET model (SI Results, equation 23). Fig. 2d shows measurements in gigabytes for 20
connectomes (500,000 fascicles each, two tracking methods) in ten subjects from the three data sets. Whereas 
LiFEM can require up to 40GB per connectome, the decomposed model LiFET requires less than 1GB, a 40x 
compression factor. All calculations were performed using double precision floating point and sparse data format 
[74,75]. See Fig. S2 and Results for details on the effect of the number of gradient directions (𝑁𝛉) and
connectome fascicles (𝑁7) on memory consumption.
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Second application: A single equation to predict connectome resolution from data quality

The availability of multiple tracking methods and data types can be both an opportunity or a burden for 
investigators interested in using them as biomarkers for health and disease [6,7,13,20,21,84]. In an ideal world a 
single tracking method or data type would supersede all others. Unfortunately, this has been difficult to prove. Not 
all data and methods are preferable all situations. For example, when measuring patient populations or in 
developmental or ageing studies might be necessary to measure at lower resolution given time constraints. In 
principle, higher directional and spatial resolution should be preferred to lower resolution one. Yet, to date we do 
not have computations to relate data quality and resolution or tractography quality and flexibility to what it is 
possible to map of the human connectome. Below we defined an equation that predicts connectome resolution 
(the number of connections supported by the data) given data and tractography quality.  

We used LiFET to perform a large-scale evaluation of the reproducibility of connectome estimates in individual 
brains to identify the degree to which estimates depend on data quality and tractography. To do so, we generated 
a total of 1,980 connectomes using thirteen different combinations of tracking methods and parameters on data 
from twelve individual brains from three sources. Specifically, we used data from (a) HCP3T (4 subjects, 1.25 mm 
isotropic spatial resolution, 90 diffusion directions [5], (b) HCP7T (4 subjects, 1.05 mm isotropic spatial resolution, 
60 diffusion directions [60] and (c) STN (4 subjects, 1.5 mm isotropic spatial resolution, 96 diffusion directions 
[50].  

To test the quality and reproducibility of connectome estimates we generated ten connectomes for each individual 
brain and tracking method. We used both, probabilistic and deterministic tracking, based on either constrained 
spherical deconvolution (CSD) or the tensor model [81,82] and generated 500,000 candidate fascicles. We also 
varied tracking parameters by estimating fiber orientation distribution functions using a range of CSD parameter 
values (Lmax= 2, 4, 6, 8, 10, 12). Each one of these 1,980 candidate connectomes was then processed using 
LiFET. LiFET identified optimized connectomes, that is, the subset of fascicles with non-zero weight [50] and 
computed connectomes error in predicting the demeaned diffusion signal (r.m.s.; equation 10).  We used this 
large set of statistically validated, repeated-measures connectomes to test the reproducibility of connectome 
estimates in individual subjects, as function of tracking method and data type (spatial resolution, signal-to-noise 
ratio, 𝑆𝑁𝑅, and number of diffusion directions). 

We assessed quality using multiple measures. Connectome quality can be assessed in several ways. For 
example, the error of the connectome in predicting the diffusion signal can be measured to establish connectome 
quality [50,76,77]. In addition, connectome resolution, the number of fascicles supported by the data can also 
inform about connectome quality. Finally, the accuracy of the connectome fascicles can be estimated qualitatively 
by comparing the anatomical variability of known major white matter tracts estimated from the connectomes using 
atlases [41]. We established the reproducibility of these three measures across repeated connectome estimates 
within individual brains and across tracking methods, parameters and data types. 

Fig. 3a plots mean optimized connectome error and number of found fascicles (±5 standard error of the mean, 
s.e.m) for the three datasets: STN, HCP3T and HCP7T (1,400 connectomes). The plot shows a series of
informative findings. First, data sets naturally cluster into groups, an effect mostly driven by the connectome error,
the abscissa. Second, individual brains are separable (along diagonals of the plot) both within and between
datasets, such separation is largely independent of tracking method or parameters. Third, for each dataset the
number of found fascicles increases with the number of CSD parameters (Lmax), this is true for both deterministic
and probabilistic tracking and can be best appreciated for deterministic tracking, see also inset. Fourth, both the
number of found fascicles and connectome error are extremely reliable. LiFET returns an almost identical number
of found fascicles and connectome error across repeated tracking for a given set of parameter and tracking
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method (error bars are very small compared to the mean values). Finally, results show that probabilistic methods 
are always better than deterministic methods, showing lower r.m.s. error and higher number of fascicles. This 
reproduces previous results [50]. 

We further performed a qualitative evaluation of the degree to which connectomes generated using different 
tracking methods and optimized with LiFET show reliable anatomical features. To do so we segmented twenty 
major human white matter tracts using standard methods and atlases [41,85]. Fig. 3b shows two examples of 
repeated tracts identified in one subject (HCP3T), using probabilistic (top) and deterministic (bottom) tracking. 
Results show high degree of anatomical similarity for tracts in LiFET optimized connectomes when using a single 
tracking method – compare left and right in the top or bottom panels. Conversely, results show anatomical 
differences within a single individual across tracking parameters –the LiFET optimization cannot change this 
result– compare top and bottom tracts. This reproduces previous results [50. Fig. 3c shows similar results for a 
different subject in the HCP3T data set. Importantly, by comparing two different subjects in Fig. 3b and Fig. 3c it 
is clearly possible to discriminate between brains based on the anatomical features of the connectomes.  

Fig. S3b shows multiple examples of major tracts anatomy estimated in individual subjects using repeated 
connectomes measures. This allows to appreciate the degree of anatomical similarity within subjects given a 
single tracking method.  Fig. S3c shows multiple examples of major tracts anatomy estimated in individual 
subjects using different tracking methods and parameter sets. This allows to appreciate the anatomical 
differences that different tracking methods generate even within the same subject and data set. 

Finally, we identified an equation to predict connectome resolution (number of fascicles 𝑛7 in an optimized 
connectome): 

𝑛7 	≈ 𝑎 + 𝑏×𝑆𝑁𝑅 + 𝑐×𝑃𝐷𝑅,                                                     (1) 

Where data quality is defined as 𝑆𝑁𝑅 = (𝑚/𝑟)/𝑉, 𝑚 and 𝑠𝑡𝑑 are mean to standard deviation of the non-diffusion 
measurements, and 𝑉 is the voxel volume (in mm). The tractography method quality was defined as 𝑃𝐷𝑅 = 𝑁M/
𝑁𝛉, where 𝑁M is the number of CSD parameters and 𝑁𝛉 the number of measured diffusion directions (see 
Methods, equation 2 and 3).  

We used the three data sets (STN, HCP3T and HCP7T) with their different properties –spatial resolution (1.5, 
1.25 and 1.05 mm respectively), number of diffusion directions (96, 90 and 60) and 𝑆𝑁𝑅– and the multiple 
tractography parameters tested to fit the multilinear model in equation (1). More specifically, Fig. 3d, left- and 
right-hand panels show the connectome resolution estimated in 96 optimized connectomes using different CSD 
parameters (Lmax) for all subjects and datasets. Equation (1) was fit to the data using linear regression to estimate 
𝑎, 𝑏 and 𝑐. Equation (1) describes well the fundamental relationship between connectome resolution, data quality 
(𝑆𝑁𝑅) and tractography model parameters (𝑃𝐷𝑅). These results provide a first calculation to establish how 
diffusion data and tractography method affect connectome resolution. In short, connectome density scales linearly 
with data quality and the flexibility of the tracking method to exploit the data. Equation (1) can inform the choice of 
dMRI data parameters, such as spatial resolution, directional resolution given data 𝑆𝑁𝑅 and available tracking 
methods as investigator approach a new study [86,87].  
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Figure 3. Connectome resolution and anatomical 
reliability as function of data and method.  (a) 
Scatter plot of number of found fascicles and global 
r.m.s error in LiFET optimized connectomes (mean 
±5 standard error of the mean, s.e.m, N=1,400, n=12 
subjects, m=10 repeated tracking, 13, 13 or 9 
different Lmax values were used for STN, HCP3T and 
HCP7T, respectively). Inset shows the relation 
between the number of found fascicles (ordinate) and 
r.m.s. error (abscissa) and Lmax (color) in one subject 
from the HCP3T dataset.  (b) Reproducibility of 
connectome anatomy. Twenty major human white 
matter tracts, two repeated estimates in a single 
subject probabilistic (top) and deterministic (bottom) 
tracking, HCP3T dataset. Tracts anatomy is very 
similar between repeated estimates when using a 
single tracking method (compare between columns, 
top and bottom). Estimated tracts anatomy differs 
within a single subject when the different tracking 
methods are used (compare between rows, left or 
right). (c) A different subject from the HCP3T 
dataset. (d) Connectome resolution (fascicles 
number, 𝑛7) is predicted by data quality (Signal to 
Noise Ratio, 𝑆𝑁𝑅) and tractography model quality 
(𝑃𝐷𝑅, number of CSD Parameters to Direction 
Ratio). Left hand panel, probabilistic tracking 
(𝑎=11,4x103, 𝑏=2,5x103, 𝑐=66,3x103, 𝑅#=0.873, 
𝑝<0.0001). Right hand panel, probabilistic tracking 
(𝑎=6,1x103, 𝑏=3,4x103, 𝑐=11,8x103, 𝑅#=0.821, 
𝑝<0.0001) tracking. 𝑆𝑁𝑅 and 𝑃𝐷𝑅 are defined in 
Methods equations (2) and (3). Fig. S3d shows the 
marginal distributions of the plots in (d).  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 10, 2017. ; https://doi.org/10.1101/107607doi: bioRxiv preprint 

https://doi.org/10.1101/107607


 
 
 

Caiafa and Pestilli       –     Indiana University      –     2017     –    Submitted 

8 

Third application: Statistical inference on white matter tracts 
The concept of virtual lesion has been utilized in several contexts [70,88–91]. More recently, virtual lesions have 
been used to compute statistical evidence for white matter tracts by measuring the impact of removing entire sets 
of fascicles from individual whole-brain connectomes [50]. 

The LiFET method requires fascicles in an optimized connectome to contribute to the diffusion prediction by 
assigning non-zero weights, entries of vector 𝐰, to successful fascicles. Because of this, lesioning fascicles from 
the model (by setting their weights to zero) increases the prediction error, r.m.s. More specifically, if a set of 
fascicles, F, passes through the set of voxels V

F
, their path-neighborhood, P

F
, is defined as all fascicles passing 

through V
F
 not included in F	 . The full signal prediction in V

F
  depends on F	∪	P

F
 . The lesioned model instead, 

predicts the signal in V
F
 only using P

F
. The two models of the signal in V

F
, the lesioned (P

F
) and unlesioned 

(F	∪	P
F
) model generate two distributions of r.m.s. error among voxels in V

F
. These two distributions can be 

compared using various measures to establish the statistical evidence for F given the data [50]. 

 

Figure 4. Virtual lesion of white matter tracts using the tensor encoding framework. (a) Anatomical representation of 
the arcuate fasciculus and its path-neighborhood, blue and red respectively. (b) Identification of the arcuate fasciculus and 
its path-neighborhood.  Top. arcuate fascicles encoded as frontal slices collated by a permutation (F, blue). Middle. 
Ensemble of all voxels touched by the arcuate (lateral tensor slices, yellow) collated by a permutation. Bottom. The path-
neighborhood (P

F
, red) contained in the non-empty frontal slices of V

F
. (c) The virtual lesion using the tensor framework. 

Top. Diffusion prediction (Y) in the arcuate voxels by the arcuate and its path-neighborhood. Bottom. Diffusion prediction 
(Y') by P

F
, (arcuate fasciculus weights are set to zero, white). (d) Statistical evidence for twenty human major white matter 

tracts [41] established using the sparse tensor encoding framework. Error bars show ±1 s.e.m.  

To date, the virtual lesion method has been employed to establish the statistical evidence for brain tracts and 
connections [36,38,58,92]. The operations necessary to perform virtual lesions using data represented directly in 
the brain natural anatomical space require multiple mappings between fascicles coordinates, voxel indices and 
the corresponding entries in the LiFE model (M columns and associated weights). The computational complexity 
of these operations becomes trivial after encoding connectomes in the tensor framework. We show a visualization 
of the virtual lesion of the right arcuate fasciculus in a single individual (Fig. 4a-b). Given the arcuate fasciculus, F  
(Fig. 4a-b, blue), the identification of V

F
 and P

F
, can be achieved in a computationally efficient way using the 

tensor framework. V
F
 is the set of lateral slices with non-zero entries within the subtensor identified by F (Fig. 4b, 

yellow) and P
F
 is the set of fascicles (frontal slices) not in F but touching V

F
 (Fig. 4b, red). Computing the signal 
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prediction with and without lesion is then reduced to evaluate the sparse tensor decomposition and consider the 
tract weights zero (with lesion) or non-zero (without lesion), as shown in Fig. 4c. 

Fig. 4d and Fig. S4 shows the statistical strength of evidence for twenty major human white matter computed with 
19,200 virtual lesions (in all connectomes in Fig. 3) measured as the earth mover distance [50,93] and strength of 
evidence [50,93]. These results are important because they reproduce previous findings [50] and show large 
scale reliability of the in vivo statistical evidence of major human white matter tracts validated post mortem 
[40,41]. 

Fourth application: Estimates of white matter geometrical organization 
Clarifying the geometrical organization of the brain white matter is emerging as an important opportunity given 
recent improvements in both, measurement and mapping methods [25,26,48,49,94]. Hereafter, we utilize the 
encoding framework and 160 statistically validated connectomes to quantify the distribution of angles between 
white matter fascicles associated with pairs of white matter tracts or between tracts and their path-neighborhood 
[48,71,95].  

The corticospinal tract (CST), arcuate fasciculus (Arc) and superior lateral fasciculus (SLF) were segmented in 
the right and left hemispheres of 160 connectomes estimated using either probabilistic or deterministic 
tractography in eight brains (STN n=4; HCP3T n=4, Lmax=10, ten repeated tracking per brain) and standard 
atlases [41,85]. Angles between pairs of fascicles within a voxel were estimated by operating on the connectome 
encoding framework (Fig. 5a-d). We performed three experiments to establish the dependence of fascicle angles 
on the tracking method and measured the distribution of angles between fascicles in tracts and neighborhoods. 
We measured: (a) Crossing angles between fascicles in the Arc and CST at voxels of overlap between the tracts. 
These fascicles were expected to cross with non-zero degree angle. (b) Angles between fascicles in the Arc and 
SFL. These fascicles were expected to bypass each other with expected angle near zero degrees. (c) Angles 
between the Arc and its path-neighborhood. The expected angle of crossing between tracts and path 
neighborhoods has generated important debates [48,49,71,95].   

We performed three experiments to measure the dependence of angles between white matter fascicles as 
function of different tracking methods. In the first experiment, we computed pairwise angles between fascicles 
associated with either of two tracts, F" and F#, the Arc and CST respectively. We began by identifying the 
fascicles associated with tracts using the frontal slices of 𝚽	 (3rd mode; Fig. 5a). F" and F# identify two 
subtensors, Fig. 5b, blue and yellow respectively. Voxels containing both  and  were selected by finding the 
lateral slices of 𝚽 with non-zero entries in both subtensors (Fig. 5b, green slices, 2nd mode). Finally, we computed 
all pairwise angles between fascicles in F" and F# by identifying the atoms (indices in 1st mode) corresponding to 
the non-zero entries in those lateral slices of 𝚽 (Fig. 5c-d).  

Using the operations described above, we collected distributions of crossing angles, and computed peak 
distribution (𝜇) as well as width-at-half-max (𝜎, Fig. 5e). Importantly, we computed approximately 76,000,000 
crossing-angles using fascicles validated statistically (fascicles with positive LiFE weight, entries of vector w). 
Crossing angles distributions between Arc and CST peaked approximated at 75º and 78º for deterministic and 
probabilistic connectomes, respectively (𝜇, Fig. 5e). The measured 𝜎 was almost three-fold smaller for 
deterministic than probabilistic connectomes, 9º and 24º, respectively. These results must be put into context by 
considering the difference in quality of fit of the two connectomes; where probabilistic connectomes on average 
have a 4.4% lower error (s.d. 1.4%) and 16.2% higher number of supported fascicle (s.d. 1.1%) than deterministic 
ones (see Fig. 3a, datasets STN and HCP3T). Fig. S5a shows the same analyses repeated with a different pair 
of tracts, the CST and SLF.  Results are similar for these tracts with distribution peaking (𝜇) approximately at 
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78.1º and 86.4º for deterministic and probabilistic connectomes, respectively. Measured 𝜎 was almost two-fold 
smaller for deterministic than probabilistic connectomes, 17.1º and 31.5º, respectively. 

In a second experiment, we measured 𝜇 and 𝜎 for the distribution of angles between fascicles within two tracts 
travelling approximately parallel across the axial plane of the human brain; the Arc and SLF (Fig. 5f). We 
computed angles distributions for both, probabilistic and deterministic connectomes. The peak distribution (𝜇) was 
approximately 0º and 15º for deterministic and probabilistic connectomes, respectively. The estimated 𝜎 were 8.1º 
and 16.6º, respectively, a 2x increase in variability.  

 

Figure 5. Quantifying variability of estimates for angles of incidence between fascicles in the human white matter. 
(a) Arcuate (Arc, blue) and corticospinal tract (CST, yellow) fascicles identified in frontal slices of 𝚽. (b) Voxels shared 
between Arc and CST located by finding 𝚽 lateral slices  (green) with non-zero entries in 𝚽 subtensors (yellow and blue, 
respectively). (c) Measurement of the angle of incidence in the voxels shared by Arc and CST (green). Angles are 
determined by finding the indices in the first dimension of 𝚽 (1st mode). (d) Depiction of angles being computed in brain 
space.  (e) Distribution of crossing angles between Arc and CST. (f) Distribution of angles incidence between Arc and SLF. 
(g) Distribution of crossing angles between Arc and its neighborhood. Angles computed on Probabilistic (blue) and 
Deterministic (orange) connectomes (Lmax=10, STN and HCP3T). Analyses based only on fascicles with positive weight. 
Histograms show mean across subjects (n=8). Bar plots show peak angle (𝜇) and width-at-half height (𝜎). Error bars ±1 
standard error of the mean, s.e.m, across subjects  (n=8). 

In a final experiment we estimated the distribution of angles between fascicles in a tract, Arc, and its path 
neighborhood as function of tractography algorithm. Estimates of crossing angles between white matter tracts and 
path-neighborhoods have been debated [48,71,95]. Hereafter we report 𝜇 and 𝜎 for crossing angles between the 
Arc and its path neighborhood using 8 subjects on STN and HCP3T data sets with probabilistic and deterministic 
(Lmax=10) tracking methods. For each subject, we identified the Arc and its path-neighborhood by using tensorial 
operations similar to the ones described in Fig. 5a-d. Results show characteristic bimodal distributions (Fig. 5g). 
A majority of the path-neighborhood fascicles show angles between 0º and 20º with tract fascicles (𝜇, 9º and 0º 
for probabilistic and deterministic tracking, respectively) and around 80º (𝜇, 81º and 80º for probabilistic and 
deterministic tracking, respectively). The estimated 𝜎 for 𝜇 peaking at around 80º were 20.5º and 31.7º for 
deterministic and probabilistic connectomes, respectively, a 1.5x increase in variability.  

Considering that probabilistic connectomes predict the diffusion measurement better than deterministic ones, 
these results demonstrate substantial variability in the estimates of crossing angles that can be obtained using 
neuroimaging methods and that the estimates will depend on the data and analysis methods [48,71,95]. This 
result shows a degree of variability of the estimates consistent with recent reports [30,49]. 
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DISCUSSION 
We presented a connectome encoding framework that provides a solution to the current loss of information 
problem in modern connectome mapping methods. The encoding framework overcomes information loss by 
integrating fascicles, edges, nodes and associated dMRI data into multidimensional model. The encoding 
framework has the potential to empower new ways to study the human connectome by providing investigators an 
integrated multidimensional relationship between connectome nodes, edges, the anatomy of the white matter 
fascicles and the associated diffusion-weighted measurements. We provide four applications to show the utility of 
the connectome encoding framework.  

The recent increase in availability, quantity and quality of neuroimaging data and mapping methods poses new 
opportunities as well as challenges for mapping the human connectome [4–21,96]. dMRI is at the forefront of this 
data revolution [5,60,96]. Technological advances in dMRI data acquisition have permitted reduction of 
measurement time by factors up to 8-fold [97–99] and increase in spatial resolution up to 13-fold – when 
comparing volumetric resolution between clinical  and high-field dMRI data [60] (2.5 mm and 1 mm, respectively). 
Firstly, increased data quality and resolution also means increased size. Secondly, increased availability and 
diversity of data accompanied by the established variability in results from tractography, makes it difficult to 
identify a single tracking algorithm, parameter set or data type valid for every study [48,50,58,62,71,87]. For this 
reason, developing principled methods for evaluating data quality and tractography routinely in their relation to the 
connectome estimates has become paramount.  

The field of connectomics and the study of white matter need improved methods for mapping connectomes in 
living human brains. To date, best practice in the field to map connectomes is still that of committing to a single 
tracking method or dataset early on, and then study the results. There are some exceptions to this process [58]. 
Because the current best practices are limited in what they can achieve, multiple reports have been made 
highlighting the many methodological limitations as well as the dependency of results on data and algorithms  
[87,100–104].  As a result, we now understand that no single current tracking method nor data set is likely to 
solve all reported problems. To date, the fields of connectomics and white matter mapping have been 
tremendously receptive to issues of validity and reproducibility of results. Criticism is an important aspect 
fundamentally embedded in the very process of scientific inquiry. We believe that dueling on self-criticism can in 
the long-run become less effective to advance efforts to map the human connectome. We believe it is of primary 
importance to focuss our most creative thinking on proposing new, potentially better methods to advance with 
charting the macroscopic organization of the human connectome. 

The concept of routine statistical evaluation of brain connectomes has been recently proposed [50,59,76,77]. The 
proposal is to build predictive models of the measured dMRI signal from the structure of brain connectomes and 
compare the model prediction and the data by using statistical methods such as cross-validation [105]. The 
statistical evaluation approach complements the work on tractography validation based on either synthetic or 
post-mortem preparations [62,106,107]. Previous work evaluated model accuracy, namely how well a 
tractography method predicts independent dMRI measurements [50]. The present work advances by measuring 
model precision, how similar connectome estimates are when using a single tractography method repeatedly. 

As number and diversity of datasets increase, statistical evaluation will become a priority for improving brain 
mapping and results reproducibility [59,108–115]. We derive a general equation that predicts the number of 
fascicles in a connectome supported by the data given tractography method parameters and data properties. 
These results are of interest to investigators planning studies on patient populations or to those developing new 
magnetic resonance imaging acquisition or preprocessing methods. For example, plots like the ones in Fig. 3d 
can inform on the degree to which for example a new acquisition method would improve on measures of interest 
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of researchers (the number of found connections). Alternatively, investigators interested in measuring children or 
aging populations might be interested in knowing the connectome resolution achievable given the data they can 
measure with the available hardware and time constraints. 

Tensor decomposition methods help investigators make sense of large multimodal datasets [66,116]. To date 
these methods have found a few applications in neuroscience, such as performing multi-subjects, clustering and 
electroencephalography analyses [67,117–122]. Generally, decomposition methods have been used to find 
compact representations of complex data by estimating the combination of a limited number of common 
meaningful factors that best fit the data [65,116,123]. We propose a new application. Instead of using tensor 
decomposition to estimate latent factors and weights, we use a sparse tensor [124] to encode the structure of the 
brain model; the connectome. This innovative application of tensor decomposition methods in Neuroscience 
opens new avenues of investigation in mapping brain and behavior using multidimensional and multivariate 
methods [47,125]. 

The new application of tensor decomposition proposed here has the potential to allow improving future 
generations of models of connectomics, tractography evaluation and microstructure [50,58,76,77]. Improving 
these models will allow going beyond current limitations of the state of the art methods [103]. For example, 
extensions of the proposed framework would allow building more complex relationships between connectome 
matrices, edges and nodes without the loss of information of dMRI data and fascicles properties inherent to 
current methods for connectomics.  

We provide an open source implementation of the encoding method and demo files to reproduce figures at 
github.com/brain-life/encode. 

METHODS 
Diffusion-weighted MRI datasets 
We use diffusion-weighted Magnetic Resonance Imaging data (dMRI) from three publicly available sources 
[5,50,60,69].  

Dataset are available online at http://purl.stanford.edu/rt034xr8593, http://purl.stanford.edu/ng782rw8378 and 
https://www.humanconnectome.org/data/. 

Standord datasets 

STN, 96 gradient directions, 1.5mm isotropic resolution. dMRI dataset were collected in five male subjects (age 
37-39) at the Stanford Center for Cognitive and Neurobiological Imaging using a 3T General Electric Discovery 
750 (General Electric Healthcare) equipped with a 32-channel head coil (Nova Medical). dMRI datasets with 
whole-brain volume coverage were acquired using a dual-spin echo diffusion-weighted sequence. Water-proton 
diffusion was measured using 96 directions chosen using the electrostatic repulsion algorithm [126]. Diffusion-
weighting gradient strength was set to 2,000s/mm2 (TE = 96.8ms). Data were acquired at 1.5mm isotropic spatial 
resolution. Individual datasets were acquired twice and averaged in k-space (NEX = 2). Ten non-diffusion-
weighted (b = 0) images were acquired at the beginning of each scan. Data acquisition and preprocessing steps 
are described in [50].  

STN150, 150 gradient directions, 2.0mm isotropic resolution. dMRI data were acquired in one subject using 150 
directions, 2mm isotropic spatial resolution and b value of 2,000s/mm2 (TE = 83.1, 93.6, and 106.9ms).  

Data acquisition and preprocessing steps are described in [50]. 
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Human Connectome Project datasets 

HCP3T, 90 gradient directions, 1.25mm isotropic resolution. Data of four subjects, part of the Human 
Connectome Project, acquired using a Siemens 3T “Connectome” scanner were used. Measurements from the 
2,000s/mm2 shell were extracted from the original dataset and used for all analyses. Processing methods are 
described in [5].  

HCP7T, 60 gradient directions, 1.05mm isotropic resolution. Four subjects part of the Human Connectome 7-
Tesla (7T) dataset were used. Data were collected a Siemens 7T scanner [60]. Measurements from the 
2,000s/mm2 shell were extracted from the original data and were used for further analyses. 

Data quality (Signal-to-noise ratio, 𝑺𝑵𝑹) 

Data quality was computed as the Signal to Noise Ratio (𝑆𝑁𝑅) per units of volume, and is defined as follows: 

                                                                               𝑆𝑁𝑅 = 1/2VW
X

,                                                                       (2) 

where 𝑚 and 𝑠𝑡𝑑 are the mean and the standard deviation of the non-diffusion-weighted signal 𝑆Y(𝑣) (see 
Supplementary section 1.1) over all the voxels, and 𝑉 is the volume of a voxel in mm3. For example, voxel 
volume for STN dataset is 𝑉Z.[ = (1.5𝑚𝑚)% = 3.375𝑚𝑚%, etc. 

Whole-brain connectomes generation 

Tractography was performed using the MRtrix 0.2 toolbox [81]. White-matter tissue was identified from the cortical 
segmentation performed on the T1-weighted images and resampled at the resolution of the dMRI data. Only 
white-matter voxels were used to seed fiber tracking. We used three tracking methods: (i) tensor-based 
deterministic tracking [81–83], (ii) CSD-based deterministic tracking [80,81], and (iiI) CSD-based probabilistic 
tracking [80,81,127,128]. Maximum harmonic orders (Lmax) of 2, 4, 6, 8, 10 and 12 were used as long as the 
number of directions is larger than the number of parameters 𝑁M = 0.5(Lmax +1)( Lmax +2) [129]. The following 
parameter values were used for all tracking: step size, 0.2mm; minimum radius of curvature, 1mm; maximum 
length, 200mm; minimum length, 10mm; and the fibers orientation distribution function ( fODF) amplitude cutoff, 
was set to 0.1. 

We created 10 candidate whole-brain connectomes by repeating tracking using 500,000 fascicles in each 
individual brain dataset (fourteen), tractography method (three) and parameter Lmax (six). In addition to the 
available datasets described above, we simulated new STN and HCP3T datasets with a smaller number of 
directions (𝑁a = 60) by eliminating a subset of the gradient directions (choosing the retained directions along 
surface of a sphere using the electro-static repulsion algorithm [126] as described in [130]. 

A total number of 1,980 connectomes were generated in this work. For each connectome, fascicles of the twenty 
major human were identified using Automatic Fiber Quantification – AFQ [85].  

Tractography model quality (Parameters to Direction Ratio, PDR ) 

One way to measure the effectiveness of the tractography model to exploit the measured diffusion signal is to 
compute the ratio of the number of parameters used by the constrained-spherical deconvolution model to identify 
the fiber-orientation distribution function (fODF). PDR is defined as follows: 

                                                                              𝑃𝐷𝑅 = [b
[c
,                                                                       (3) 

where 𝑁a is the number of gradient directions, for example, the STN dataset has 𝑁a= 96 gradient directions. 
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The Linear Fascicle Evaluation (LiFE) method 

Here we introduce the linear model used in [50] to predict diffusion signals based on a multi-compartment voxel 
model [131,132]. We refer to Supplementary section 1.1 for an introduction to magnetic resonance diffusion 
signals. 

For a given sensitization strength 𝑏 and gradient direction θ, the diffusion signal 𝑆(𝛉, 𝑣) measured at a location 
within a brain (voxel 𝑣) can be estimated by using the following equation: 

                                                         𝑆 𝛉, 𝑣 = 𝑆Y(𝑣) 𝑤Y𝑒efg + 𝑤7𝑒eh𝛉
T𝐐𝒇,𝒗𝛉7∈m ,                                        (4) 

where 𝑓 is the index of the candidate white-matter fascicles within the voxel, 𝑆 𝛉, 𝑣  is the diffusion-weighted 
signal, 𝑆Y(𝑣) is the non diffusion-weighted signal (𝑏 = 0), 𝐴Y is the isotropic apparent diffusion (diffusion in all 
directions) and 𝐐𝒇,𝒗 is the diffusion tensor matrix (see Supplementary section 1.1). 

LiFE predicts the demeaned diffusion signal defined as 𝑆 𝛉, 𝑣 = 	𝑆 𝛉, 𝑣 − 𝐼m, where 𝐼m =
"
[𝜽

𝑆 𝛉𝒊, 𝑣𝜽𝒊  is the 

mean and 𝑁𝜽 is the number of gradient directions. Using this definition and equation (4) we arrive at: 

                                                          𝑆 𝛉, 𝑣 = 𝑤7𝑆Y(𝑣)𝑂7 𝛉, 𝑣7∈m ,                                                (5) 

where 𝑂7 𝜽, 𝑣  is the orientation distribution function specific to each fascicle, i.e. the anisotropic modulation of the 
diffusion signal around its mean and it is defined as follows: 

                                                           𝑂7 𝛉, 𝑣 = 𝑒eh𝛉
T𝐐𝒇,𝒗𝛉 − 	 "

[𝛉
𝑒eh𝛉𝒊

T𝐐𝒇,𝒗𝛉𝒊𝛉𝒊 .                                             (6) 

The right-hand side of equation (5) is the prediction model (see Supplementary Fig. 2a-b). The LiFE model 
extends from the single voxel to all white-matter voxels in the following way (see Supplementary Fig. 2c): 

                                                                   𝐲 = 𝐌𝐰.                                                      (7) 

where 𝐲 ∈ ℝ𝑵𝜽𝑵𝒗 is a vector containing the demeaned signal for all white-matter voxels 𝑣 and across all gradient 
directions 𝛉, i.e. 𝑦v = 𝑆 𝛉𝒊, 𝑣v . The matrix 𝐌 ∈ ℝ𝑵𝜽𝑵𝒗×𝑵𝒇 contains at column 𝑓 the signal contribution given by 
fascicle 𝑓	at all voxels across all gradient directions, i.e., 𝐌 𝑖, 𝑓 = 	 𝑆Y(𝑣v)𝑂7 𝛉𝒊, 𝑣v , and 𝐰 ∈ ℝ𝑵𝒇	contains the 
weights for each fascicle in the connectome. 

The vector of weights 𝐰 in equation (7) and Supplementary Fig. 2c is computed by solving a convex 
optimization problem [50,76]. More specifically we solve a non-negative least-square (NNLS) problem, defined as 
follows: 

                                                              𝑚𝑖𝑛
𝒘y𝟎

𝐲 − 𝐌𝐰 𝟐 .                                                     (8) 

Commonly, the size of the matrix 𝐌 is very large (around 30GB or 40GB for the datasets used here, see Figure 
2d). Because of this reason, we use NNLS algorithms suitable for large scale problems, such as the BB-NNLS 
developed in [133]. 

Connectome model prediction error 

LiFE predicts the measured (demeaned) diffusion signal using the right-hand side of equation (5). Thus, we can 
assess the ability of LiFE to model the measured diffusion signal by computing the prediction error in each white-
matter voxel. In order to make errors relatively independent of scanner parameters, we compute them on the 
relative diffusion signal (also referred to as diffusion attenuation), defined as follows: 

                                                                          𝑆0 𝛉, 𝑣 = 𝑆 𝛉, 𝑣 /𝑆Y(𝑣).                                                (9) 
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The root mean squared (r.m.s) error in voxel v is defined as follows: 

                                                        𝑒012 𝑣 = "
[𝜽

𝑆0 𝛉, 𝑣 − 𝑤7𝑂7 𝛉, 𝑣7∈m𝜽 .                                     (10) 

The r.m.s error (equation 10) can be used to compare alternative connectome models. A global r.m.s error 
𝑒012	can be computed by averaging 𝑒012 𝑣  over all voxels: 

                                                                  𝑒012 =
"
[|

𝑒⁝12 𝑣m .                                             (11) 

LiFE models comparison 

We compare a LiFE model matrix 𝐌 (see equation 7) and its approximated version 𝐌 using the relative error: 

                                                                         𝑒𝐌 = 𝐌	 −	𝐌
}
/ 𝐌 },                                        (12) 

where 𝐌 } = 𝐌#(𝑖, 𝑗)v,�  is the Frobenius matrix norm. 

Similarly, we compare a vector of LiFE weights 𝐰 and its approximated version 𝐰 using the relative error defined 
as follows: 

                                                                           𝑒𝐰 = 𝐰	 − 	𝐰 / 𝐰 ,                                        (13) 

where 𝐰 = 𝑤7#7  is the Euclidean vector-norm. 

Tensor notation and definitions 

Tensors generalize vectors (1D array) and matrices (2D array) to arrays of higher dimensions, three or more. 
Such arrays can be used to perform multidimensional factor analysis and decomposition and are of interest to 
many scientific disciplines [65,66]. 

Below, we introduce basic concepts and notation (we refer the reader to Supplementary Table 1). 

Vectors, matrices and tensors. Vectors and matrices are denoted using boldface lower- and upper-case letters, 
respectively. For example, 𝐱 ∈ ℝ� and 𝐗 ∈ ℝ�×� represent a vector and a matrix, respectively. A tensor 𝐗 ∈ ℝ�×�×� 
is a 3D array of real numbers whose elements (𝑖, 𝑗, 𝑘) are referred to as 𝐗(𝑖, 𝑗, 𝑘) or 𝑥v��. The individual dimensions 
of a tensor are referred to as modes (1st mode, 2nd mode, and so on). 

Tensor slices and mode-n vectors. Slices are used to address a tensor along a single dimension and are obtained 
by fixing the index of one dimension of the tensor while letting the other indices vary. For example, in a 3D tensor 
𝐗 ∈ ℝ�×�×�, we identify horizontal (𝑖), lateral (𝑗) and frontal (𝑘) slices by holding fixed the corresponding index of 
each array dimension (see Supplementary Fig. 1a-top). Tensors can be also addressed in any dimension by 
means of mode-𝑛 vectors. These vectors are obtained by holding all indices fixed except one (Supplementary 
Fig. 1a-bottom). 

Subtensors and tensor unfolding. A subset of indices in any mode identifies a volume also referred as to a 
subtensor. For example, in Fig. 1d, we identify a volume by collecting slices in the 3rd mode. In addition, a tensor 
can be converted into a matrix by re-arranging its entries (unfolding). The mode-𝑛 unfolded matrix, denoted by 
𝐗 𝒏 ∈ ℝ��×��, where 𝐼� = 𝐼11��  and whose entry at row 𝑖� and column 𝑖" − 1 𝐼#	 ⋯ 𝐼�e"𝐼��" ⋯ 𝐼[ + ⋯ 𝑖[e" −
1 𝐼[ + 𝑖[ is equal to 𝑥v�v�⋯v�. For example, mode-2 unfolding builds the matrix 𝑿(𝟐) where its columns are the 
mode-2 vectors of the tensor and the rows are vectorized versions of the lateral slices, i.e. spanning dimensions 
with indices 𝑖	and 𝑘 (see Supplementary Fig. 1b). 
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Tensor by matrix product. By generalization of matrix multiplication, a tensor can be multiplied by a matrix in a 
specific mode, only if their size matches. Given a tensor 𝐗 ∈ ℝ��×��×⋯×�� and a matrix 𝐀 ∈ ℝ�×��, the mode-𝑛 
product 

                                                              𝐘 = 𝐗	×�	𝐀 ∈ ℝ��×⋯×����×�×����×⋯×��,                                       (14) 

is defined by: 𝑦v�⋯v����v���⋯v� = 𝑥v�⋯v�⋯v�𝑎�v�
��
v��" , with 𝑖� = 1,2, … , 𝐼�	(𝑘 ≠ 𝑛) and 𝑗	 = 	1,2, … , 𝐽. Supplementary 

Fig. 1c illustrates a 3D tensor by matrix product operation (2nd mode, 𝐘 	= 	𝐗	×#	𝐀). 

Tucker decomposition. Low-rank matrix approximation can be generalized to tensors by Tucker decomposition 
[134]. For example, 𝐗 ∈ ℝ��×��×��, can be approximated by: 

                                                                   𝐗 = 𝐆	×"	𝐀"×#	𝐀#×%	𝐀%,                                                   (15) 

where ×�	is the mode-𝑛 tensor-by-matrix product. 𝐆 ∈ ℝ��×��×�� is the core tensor and 𝐀𝒏 ∈ ℝ��×�� are factor 
matrices. Such a decomposition guarantees data compression when the core tensor is much smaller than the 
original, i.e. 𝑅� ≪ 𝐼� (see Supplementary Fig.1d-top). 

Sparse Decomposition (SD): Tensors can be approximated also by sparse decomposition [124,135]. In this case, 
compression can be achieved independently of the size of 𝐆 as long as sparsity is sufficiently high (see 
Supplementary Fig.1d-bottom). 
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1 Supplementary Methods
1.1 Mathematical Modeling of dMRI signals
dMRI measures signals depend on the combination of multiple cellular components within the brain tissue [1] (e.g., neurons,
astrocytes and oligodendrocytes). The dMRI signal is generally modeled as the linear combination of two components. One
component describes the directional diffusion signal and is presumably related primarily to the direction of the neuronal axons
wrapped in myelin sheaths (white matter). This signal is often referred to as anisotropic diffusion. The other component
describes isotropic diffusion (non-directional) and is presumably related to the combination of signals originating from the rest
of the cellular bodies within the brain tissue. Below we introduce the equations we used to model the dMRI signal in relation to
these components.

dMRI measurements are collected with and without a diffusion sensitization magnetic gradient. Such gradient allows
the dMR image intensity to vary depending on water diffusion along a single direction. Generally multiple dMR images are
collected for each brain location by varying this diffusion-sensitization gradient (i.e., by sequentially orienting the gradient
along several gradient directions). The measured signal depends on a combination of parameters such as diffusion gradient
strength and duration. Below we denote the diffusion sensitization gradient strength with the scalar b and direction with the
unit-norm vector θθθ ∈R3.

For a given sensitization strength b and diffusion direction θθθ , the measured dMRI signal at each location within a brain
(voxel v) can be computed using the following equation [6, 4]:

S(θθθ ,v)≈ w0S0(v)e−A0 + ∑
f∈v

w f S0(v)e−bθθθ
T Q f ,vθθθ , (16)

where f is the index of the candidate white-matter fascicles in the voxel, S0(v) is the non diffusion-weighted signal in voxel v
and A0 is the isotropic apparent diffusion (diffusion in all directions). The value θθθ

T Q f ,vθθθ > 0 gives us the apparent diffusion at
direction θθθ generated by fascicle f . Q f ,v ∈R3×3 is a symmetric and positive-definite matrix called diffusion tensor [3]. The
diffusion tensor Q f ,v allows a compact representation of the diffusion signal measured with dMRI. Usually, Q f ,v is represented
by an 3D-ellipsoid as shown in Supplementary Fig. 2a, which can be mathematically defined with the equation:

Q f ,v = [u1 u2 u3]

[
sa 0 0
0 sr1 0
0 0 sr2

][ u1
u2
u3

]
, (17)

where un ∈R3×1 are the unit-norm orthogonal vectors that correspond to the semi-axes of the diffusion tensor ellipsoid, and
sa, sr1 , sr2 define the axial and radial diffusivity of the tensor, respectively. In the simplest version of the model, sa = 1 and
sr1 = sr2 = 0, which means that diffusion is restricted to the main axis direction (stick model) [4, 9].

2 Supplementary Results
2.1 Tensor decomposition of the Linear Fascicle Evaluation model
The LiFE [9] method predicts the demeaned diffusion signal y ∈RNθθθ Nv in all voxels (v = 1,2, . . . ,Nv) and gradient directions
(θθθ 1,θθθ 2, . . . ,θθθ Nθθθ

) using the following equation (see The Linear Fascicle Evaluation (LiFE) method in Online Methods for
its derivation). Each column in matrix M (Methods, equation 7) contains the diffusion signal contribution from a single fascicle
at all voxels and gradient directions. Vector w ∈RN f contains the weights associated to each fascicle’s contribution.

Vector y and matrix M are composed by a vertical concatenation of Nv block vectors yv ∈RNθθθ and matrices Mv ∈RNθθθ×N f ,
where each block corresponds to a particular voxel v (see Supplementary Fig. 2c):

y1
y2
...

yNv

≈


M1
M2

...
MNv

w, (18)

Thus, in each voxel we have the following linear model: yv ≈Mvw. Matrix Mv can be factorized as follows

Mv ≈ M̂v = DΦΦΦv, (19)

where matrix D ∈RNθθθ×Na is a dictionary of diffusion predictions whose columns (atoms) correspond to precomputed fascicle
orientations, and ΦΦΦv ∈ RNa×N f is a sparse matrix whose non-zero entries (ΦΦΦv(a, f ) ) indicate the orientation of fascicle f
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in voxel v approximated by atom a. The dictionary atoms were created by linearly sampling the azimuth (α) and elevation
(β ) of an idealized unit-norm sphere representing the space of putative fascicles directions (Supplementary Fig. 2f). More
specifically, the entries of the dictionary were computed as follows:

D(θθθ ,a) = e−bθθθ
T Qaθθθ − 1

Nθ
∑
θ

e−bθθθ
T Qaθθθ , (20)

where Qa is a diffusion tensor that approximates Q f ,v. At voxels where a fascicle is straight enough, the diffusion signal is
approximated by addressing only one atom (one orientation), however for curved fascicles at a voxel its diffusion signal is
approximated by a linear combination of few atoms in the dictionary. However, matrix ΦΦΦv follows the constraint

∑
a

ΦΦΦv(a, f ) = S0(v). (21)

By inserting equation (19) into equation (18), and transforming the approximated full matrix M̂ of the original LiFE
model [9] into a tensor M̂ ∈ RNa×Nv×N f (stacking block matrices Mv as lateral slicesa), we demonstrate that the following
decomposition holds:

M̂ =ΦΦΦ×1 D, (22)

where ΦΦΦ ∈RNa×Nv×N f is obtained by stacking all individual voxels matrices ΦΦΦv (v = 1,2, . . . ,Nv) into the lateral slices of ΦΦΦ.
Finally, using equations (7) and (22), the full LiFET model can be written as (Fig. 2a):

Y≈ΦΦΦ×1 D×3 wT , (23)

where matrix Y ∈RNθθθ×Nv is obtained by stacking vectors yv (v = 1,2, . . . ,Nv) as columns, ΦΦΦ ∈RNa×Nv×N f is a sparse core
tensor and w ∈RN

f is the vector of weights (see Supplementary Fig. 2e). This model is an example of application of Sparse
Tucker Decomposition (SD; see Online Methods, [5]). In the article we refer to this model as LiFET (see Fig. 2a).

2.2 Comparison of the weights estimated by LiFEM and LiFET
In equation (13), we introduced a measure that quantifies the difference between two weights vectors w and ŵ. Weights vectors
are sparse and their entries indicate which fascicles in the connectome contribute (non-zero) or not (zero) to predict the diffusion
signal. Fig. 2c, bottom panel, shows a global comparison of the vector of weights estimated by LiFE and LiFET as defined in
equation (13).

Hereafter, we perform additional detailed analyses on the difference between these vectors. The observed error between the
vectors w and ŵ can, in theory, be the result of: (1) each model assigning non-zero weights to a different subset of fascicles; (2)
non-zero weights being assigned to the same subset of fascicles but their magnitude differs in the two models; (3) a combination
of (1) and (2). This difference is important because it would indicate that either LiFEM and LiFET select very different fascicles
(1) or the same fascicles (2). The case in (1) would indicate a potential bias in LiFET. We explicitly quantified which one of
these three cases contributed to the observed error in the weights. To do this, we defined two subsets of weight-fascicles indices.
Those that have non-zero values in both models, common-fascicles indices (Supplementary Fig. 2j, orange) and those that
have non-zero values in one model but not in the other, different-fascicles indices (Supplementary Fig. 2j, green and blue).

We define the vectors of common-fascicles as wc and ŵc, and different-fascicles as wd and ŵd (see Supplementary Fig.
2j). We demonstrate that the square of the error of the weights (Methods, equation 13) is:

e2
w = e2

wc + e2
wd
, (24)

where e2
wc =

‖wc−ŵc‖2
‖w‖2 and e2

wd
= ‖wd‖2
‖w‖2 + ‖ŵd‖2

‖w‖2 are the squared errors associated to the common- and different-fascicles,
respectively.

2.3 Encoding a connectome into LiFET
Encoding a brain connectome information into the LiFET model involves the computation of the dictionary matrix D and the
sparse tensor ΦΦΦ.

The dictionary matrix D need to be computed first by fixing the total number of atoms Na to be used, i.e. by setting the
minimum incremental unit ∆ = π/L for the spherical coordinates which create a regular grid (see Supplementary Fig. 2f).

aNote that the M̂ is the transposed mode-3 unfolded matrix of tensor M̂, i.e M̂ = M̂T
(3). We use this unfolding operation to compute the LiFET model error

eM, see Fig. 2c, top panel.
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Thus, by increasing the parameter L we increase the resolution which has two main consequences: 1) reduces the approximation
error (see section 2.5 and Supplementary Fig. 2g-i), and 2) increases the size of the model (see section 2.6). We have
demonstrated that by using L = 360, we obtained a very accurate approximation and a huge reduction in storage requirements.

By computing the sparse tensor ΦΦΦ we encode the information of fascicles in a connectome into our decomposed model (see
The tensor encoding framework in Results section). More specifically, the sparse tensor is computed slice by slice (mode-3),
i.e. by looking at one fascicle in the connectome at a time. Each fascicle f is composed by a set of nodes connected, so for each
one of the nodes we need: 1) to identify the voxel index v in which the node is located, and 2) find the atom index a having the
spatial orientation of that fascicle. Finally, for each fascicle node we set a non-zero entry within the sparse tensor ΦΦΦ as follows:

ΦΦΦ(a,v, f ) = 1. (25)

After encoding all the fascicles nodes into the sparse tensor ΦΦΦ, we impose the constraint stated in equation (21) by applying the
following normalization:

ΦΦΦ(:,v, f ) = S0(v)
ΦΦΦ(:,v, f )

∑a ΦΦΦ(a,v, f )
∀(v, f ). (26)

2.4 Fitting the LiFET model
Once the LiFET has been built, the final step to validate a connectome requires finding the non-negative weights that least-square
fit the measured diffusion data. This is a convex optimization problem that can be solved using a variety of Non-Negative Least
Squares (NNLS) optimization algorithms. We used a NNLS algorithm based on first-order methods specially designed for large
scale problems [8]. Hereafter, we show how to exploit the decomposed LiFET model in the optimization.

The gradient of the original objective function for the LiFE model can be written as follows:

∇w

(
1
2
‖y−Mw‖2

)
= MT Mw−2MT y, (27)

where M ∈RNθ Nv×N f is the original LiFE model, w ∈RN f the fascicle weights and y ∈RNθ Nv the demeaned diffusion signal.
Because the decomposed version does not explicitly store M, below we describe how to perform two basic operations (y = Mw
and w = MT y) using the sparse decomposition.

2.4.1 Computing y = Mw
The product Mw can be computed in the following way using a tensor by vector product:

Y = M×3 wT , (28)

where the result is a matrix Y ∈RNθ×Nv , a matrix version of the vector y. Using the LiFET model the product is written as
follows:

Y =ΦΦΦ×1 D×3 wT . (29)

In Algorithm 1, we present the steps for computing y = Mw in an efficient way.

Algorithm 1 : y = M times w(Φ,D,w)
Require: Decomposition components (Φ, Dand vector w ∈RN f .
Ensure: y = Mw
1: Y = Φ×3 wT ; the result is a large but very sparse matrix (Na×Nv)
2: Y = DY; the result is a relatively small matrix (Nθ ×Nv)
3: y = vec(Y)
4: return y;

2.4.2 Computing w = MT y
The product w = MT y can be computed using LiFET in the following way:

w = MT y = M(3)y =ΦΦΦ(3)(I⊗DT )y, (30)

where ⊗ is the Kronecker product and I is the (Nv×Nv) identity matrix. Equation (30) can be written also as follows [5]:

w =ΦΦΦ(3)vec(DT Y), (31)
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where vec() stands for the vectorization operation, i.e. to convert a matrix to a vector by stacking its columns in a long vector.
Because matrix ΦΦΦ(3) is very sparse, we avoid computing the large and dense matrix DT Y and compute instead only its

blocks that are being multiplied by the non-zero entries in ΦΦΦ(3). This allows maintaining efficient memory usage and limits the
necessary number of CPU cycles. In Algorithm 2, we present the steps for computing w = MT y in an efficient way.

Algorithm 2 : w = Mtransp times y(ΦΦΦ,D,y)
Require: Decomposition components (ΦΦΦ, D) and vector y ∈RNθ Nv .
Ensure: w = MT y
1: Y ∈RNθ×Nv ← y ∈RNθ Nv ; reshape vector y into a matrix Y
2: [a,v, f,c] = get nonzero entries(ΦΦΦ); a(n), v(n), f (n), c(n) indicate the atom, the voxel, the fascicle and coefficient associated to node n, respectively, with

n = 1,2, . . . ,Nn;
3: w = 0 ∈RN f ; Initialize weights with zeros
4: for n = 1 to Nn do
5: w( f (n)) = w( f (n))+DT (:,a(n))Y(:,v(n))c(n);
6: end for
7: return w;

2.5 Analysis of the LiFET model accuracy
The LiFET model provides an approximation of the original LiFE model. In this section we derive a theoretical upper bound for
the model approximation error eM defined in Methods, equation (12) as a function of the discretization parameter L, such as
lim
L→∞

eM = 0

Let us start by focussing in the approximation error of LiFET model compared to the original LiFE model for a particular
voxel v, fascicle f and gradient direction θθθ . In this case, the error in modeling the diffusion signal is given by:

∆O = |O f (θθθ)−D(θθθ ,a)|, (32)

where O f (θθθ) is the diffusion signal as defined in Methods, equation (6) (we avoided making reference to the voxel v for
clearity) and D(θθθ ,a), defined in equation (20), is the diffusion signal of atom a at gradient direction θθθ = [θx,θy,θz]

T . By
defining v = [vx,vy,vz]

T and va = v+∆v = [vx +∆vx ,vy +∆vy ,vz +∆vz ]
T as the vectors pointing out at the directions of the

fascicle f and its closest dictionary atom a, respectively (see Supplementary Fig. 2f), and using the “stick” model diffusion
tensor, i.e. sa = 1 and sr1 = sr1 = 0 in equation (17), the diffusion tensors of the associated fascicle f and its approximation are:

Q f = vvT and Qa = (v+∆v)(v+∆v)
T . (33)

Now, using equations (6), (20) and (33) into equation (32), we arrive at:

∆O = |∆ f −
1

Nθ
∑
θ

∆ f |, (34)

where ∆ f = | f (v1 +∆v)− f (v)| with f (v) = e−b(θθθ T v)2
.

For a sufficiently small error vector ∆v = [∆vx ,∆vy ,∆vz ]
T , we can approximate ∆ f as follows:

∆ f ≈
∣∣∣∣ ∂ f
∂vx

∣∣∣∣∆vx +

∣∣∣∣ ∂ f
∂vy

∣∣∣∣∆vy +

∣∣∣∣ ∂ f
∂vz

∣∣∣∣∆vz , (35)

≈ 2b|θθθ T v|e−b(θθθ T v)2
(|θx∆vx |+ |θy∆vy |+ |θz∆vz |). (36)

By using the fact that |θθθ T v| ≤ 1, e−b(θθθ T v)2 ≤ 1, ∆vx ,∆vy ,∆vz ≤ ‖∆v‖ ≤ π√
2L

, and ‖θθθ‖1 ≤
√

3‖θθθ‖, we obtain:

∆ f ≤
bπ
√

6
L

. (37)

Finally, by using the equation (37) into equation (34), we obtain an upper bound for the error modeling the diffusion signal of
one fascicle f at one gradient direction in a voxel:

∆O ≤
2bπ
√

6
L

. (38)
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In order to establish a theoretical upper bound of the model error (eM, Methods, equation 12) as a function of the
discretization parameter L, we need to find an upper bound of ‖M− M̂‖ and note ‖M‖ is independent of the discretization
parameter L. The upper bound of ‖M−M̂‖2 can be obtained by assuming that all fascicles are composed of a fixed number of
nodes Nn, and adding up over all nodes n, fascicles f and directions θθθ , i.e.

‖M−M̂‖2
F ≤ N f NnNθθθ

(
2bπ
√

6
L

)2

. (39)

Finally, using equation (39) in equation (12) we obtain the following upper bound of the model error:

eM ≤
κ

L
, (40)

where κ =

√
6N f NnNθθθ 2bπ

‖M‖F is a constant (independent of discretization parameter L).
Equation (40) clearly states that the achievable relative error is inversely proportional to the discretization parameter L,

which allows us to make the model as accurate as we want by just increasing the dictionary resolution, i.e. increasing L.

2.6 Analysis of the LiFET model compression factor
Here, we analytically derive the storage requirements of matrix M in LiFE (Supplementary Fig. 2c; [9]) and its approximation
M̂ through LiFET, decomposed model (Supplementary Fig. 2d). To do so, as in the previous section, we simplify the analysis
by assuming that all fascicles have the same number of nodes Nn and that there are no more than one node per fascicle, per
voxel. Under these ideal assumptions the amount of memory necessary to store each fascicle f in a sparse matrix M is 3Nθθθ Nn,
since using a sparse matrix structure, three numbers are required for each node, i.e. the row-column indices plus the entry value.
Thus the storage cost of M is:

C(M) = O(3NnNθθθ N f ). (41)

Conversely, storing fascicles in the LiFET model requires 4Nn values plus the dictionary matrix (i.e. the set of the non-zero
entries and their locations within the tensor ΦΦΦ together with matrix D). Thus the amount of memory required in LiFET model
is:

C(M̂) = O(4NnN f +Nθθθ Na), (42)

where Nθθθ Na is the storage associated with the dictionary matrix D ∈RNθθθ×Na . The Compression Factor can be straightforwardly
computed as follows:

CF =

(
4

3Nθθθ

− Na

3NnN f

)−1

. (43)

Given that, usually 3NnN f � Na, the compression factor can be estimatedb as follows:

CF ≈ 3Nθθθ

4
. (44)

Equation (44) states that the compression factor is proportional to the number of directions Nθθθ , which represents a substantial
reduction in memory requirements for modern datasets.

bWe note that our experimental results in Fig. 2d showed a compression factor slightly lower than the theoretical estimation because the sparse matrix
format implemented in Matlab [7] is relatively more efficient than the sparse multiway format used in the Matlab Tensor Toolbox [2]
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b 

Supplementary Fig. 1. (a) Examples of frontal (light blue), lateral (yellow) and horizontal (red) slices of 3D tensor (top),
and examples of mode-n vectors (bottom). (b) Illustration of the mode-2 unfolded matrix X(2). (c) Tensor-by-matrix product
(example of product in mode-2). (d) The classical Tucker decomposition (top;[10]) allows representing a 3D tensor
X ∈RI1×I2×I3 as the product of a core tensor (green) G ∈RR1×R2×R3 by factor matrices An ∈RIn×Rn (red, yellow and light
blue). Data compression is achieved by considering very small (dense) core tensors G, meaning that Rn� In. The sparse
Tucker Decomposition - SD (bottom; [5]). The core tensor G is large but sparse. Data compression is achieved because of the
sparsity of the core tensor. See Supplementary Table 1 for additional information about notation and mathematical
definitions.
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Supplementary Fig. 2: (a). A diffusion tensor model whose principal axes are given by the spatial orientation of a fascicle
in a voxel v. (b). Linear model at voxel level: diffusion signal prediction for a voxel intersected by two fascicles, f1 and f2, is
shown. Fascicle f1 crosses the voxel from one side to the other and it bends within it, which is modeled as composed by two
nodes (yellow and blue). Fascicle f2 occupies a small portion of the voxel contributing with one diffusion tensor (red). The total
prediction signal is the linear combination of the signals associated to existing fascicles within the voxel. (c). Linear model
for all voxels: LiFE model matrix M [9] is obtained by stacking in its columns, the diffusion signal predictions of fascicles.
The predicted diffusion signal in all voxels is obtained as y≈Mw, where w is a sparse vector of weights obtained by solving
a convex optimization problem with non-negativity constraints. (d). Sparse factorization of the diffusion signal in a voxel:
Nonzero columns in block matrix Mv correspond to fascicles passing through v (two in our example). Those columns are
approximated by combining the diffusion prediction of the dictionary atoms (columns of matrix D) with directions closest to the
orientation of the fascicles nodes (yellow, blue and red). Non-zero entries in matrix ΦΦΦv indicate the atoms corresponding to the
nodes in the fascicles f1 and f2 in the example. (e). The LiFET model: the diffusion signal matrix Y ∈RNθ×Nv (directions ×
voxels) is written as a Sparse Tucker Decomposition by using the core Sparse tensor ΦΦΦ ∈RNa×Nv×N f , multiplied in mode-1 by
the dictionary matrix D ∈RNθ×Na and, in mode-3, by the vector of weights w ∈RN f . (f). Error introduced by the discretization:
Left, a regular grid in the sphere is obtained by discretizing the space in spherical coordinates (α,β ). Right, the maximum
distance between the fascicle orientation vector v and its approximation va is inversely proportional to the parameter L, i.e.
‖∆v‖ ≤ π√

2L
. (g). Comparison of the global r.m.s error obtained by LiFE and LiFET models. It is clear that for L≥ 180 LiFET

approximates very well the original LiFE model (difference < 1×10−6). (h). Weights error ew versus parameter L. This plot
shows that for L≥ 360 LiFET provides a very good approximation of the LiFE model (ew < 0.2%). (i). The model error eM in
approximating the matrix M with LiFET is inversely proportional to the parameter L as predicted by our theoretical bound (see
equation 40). The function eM ≈ C

L was fitted to the data, which resulted in an estimated value C = 28.22, and a fitting error
equal to 3.03% (relative root squared error). It is noted that, for L≥ 360, we obtained a model error smaller than 0.1%. (j). By
defining common (orange) and different (green and blue) subsets of indices within vectors w and ŵ, the squared weights error
is decomposed as the sum of the squared errors associated to the common and different fascicles (see equation 24). (k). The
squared error for common fascicles e2

wc (top) and different fascicles e2
wd

(bottom) computed for STN, STN150 and HCP3T
datasets are shown. While the total squared e2

w is kept below 0.2%, it is highlighted that it is larger in the deterministic case
compared against to the probabilistic case. However, the error associated to the different fascicles is very small compared to the
common fascicles, which means that essentially both models use almost the same subset of fascicles. (l) and (m). Model size
(GB) scales linearly with the number of directions Nθ and the number of fascicles N f , however it increases much faster in the
LiFE model compared to the LiFET model.
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Supplementary Fig. 2
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Supplementary Fig. 3. (b) Major human tracts from LiFE optimized connectomes (fascicles with nonzero weights) using Probabilistic tractography (Lmax = 10) for
two subjects in the STN dataset and two subjects in the HCP3T dataset. Results obtained by repeating the tractography and optimization ten times are shown in different
columns. It is highlighted that connectomes are anatomically discriminable across subjects and datasets (rows) but preserving the anatomy among repetitions of the LiFE
evaluation (columns).
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Supplementary Fig. 3. (c) Major human tracts from LiFE optimized connectomes (fascicles with nonzero weights) using probabilistic (Lmax = 2,4,6,8,10,12),
deterministic (Lmax = 2,4,6,8,10,12) and tensor tracking methods for two subjects in the STN dataset and two subjects in the HCP3T dataset. It is highlighted that
connectomes are anatomically discriminable across subjects and datasets (rows) and across tracking methods.
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Supplementary Fig. 3. (d) Number of fascicles (nonzero entries in the weights vector) in LiFE optimized connectomes as a function of model quality (PDR) and
signal quality (SNR) for probabilistic (left) and deterministic (right) tracking methods. These plots reveals a clear linear relationship between number of fascicles and
PDR or SNR. A 3D representation of these results is shown in Fig. 3d as plot of number of fascicles versus PDR and SNR.
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Supplementary Fig. 4. The strength of evidence S is a measure of distance between the distributions of r.m.s errors in
voxels for the model with virtual lesion and without virtual lesion (see [9] for details). Similarly to the Earth Mover Distance
measure (Fig. 4d), the strength of evidence is positive for the major tracts, which replicates the statistical evidence of major
tracts reported in [9].
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Supplementary Fig. 5. The histograms of angles between fascicles in the Corticospinal tract and SLF tracts are shown for
probabilistic (blue) and deterministic (orange) tracking methods with Lmax = 10. These distributions show a crossing close to
perpendicular similar to the findings for the case of Arcuate and Corticospinal tract in Fig. 5e.
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Table 1. Mathematical notation and definitions for multiway arrays (tensors) and their decomposition.

X, A, w, b A tensor, a matrix, a vector and a scalar

xi1i2...iN , ai j, wi Entries of a tensor, a matrix and a vector

X(:, j,k), X(i, :,k), X(i, j, :) Mode-1, mode-2 and mode-3 vectors are obtained by fixing all but one index

X(i, :, :), X(:, j, :), X(:, :,k) Horizontal, lateral and frontal slices are obtained by fixing all but two indices

X(n) ∈RIn×I1I2···In−1In+1···IN Mode-n unfolding of tensor X ∈ RI1×I2×···×IN whose entry at row in and column (i1 −
1)I2 · · · In−1In+1 · · · IN + · · ·+(iN−1−1)IN + iN is equal to xi1i2...iN

Y = X×n A ∈RI1×···×In−1×J×In+1···×IN tensor by matrix product (in mode-n) where yi1···in−1 jin+1···iN = ∑
In
in=1 xi1···in···iN a jin

X≈G×1 A1×2 A2×3 A3
Tucker decomposition: a 3D tensor X ∈ RI1×I2×I3 is represented as the product of a core array G ∈
RR1×R2×R3 by factor matrices An ∈RIn×Rn

x = vec(X) ∈RI1I2···IN Vectorization of tensor X ∈RI1×I2×···×IN with the entry at position i1 +∑
N
k=2[(ik−1)I1I2 · · · Ik−1] equal to

xi1i2···iN
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