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Introductory paragraph  

Every day we make choices under uncertainty; choosing what route to work or which queue 

in a supermarket to take, for example. It is unclear how outcome variance, e.g. waiting time 

in a queue, affects decisions when outcome is stochastic and continuous. For example, how 

does one choose between an option with unreliable but high expected reward, and an 

option with more certain but lower expected reward? Here we used an experimental design 

where two choices’ payoffs took continuous values, to examine the effect of outcome 

variance on decisions and confidence. Inconsistent with expected utility predictions, our 

participants’ probability of choosing the good option decreased when both better and 

worse options’ payoffs were more variable. Confidence ratings were affected by outcome 

variability only when choosing the good option. Inspired by the satisficing heuristic, we 

propose a “stochastic satisficing” (SSAT) model for choosing between options with 

continuous uncertain outcomes. In this model, decisions are made by comparing the 

available options’ probability of exceeding an acceptability threshold and confidence reports 

scale with the chosen option’s satisficing probability. The SSAT model best explained choice 

behaviour and most successfully predicted confidence ratings. We further tested the 

model’s prediction in a second experiment where choice and confidence behaviours were 

found to be consistent with the SSAT simulations. Our model and experimental results 

generalize the cognitive heuristic of satisficing to stochastic contexts and thus provide an 

account of bounded rationality in the face of uncertainty. 

Introduction 

Every morning most people have to pick a route to work. While the shortest route may be 

consistently busy, others may be more variable, changing from day to day. The choice of 

which route to take impacts the commuting time and is ridden with uncertainty. Decision 

making under uncertainty has been studied extensively using scenarios with uncertain 

rewards 5–7. In such scenarios, participants choose between multiple lotteries where each 

lottery can lead to one of the two (or several) consequences with different probabilities.  

Standard models like expected utility theory 3 and prospect theory 4 suggest parsimonious 

formulations for how the statistics of such binomial (or multinomial) distributions of 

outcomes determine the value (otherwise known as utility) of a lottery. These models, for 

example, explain the fact that in certain ranges people prefer certain small rewards to 

bigger more uncertain ones 1,2.  

However, the commuting problem described here highlights the pervasive but much less 

studied relevance of outcome variance to decisions with continuous (rather than binary) 

outcomes. It is not straightforward how one’s choice of the route could be decided using 

the heuristics applicable to binary win/lose outcomes.  
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Early studies of bounded rationality 8,9 introduced the concept of satisficing according to 

which, individuals replace the computationally expensive question “which is my best 

choice?” with the simpler and most-of-the-times adequately beneficial question “which 

option is good enough?”. More precisely, instead of finding the best solution, decision 

makers settle for an option that satisfices an acceptability threshold 8. In the case of 

commuting, such acceptability threshold could be "the latest time one affords to arrive at 

work". Here we generalize the satisficing theory to decision-making under uncertainty. Our 

“stochastic satisficing” model suggests that when outcomes are uncertain, one could 

evaluate -with reasonably simple and general assumptions about the probability 

distributions of outcomes- the available options’ probability of exceeding an acceptability 

threshold, and choose between the options by comparing their satisficing probability 10. Our 

commuter’s stochastic satisficing heuristic could then be expressed as "which route is more 

likely to get me to work before X o'clock?" 

The effect of uncertainty on confidence reports is commonly studied in perceptual detection 

tasks where one has to detect a world state from noisy stimuli (e.g. dots are moving to the 

left or to the right) 11–14. Sanders and colleagues (2016) argued that confidence reports in 

perceptual decisions relates to the Bayesian formulation of confidence used in hypothesis 

testing. In this view, subjective confidence conveys the posterior probability that an 

uncertain choice is correct, given the agent’s prior knowledge, and noisy input information. 

Following this scheme and generalizing it to value-based contexts, our probabilistic 

satisficing heuristic is naturally fit to account for the computational underpinnings of choice 

confidence and draws strong predictions about how confidence would vary with outcome 

variance. In fact, if choices were made by the probabilistic satisficing heuristic described 

above, confidence in those choices would be directly proportional to the probability that the 

chosen option exceeded the acceptability threshold. A choice whose probability of 

exceeding the acceptability threshold, is higher should be made more confidently than 

another that barely passes the criterion, even if they have equal expected values. 

Here we asked if, and how, human decision makers learn and factor outcome variance in 

their choices between options with independent continuous returns. We hypothesised that 

decision makers use a stochastic satisficing heuristic to make their choices and that their 

confidence conveys the estimated probability of the chosen option’s value to exceed the 

satisficing criterion. In two experiments, we used a two-armed bandit task in which the 

expected values and variances associated with outcomes of each arm were systematically 

manipulated. We tested the stochastic satisficing model against expected reward model, 

risk sensitive model 1 and an expected utility model 15,  that propose alternative ways of 

computing choice and confidence as a function of the estimated statistics of options’ 

returns.  
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In experiment 1, we compared the models based on their fit to the choice behaviour. We 

then empirically examined the models’ qualitatively different predictions for confidence 

against the behavioural data. In experiment 2, we designed a new payoff structure for the 

two-arm bandit and ran simulations of the competing models using the best-fit parameter 

values extracted from experiment 1. These simulations gave us qualitative predictions for 

choice and confidence by each model for Experiment 2. We compared these predictions to 

the empirical data obtained from a new set of participants. The results of both experiments 

strongly favoured the use of the stochastic satisficing heuristic in choices between options 

with continuous outcomes.   

Results 

Participants performed a two-armed bandit task online where rewards were hidden behind 

two doors (Fig. 1A) and the reward magnitudes followed different probability distributions 

(Fig. 1B). On each trial, the participant decided which door to open, and expressed their 

choice confidence using a combined choice-confidence scale. Choosing the left side of the 

scale indicated choice of the left door and distance from the midline (ranged between 1: 

uncertain, to 6: certain) indicated the choice confidence. After the decision, the reward 

behind the chosen door was revealed and a new trial started. Each experimental condition 

was devised for a whole block of consecutive trials during which the parameters (mean and 

variance) governing the reward distribution for each door were held constant. Each block 

lasted between 27 to 35 trials. Transition from one block to the next happened seamlessly 

and participants were not informed about the onset of a new block.  

In our first experiment, within each condition, the reward behind one door was drawn from 

a distribution with a higher mean (65, i.e. the “good” option) than the other door (35, i.e. 

the “bad” option). The variances of the bad and good options could independently be high 

(H=252=625) or low (L=102=100), resulting in a 2x2 design comprising 4 experimental 

conditions: ‘L-L’,’L-H’,’H-L’ and ‘H-H’. In this notation, the first and the second letters 

indicate the variances of the bad and good options, respectively (Fig. 1B).  

Experiment 1 

Participants’ trial-by-trial probability of choosing the good option, in each condition, started 

at chance level and increased until it reached a stable level after about 10 trials (N=65, Fig. 

1C, left). To assess the asymptotic level of performance, within each participant, we 

averaged the probability of choosing the good option between trials 10 to 25 in each 

experimental condition. Probability of choosing the good option was highest in the ‘L-L’ and 

lowest during the ‘H-H’ condition (Fig. 1C, right). A repeated measure ANOVA test with the 

variances of the good and bad options as within-subject factors was used to evaluate this 

pattern. The effects of both variance factors were significant (variance of good option: 

F(1,194)=22.24, p=0.00001, variance of bad option: F(1,194)=5.2, p=0.026). This result 
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indicates an asymmetric effect of outcomes’ payoff variances on choice: increased variance 

of the good option reduced the probability of choosing the good option, whereas increased 

variance of the bad option increased the probability of choosing the bad option. This 

variance-dependent choice pattern demonstrates that decision-making depended not only 

on the expected rewards, but also on their variances: increasing the variance decreased 

choice accuracy.  

Stochastic satisficing account of choice  

To examine the use of a probabilistic satisficing heuristic and acceptability threshold in 

decisions under uncertainty we devised the stochastic satisficing (SSAT) heuristic model (See 

Methods for the formal description) in which the mean and variance of rewards obtained by 

each of the two doors are tracked in a trial-by-trial manner. In this model, decision is made 

by comparing the probability of each option yielding a reward above an acceptability 

threshold, i.e. being good enough. In fact, given the estimated probability distribution over 

the rewarding outcome of a choice, the model computes the total mass under this 

distribution that is above the acceptability threshold (Fig. 2A). This cumulative quantity is 

then used to determine the probability of choosing that option. Such mechanism can 

capture the asymmetric effect of payoff variance on choice, as better option (i.e. higher 

than threshold) becomes less likely to exceed the acceptability threshold as its variance 

increases, while bad option (below threshold) becomes more likely to exceed the threshold 

as their variance increase. Upon making the choice and receiving reward feedback from the 

environment, the model updates the distribution over the value of the chosen action. The 

value of the unchosen action(s), however, drifts toward the acceptability threshold, 

modelling a gradual forgetting effect of the unexplored events (i.e. the probability of 

crossing the threshold converges to 50% for the unchosen option).  

We compared this model’s fit to the choice data with three alternative decision models that 

were previously used in similar settings (see SI Appendix for the details of the competing 

models). The first was a classical expected reward (’Reward’) model that tracks the expected 

reward from each door on every time-step 16,17. Choice is then made according to the 

expected reward of each option 3. The second was the ‘Risk Sensitive Temporal 

Differencing” (‘Risk’) model suggested by Niv et al. 1, which was successful at capturing risk 

aversion when rewards were uncertain. This model employed separate learning rates for 

positive versus negative prediction errors. Third, we examined an expected utility model 

(‘Utility’), fitting a utility function to the rewards, and effectively penalizing options for 

payoff’s variance 3,15.  

We fitted the four models to all the choices made by participants (240 trials per participant) 

using Monte-Carlo-Markov-Chain (MCMC) procedure 18. After correction for the number of 

parameters using Watanabe-Akaike information criterion (WAIC) 19, we compared posterior 

likelihood estimates obtained for each participant, for each model (Fig. S1). The SSAT model 
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gave the best fit to the choices, its WAIC scoring on average 10 points less than that of the 

competing models (pairwise t-tests: SSAT vs. ‘Reward’: t(64)=3.55, p=0.0007; SSAT vs. ‘Risk’: 

t(64)=3.2, p=0.002; SSAT vs. ‘Utility’: t(64)=3.89, p=0.0002).   

Furthermore, to test how our model’s output corresponded to the patterns of choices 

during the stable phase of experimental conditions (Fig. 1C, right), we extracted the trial-by-

trial probability of choosing the good option estimated by the four models and averaged 

those probabilities between the 10th and 25th trials of each experimental condition (Fig. 

S2A). Critically, the SSAT model was the only one that captured the qualitative pattern of 

the effect of payoff variance on choice, with gradual increase in preferring the good option 

in the same order (L-L > H-L > L-H > H-H) found in the behavioural data (Fig. 2B). To quantify 

this observation we regressed each participant’s averaged model-estimated probabilities, 

from his/her average choices in each experimental condition (see SI Appendix). We 

therefore obtained the goodness of fit (R2) for each participant.  The SSAT model gave the 

best fit to the pattern of choices compared to other models (mean±SEM: SSAT 

R2=0.64±0.04, ‘Reward’ R2=0.48±0.04, ‘Risk’ R2=0.5±0.04, ‘Utility’ R2=0.48±0.04, paired t-

test: SSAT vs. ‘Reward’: t(64)=3.2; p=0.002; SSAT vs. ‘Risk’: t(64)=2.7; p=0.008) and SSAT vs. 

‘Utility’ model  t(64)=3 p=0.003). 

Model predictions and behavioural data for confidence ratings 

We hypothesize that confidence in choice reflects the subjective probability that the value 

of the chosen option exceeded the acceptability threshold (i.e., the total mass under the 

value distribution of the chosen option that is more than the acceptability threshold). To 

test this hypothesis, we simulated the models, with their individual free parameters fitted to 

trial-by-trial choice data, to draw predictions for the confidence reports. Following previous 

studies that examined confidence in value-based decisions 20,21, for the ‘Reward’, ‘Risk’ and 

‘Utility’ models, confidence was defined as proportional to the estimated decision variable: 

means of rewards for ‘Reward’ and ‘Risk’ model and expected utility options for the  ‘Utility’ 

model. Focusing on trials 10-25 of each experimental condition, we calculated the average 

confidence for each model’s simulation when choosing the good option and when choosing 

the bad option in each condition. All models predicted lower confidence when choosing the 

bad, as compared to the good, option (Fig. S2B). Additionally, all models predicted similar 

confidence levels across conditions when the bad option was chosen. When choosing the 

good option, however, the SSAT model’s prediction (Fig. 2B, middle panel) was the only one 

consistent with the behaviour (Fig. 2C, middle panel). SSAT model predicted higher 

confidence when variance of the good option was low (i.e. ‘L-L’,’H-L’). The other models did 

not predict a variance effect on confidence (Fig. S2B). 

Using a repeated measures ANOVA we found that the main effect of the good, but not the 

bad, option’s variance was significant when choosing the good option (good option 

variance: F(1,194)=33.32, p<0.00001 , bad option variance: F(1, 194)=0.02, p=0.89). When 
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choosing the bad option, confidence ratings were generally lower (paired t-test t(64)=8.3, 

p=9e-12) and were not significantly different across experimental conditions. This main 

effect of good option’s variance on confidence was only predicted by the SSAT model.  

To quantitatively evaluate the models’ prediction of the confidence-report pattern, we 

regressed the averaged estimated confidence ratings obtained from the four models, from 

the participants’ confidence ratings and obtained the goodness of fit (R2) for each 

participant (see Methods).  The SSAT model gave the best fit to confidence reports 

(mean±SEM: SSAT R2=0.4±0.04, ‘Reward’ R2=0.34±0.036, ‘Risk’ R2=0.35±0.035, ‘Utility’ 

R2=0.35±0.037, paired t-test: SSAT vs. ‘Reward’: t(64)=4.25; p=0.00008; SSAT vs. ‘Risk’: 

t(64)=2.68; p=0.01) and SSAT vs. ‘Utility’ model (t(64)=2p=0.04) (See Fig. S2B).  

Compared to the competing models, the stochastic satisficing model had better success at 

explaining choices and confidence patterns in Experiment 1, both qualitatively and 

quantitatively. A counterintuitive prediction of the model borne out by the behavioural data 

was the difference between the two conditions involving unequal variances (i.e. L-H and H-L 

conditions). Stochastic satisficing predicted –and the data confirmed– a difference in 

confidence (compare L-H and H-L in Fig. 2B, C) despite identical expected values for the 

chosen (good) option in these two conditions. In Experiment 2, we focused on the choice 

between options with unequal variances to further tease apart the cognitive substrates of 

stochastic satisficing.  

Experiment 2 

To conduct a more rigorous test of the parsimony and plausibility of the stochastic 

satisficing heuristic, in Experiment 2, we designed a new payoff structure for the two-arm 

bandit, focusing on options with unequal variances in all conditions (Fig. 3A). We kept the 

mean and variance of the bad option constant across conditions (mean=35 and 

variance=102=100) while varied the mean and variance of the better option in a 2x2 design. 

Mean reward of the good option could be low (mL=57; still better than the bad option) or 

high (mH=72), and its variance could be independently low (vL=52=25) or high (vH=202=400). 

Thus, we constructed four experimental conditions all involving options with unequal 

variances and large or small differences in their expected values. Given this design, we 

simulated each of the four models, with free parameters fitted to data from experiment 1, 

and drove each model’s predictions for choice and confidence for Experiment 2 (see SI 

Appendix). 

Model Predictions  

The most striking qualitative difference between the models was in their predictions of 

confidence reports when choosing the good option. All models predicted the lowest 

confidence for choosing the good option with the low mean and high variance (‘mL-vH’) (Fig. 

S3). Highest confidence was predicted when choosing the good option with high mean and 
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low variance (‘mH-vL’) by all models. However, SSAT model was the only one predicting 

similar confidence ratings for the low mean, low variance (‘mL-vL’) and the high mean, high 

variance (‘mH-vH’) conditions, as the probability of exceeding the satisficing threshold was 

the same for these two conditions. Critically, because these two conditions have different 

expected rewards, the ‘Reward’ and ‘Risk’ models predicted different confidence levels for 

these two conditions. ‘Utility’ model, penalizing outcomes values according to variance, 

predicted that higher mean and higher variance options will be chosen much less than lower 

mean and lower variance ‘mL-vH’ < ‘mL-vL’ > ‘mH-vH’ < ‘mH-vL’.  

Behavioural data    

We examined participants’ choices and confidence reports in experiment 2 in a new group 

of subjects (N=33) and compared them to the predictions made by the models. The 

probability of choosing the good option increased with the mean reward of the good option 

(repeated measures ANOVA, F(1,89)=21.25, p=0.0001) and decreased with its variance 

(F(1,89)=15.03, p=0.0005) (Fig. 3C). Confidence when choosing the bad option did not 

change significantly across conditions (Fig. 3C, right panel). When choosing the good option, 

confidence was significantly affected by variance (F(1,89)=35, p<0.00001) and mean 

(F(1,89)=88, p<0.00001) of the good option’s rewards. However, while confidence in the 

‘mH-vL’ was significantly higher than all other conditions (‘mH-vL’ vs ‘mH-vH’: t(30)=4, 

p=0.0003), and confidence in the ‘mL-vH’ was lower than all other conditions (‘mL-vH’ vs. 

‘mL-vL’: t(30)=4.9, p=0.00002), the critical comparison of ‘mL-vL’ and ‘mH-vH’ did not show 

a difference (‘mL-vL’ vs. ‘mH-vH’: t(30)=0.4, p=0.68). This pattern, for both confidence 

reports and choices, was in line with the SSAT model predictions. Importantly, SSAT model 

was the only model predicting similar decision confidence in these two conditions. 

To qualitatively evaluate these observations, we measured the correspondence between 

the pattern of confidence reports made by participants and the pattern predicted by each 

model through simulations. We regressed individual responses from the mean simulated 

pattern and obtained individual goodness of fit, R2, for each model (see Methods). 

Importantly, and confirming the qualitative observations, the SSAT model gave the best 

prediction to the confidence reports pattern (mean±SEM: SSAT R2=0.68±0.05, ‘Reward’ 

R2=0.62±0.06, ‘Risk’ R2=0.63±0.05, ‘Utility’ R2=0.4±0.04; paired t-test: SSAT vs. ‘Reward’: 

t(30)=2.18; p=0.03; SSAT vs. ‘Risk’: t(30)=2.19; p=0.03) and SSAT vs. ‘Utility’ model 

(t(30)=7.4; p=2*10-8).  

Discussion 

We set out to examine decision-making and confidence reports in uncertain value-based 

choices. In a two-armed bandit task played by human subjects, the probability of choosing 

the good option increased as a consequence of decreasing the variance of either options’ 

outcomes. However, confidence ratings were associated with variance only when choosing 
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the good (higher mean) option, as items with low variance outcomes were chosen with 

higher decision confidence. Confidence ratings associated with choosing the bad (i.e. lower 

mean) option were always low and were independent of the variances of the options’ 

outcomes. To account for these patterns, we proposed a stochastic satisficing (SSAT) model 

in which decisions are made by comparing the options’ probability of exceeding an 

acceptability threshold and confidence reports scale with the chosen option’s satisficing 

probability. To directly test a critical prediction of this model, a second experiment involving 

options with unequal variances and means was simulated first and then empirically 

performed. As predicted by the SSAT model, participants’ confidence reports matched the 

options’ probability of exceeding a threshold, and not the options’ expected outcome.  

We compared our model with three alternative accounts of the influence of outcome 

variance on choice and confidence. The simplest model assumed that choice is governed 

only by the expected reward, and tracked the mean outcomes of options over time 16,17. 

Outcome variance may make the learning process noisier, as samples are more variable, but 

ultimately this model’s predictions were not affected much by outcome’s variance and 

clearly at odds with our behavioural results. The second alternative model tested the 

possibility that outcome variance may affect behaviour if outcome valence (positive vs 

negative) affects learning 1.  Increased variance in our case meant that the more uncertain 

option could yield both very good and very bad rewards. A risk aversive agent that learns 

more from negative outcomes would therefore penalize an uncertain outcome. Another 

way of modelling the impact of risk aversion on variance is suggested by utility theory 3,15. 

Following utility theory prescription, rewards are transformed using a concave utility 

function. When applied to continuous outcomes with Gaussian distribution, maximizing 

expected utility boils down to penalizing outcomes according to their variance. An 

important feature of both of these instantiations of risk aversion (valance dependent 

learning rates and utility theory) is that the effect of variance is always in the same 

direction, reducing the value or utility of both good and bad options. This means that when 

the variance of the bad option increases, the likelihood of choosing the good option should 

increase. This is clearly not the case in our experimental results. Our stochastic satisficing 

model is unique among the models tested here by providing a mechanism by which variance 

effect is not symmetrical for good and bad option – when the bad option’s variance 

increases, its value (i.e. the probability of surpassing an acceptability threshold) increases.   

A number of recent studies 11,14,22,23 have formulized confidence as the probability of having 

made a correct choice over tracked outcome or evidence distribution. This approach builds 

on the line of research about the representation of evidence distribution, and suggests that 

confidence summarizes this probabilistic representation, estimating the probability of being 

correct. Probability of being correct is more readily defined in perceptual detection tasks 

where option outcomes are not independent (e.g. the target can be in only one of two 

locations but not both) and there is an objective criterion for correctness. When the two 
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options have continuous outcome and are governed by independent distributions, 

confidence was shown to reflect the difference in values between the two choice items 20,24. 

However, in these studies, items’ values were predefined, and importantly had no 

uncertainty associated with them. Our stochastic satisficing model combines these two 

approaches, expanding observations from value-based decisions to scenarios where 

outcomes are stochastic. In such scenarios, our theory-based analysis of data suggests, 

participants use an arbitrary criterion, the acceptability threshold, to evaluate the 

probability of an outcome to exceed the threshold, analogous to the evaluation of 

correctness probability in detection tasks.  Confidence would then reflect the probability 

that the chosen option exceeded the “good enough” acceptability threshold. As the 

likelihood of exceeding the acceptability threshold increases – either by reducing the 

outcome variance (Experiment 1) or increasing the outcome mean (Experiment 2) – so does 

decision confidence.  

Research in administrative decision making suggests that when faced with elaborate and 

complex environments, where finding the optimal solution to a problem can prove to be 

very costly in terms of time, money and cognitive resources, people employ heuristics when 

making decisions 5,8,10. In the 1950s Simon introduced the concept of satisficing, by which 

decision makers settle for an option that satisfies some threshold or criterion instead of 

finding the optimal solution. The idea is illustrated in the contrast between 'looking for the 

sharpest needle in the haystack' (optimizing) and 'looking for a needle sharp enough to sew 

with' (satisficing) (p. 244) 10,25. This notion of acceptability threshold has been extended to 

other ambiguous situations 26, for example for setting a limit (i.e. threshold) to the time and 

resources an organization invests in learning a new capability 10, where suboptimal solution 

may be balanced with preventing unnecessary cost.  

We suggest that our stochastic satisficing serves a similar objective by extending the basic 

idea of satisficing into stochastic contexts with continuous payoff domains. While optimality 

prescribes choosing the option with the highest expected value, a general solution for 

computing this quantity (i.e., expected value), given an arbitrary distribution over the 

payoff, is computationally expensive. For continuous distributions, such normative solution 

would require computing the integral over multiplication of reward and its subjective 

probability. Computing the satisficing probability, however, only requires computing the 

area under the payoff distribution, above the acceptability threshold. Such computation is 

less expensive, and more receptive to heuristic estimations. In addition, stochastic 

satisficing may serve some other psychological and social purposes associated with decision-

making. As it strives to avoid catastrophe, i.e. receiving a reward below acceptability 

threshold, stochastic satisficing may be useful to minimize regret, similarly to status quo 

bias 27,28. Such strategy may also be useful from an accountability point of view, as choosing 

the option less likely to provide unacceptable payoffs can serve as a safe argument for 
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justifying decisions to oneself or others 29, in the spirit of the saying “nobody ever got fired 

for buying IBM”.  

Methods 

Participants 

88 and 33 subjects participated in the first and the second experiments, respectively, using 

online Amazon M-Turk. All participants provided an informed consent (experiments were 

approved by the local ethics committee). Participants earned a fixed monetary 

compensation, but also a performance-based bonus if they collected more than 10,000 

points. 25 participants were excluded from analysis as their performance was at chance 

level (16 participants) or for using only one level for confidence reports (9 participants). 

Data from 96 participants (62 male aged 32±9 (mean±std); and 34 female aged 32±8) were 

analysed. 

Experimental Procedure and Design 

On each trial participants chose between two doors, each leading to a reward between 1 

and 100 points (Fig. 1A). Each door had a fixed color-pattern along the task, but the 

positions (left vs. right) were chosen randomly. Subjects made choices by using a 12-level 

confidence ratings: 1-6 towards one option and 1-6 towards the other, with 6 indicating 

‘most certain’ and 1 indicating ‘most uncertain’. Following choice, subjects observed the 

reward of the chosen door drawn from a normal distribution , where i was a or b, 

indicating one or the other door.  

Experiment 1 consisted of 240 trials and included six stable blocks where the mean and 

variance of each option’s reward remained constant. Each block lasted at least 25 trials. The 

transition from one block to another occurred along 10 trials during which the mean and 

variance associated with each door changed gradually in a linear fashion, from their current 

to the new levels corresponding to the upcoming block. Embedded within these six blocks, 

four blocks followed a 2x2 design where the mean rewards of the two options were 65 (for 

the good option) and 35 (for the bad option), and their variances could be independently 

high (H=252=625) or low (L=102=100) (Fig. 1B). This design creates four conditions: ‘L-L’,’H-

L’,’L-H’ and ‘H-H’, where the first and the second letters indicated the magnitude of the 

variance of the good and the bad options, respectively. 

Experiment 2 consisted of 160 trials and was similarly composed of blocks of fixed reward 

probability distributions. In all four blocks, the reward of one option always followed a 

Gaussian distribution with a mean of 35 and a variance of 100 (102). The mean of the other 

option could take either high (mH=72) or low (mL=57), and its variance could be either high 

(vH =202=400) or low (vL=52=25). This produced a 2x2 design, with the four conditions 

denoted by ‘mL-vL’, ‘mL-vH’, ‘mH-vH’, ‘mL-vL’(Fig. 3A). 

N (m
i
,s

i

2)
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SSAT Model 

Stochastic satisficing (SSAT) model employs a threshold heuristic. It uses the means and 

variances associated with the two options, to compare the probability of each option’s 

payoff exceeding an acceptability threshold. These probabilities are compared using a 

softmax decision rule.  

Tracking the mean of rewards is done using a temporal difference algorithm 16,17 (eq. 1). 

Upon receiving a reward, R(t), the mean of the observed option is updated with learning 

rate  , whereas the unselected option’s mean is forgotten over time and drifts towards the 

acceptability threshold, T: 

[1] 

        

      

1

1

a a a

b b b

Q t Q t R t Q t

Q t Q t T Q t





     


      

Tracking the variance is done using a similar temporal difference rule:  

[2] 

           
   

2

1

1

a a a a

b b

V t V t R t Q t V t

V t V t

      

    

Where   is the variance learning rate. The probability of payoff being higher than the 

acceptability threshold, T, was calculated using a cumulative Gaussian distribution equation: 

[3] 

 
 

  
 

2

1
exp

22

a

aTa

x Q t
SPa t dx

V tV t

  
  
 
 


 

where SPa indicated the probability of action a being satisficing. A softmax rule was used to 

calculate choice probabilities according to the options’ satisficing probabilities (SPa and SPb): 

[4] 

 
  

     

exp

exp exp
a

SPa t
p t

SPa t SPb t



 




  
 

whereβ is the rate of exploration (inverse temperature). The SSAT model, thus, has 4 free 

parameters: {α, γ, β, T}.  
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Figures and Tables 

 

Figure 1: Design and results of experiment 1. (A) Four different experimental conditions 

embedded in a continuous two-armed bandit task. In each condition one door had a low 

(mB, Bad option) and the other had a high (mG, Good option) expected reward. Mean 

reward (mB and mG) were constant across conditions. The variances of the two distributions, 

however, changed across conditions and was either high or low, resulting in a 2x2 design (VB 

(Low/High) x VG (Low/High)). Each condition lasted between 27 to 35 consecutive trials. (B) 

The probability of choosing the good option (averaged over 65 participants) in each 
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experimental condition, across trials (left panel) and averaged across trials 10 to 25 (right 

panel). (* p<0.05, *** p<0.0005).  
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Figure 2: Model predictions and experimental results for experiment 1. (A) Stochastic 

satisficing model suggests that decisions are made based on the probability of each door’s 

outcome exceeding an acceptability threshold (grey dot-dashed line). This probability (area 

under the curve) is higher for the door with the high mean expected reward (left) than for 

the door with the low mean (right). It decreases as variance increases. (B) Estimated results 

of the stochastic satisficing model (best fit to trial by trial choice data) under different 

experimental conditions, for choice (left panel), and predictions of confidence reports when 

choosing the good (middle panel) or bad (right panel) option. Models’ estimated confidence 

ratings were rescaled individually to range between 1 and 6 for presentation purposes (see 

Methods). When choosing the good option, SSAT model predicts higher confidence when 

variance is low compared with high variance, even though mean expected reward remained 

constant. (C) Experimental results (65 subjects). Both model estimations and experimental 

results were averaged between trials 10 to 25 of each experimental block. When choosing 

the good option, confidence ratings were higher when variance of the good option was low, 

regardless of the variance of the bad option. (*** p<0.0005).   
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Figure 3: Model predictions and experimental results for experiment 2. (A) In experiment 2 

the reward’s mean and variance of the bad option (black lines) were kept constant across 

experimental conditions, while the mean and variance of the good option varied. Mean 

values could be high (mH) or low (mL), and variances could be independently high (vH) or 

low (vL), resulting in four experimental conditions. (B) Simulating the SSAT model (best fit to 

choice data from experiment 1) predicted similar confidence reports when choosing the 

good option in the ‘mL-vL’ and ‘mH-vH’ conditions. Models’ estimated confidence ratings 

were averaged between trials 10 to 25, and rescaled individually to range between 1 and 6 

for presentation purposes (see Methods). (C) Experimental results (33 subjects). Both 

choices and confidence reports were averaged between trials 10 to 25 of each experimental 

block. When choosing the good option (middle panel), confidence ratings were highest did 

not differ between the ‘mL-vL’ and ‘mH-vH’ condition (* p<0.05, *** p<0.0005).  
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