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ABSTRACT  

 The number of times an organism reproduces (i.e. its mode of parity) is a 16 

fundamental life-history character, and evolutionary and ecological models that compare 

the relative fitness of strategies are common in life history theory and theoretical biology. 18 

Despite the success of mathematical models designed to compare intrinsic rates of 

increase between annual-semelparous and perennial-iteroparous reproductive schedules, 20 

there is widespread evidence that variation in reproductive allocation among semelparous 

and iteroparous organisms alike is continuous. This paper reviews the ecological and 22 

molecular evidence for the continuity and plasticity of modes of parity—that is, the idea 

that annual-semelparous and perennial-iteroparous life histories are better understood as 24 

endpoints along a continuum of possible strategies. I conclude that parity should be 

understood as a continuum of different modes of parity, which differ by the degree to 26 

which they disperse or concentrate reproductive effort in time. I further argue that there 

are three main implications of this conclusion: (1) That seasonality should not be 28 

conflated with parity; (2) that mathematical models purporting to explain the evolution of 

semelparous life histories from iteroparous ones (or vice versa) should not assume that 30 

organisms can only display either an annual-semelparous life history or a perennial-

iteroparous one; and (3) that evolutionary ecologists should examine the physiological or 32 

molecular basis of traits underlying different modes of parity, in order to obtain a general 

understanding of how different life history strategies can evolve from one another. 34 
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INTRODUCTION 38 

 Semelparity (and the related botanical term “monocarpy”) describes the life 

history defined by a single, highly fecund bout of reproduction, and can be contrasted 40 

with iteroparity (“polycarpy”), the life history defined by repeated (i.e. “iterative”) bouts 

of reproduction throughout life. Identifying the reasons why organisms adopt either mode 42 

of parity is one of life history theory’s oldest problems, having been considered by both 

Aristotle (History of Animals, BkIX, 622 1-30, trans. Thompson, 1907) and Linnaeus 44 

(Linnaeus, 1744). In contemporary evolutionary ecology, this problem has been 

formalized by age-structured demographic models that seek to explain the eco-46 

evolutionary dynamics of reproductive patterns by comparing the intrinsic rates of 

increase of reproductive strategies (Cole, 1954; Bryant, 1971; Charnov and Schaffer, 48 

1973; Young, 1981; Omielan, 1991; Su and Peterman, 2012; Javoiš, 2013; Vaupel et al., 

2013; Cushing, 2015). In such models, two modes of parity are considered, classified by 50 

whether they express all reproductive effort in a single year (semelparity), or in more than 

one (iteroparity). I refer to this simplified conception as the “discrete conception of 52 

parity”. The main advantage of the discrete conception of parity is its analytical 

simplicity; given population growth data, intrinsic rates of increase can be easily 54 

computed and directly compared. Some intraspecific comparisons between 

phenotypically similar semelparous and iteroparous congeners conform to the predictions 56 

of demographic models based on the discrete conception of parity (e.g. Fritz et al., 1982; 

Young, 1984, 1990; Iguchi and Tsukamoto, 2001). 58 

However, in this review I will argue that despite the modest successes—both 
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theoretical and empirical—of evolutionary explanations rooted in the discrete conception 60 

of parity, sufficient evidence has been accumulated to make it clear that, like many other 

life-history traits, parity is a continuous variable, and that semelparity and iteroparity are 62 

the endpoints of a continuum of possible strategies that define the distribution of 

reproductive effort through time, rather than simple alternatives describing whether an 64 

organism fatally reproduces in a given year or not. On this account, semelparity can be 

understood as the strategy defined by concentrating reproductive effort in time, and 66 

iteroparity as the strategy defined by distributing reproductive effort over longer 

timescales. I refer to this idea hereafter as the “continuous conception of parity”. It is 68 

important to note that the continuous conception of parity should not be conflated with 

the related terms “annuality” and “perenniality”. These terms specify strategies defined 70 

by the “digitization” of reproduction in response to seasonal effects supervening on the 

process of reproduction, rather than describing how concentrated reproductive effort is in 72 

time. This distinction is further discussed later. 

The idea that parity itself is continuous and not discrete is not new (see: Hughes 74 

and Simons, 2014c; Kirkendall and Stenseth, 1985; Unwin, Kinnison and Quinn, 1999; 

Roff, 1992), but to date no systematic exposition of the empirical evidence supporting the 76 

different conceptions of parity has yet been undertaken. Furthermore, evolutionary 

explanations of life-history differences between clades with differing modes of parity 78 

continue to rely on the discrete conception of parity (e.g. Lopes and Leiner, 2015), and 

mathematical models based on the formalization of this assumption continue to be 80 

produced (e.g. Benton and Grant, 1999, Davydova et al., 2005; Vaupel et al., 2013). 

However, because of the ubiquity of evolutionary transitions from iteroparity to 82 
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semelparity (Table 1), understanding parity as a continuous trait is important for 

understanding the underlying eco-evolutionary dynamics that affect the fitness of life-84 

history strategies.  

In this review I begin by reviewing the development of both the discrete and 86 

continuous conceptions of parity as evolutionary hypotheses and/or models. Next, I 

review empirical work that highlights the existence of natural variation in reproduction 88 

along a semelparity-iteroparity continuum, focusing on three distinct strategies: 

facultative iteroparity, facultative semelparity, and phenotypically plastic parity. I 90 

conclude by exploring the implications of the continuous conception of parity for: (1) the 

study of seasonality as a “digitization” of reproduction, (2) the process of mathematically 92 

modelling life-history optimization, and (3) the study of the molecular regulation of 

reproductive traits linked to parity. 94 

 

(1) Reviewing Discrete and Continuous Conceptions of Parity 96 

1.1 - ‘Cole’s Paradox’ and the development of the discrete model of parity 

Although the first mathematical model of the intrinsic rate of increase of annual 98 

plants was constructed by Linnaeus (1744), Lamont Cole (1954) was the first to 

categorize life histories into dichotomous “semelparous” and “iteroparous” groups: a 100 

semelparous organism is one that “dies upon producing seed” and therefore “potential 

population growth may be considered on the assumption that generations do not overlap” 102 

(p. 109), while iteroparous organisms include a variety of cases, from those where “only 
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two or three litters of young are produced in a lifetime” as well as “various trees and 104 

tapeworms, where a single individual may produce thousands of litters” (p. 118). Thus, 

Cole created, and contemporary theorists have inherited, a conception of parity as a 106 

discrete variable: an organism either reproduces more than once or it doesn’t.  

Cole also identified “the paradox of semelparity”, and wrote that “for an annual 108 

species, the absolute gain in intrinsic population growth which could be achieved by 

changing to the perennial reproductive habit would be exactly equivalent to adding one 110 

individual to the average litter size” (Cole 1954, p. 118). Consequently, according to the 

model he developed, a semelparous or iteroparous strategy evolves in response to strong 112 

directional selection for trait-values that: (1) maximize the annual rate of intrinsic 

increase; and (2) are subject to tradeoffs, since reproductive effort is always limited by 114 

resource availability. The “paradox of semelparity” is that the relative intrinsic rates of 

increase for semelparous and iteroparous strategies are very similar (i.e. they differ only 116 

by one individual—the mother), which suggests that iteroparity, not semelparity, should 

be rare, while in nature, iteroparous life histories are generally more common than 118 

semelparous ones. Cole’s articulation of the paradox of semelparity motivated many 

studies searching for theoretical selective advantages of traits linked to discrete 120 

semelparous and iteroparous strategies (Murdoch, 1966; Murphy, 1968; Omielan, 1991; 

Su and Peterman, 2012; Vaupel et al., 2013; Cushing, 2015), as well as attempts to detect 122 

these selective advantages in natural systems (Murphy and Rodhouse, 1999; Kaitala et 

al., 2002; Kraaijeveld et al., 2003; Franklin and Hogarth, 2008; Gagnon and Platt, 2008; 124 

Fisher and Blomberg, 2011). Following Cole, semelparous strategies considered in later 

life history models were usually also annual (although empirical data on long-lived 126 
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semelparous organisms was also collected, e.g. Young and Augspurger, 1991; García, 

2003), and thus the primary goal of many models purporting to explain the evolution of 128 

semelparity was to provide reasons why a perennial-iteroparous strategy might confer 

higher fitness than an annual-semelparous one.  130 

Cole’s “paradox of semelparity” was resolved by acknowledging that differences 

in age-specific rates of mortality affect the relative fitness of semelparous and iteroparous 132 

habits. Building on prior analytical work (see: Murphy, 1968; Emlen, 1970; Gadgil and 

Bossert, 1970; Bryant, 1971), Charnov and Schaffer (1973) and Schaffer (1974b) noted 134 

that the expected fitness value of individuals at juvenile (i.e. prereproductive) and adult 

(i.e. reproductively mature) developmental stages often differed. They then argued that 136 

when the survival of adults was more assured than the survival of juveniles, an 

iteroparous habit would have a growth advantage over a semelparous one. Thus, their 138 

model emphasized that the value of the age class with a lower age- or stage-specific rate 

of mortality was—assuming equal fitness across age classes—greater than the value of 140 

the age class with a higher rate of mortality. Young (1981) extended this insight into a 

more general model of intrinsic rates of increase, which incorporated not only differences 142 

in age-specific survivorship, but also differences in prereproductive development time 

and time between reproductive episodes. This model provided three major reasons why 144 

semelparity might be favoured by natural selection. First, high adult mortality—or the 

early onset of reproductive senescence—might prevent iteroparous species from accruing 146 

fitness gains from established parents over long timescales. Second, a high population 

growth rate should favour semelparity outright. Third, when the marginal cost of 148 

additional offspring is inversely proportional to the number of offspring produced, 
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fecundity is maximized by investing all reproductive effort into a single episode, i.e. 150 

adopting an extreme annual-semelparous life history—see also Schaffer (1974) and 

Schaffer and Gadgil (1975).  152 

 

1.2 – Recent work extending the theory that parity is a discrete trait 154 

Given that earlier work sought to explain the prevalence of semelparous and 

iteroparous strategies by identifying differences in age-specific mortality, recent work has 156 

sought to explain why differences in age-specific mortality persist, as well as how 

varying environmental conditions facilitate the co-existence of different modes of parity. 158 

Bulmer (1985, 1994) incorporated a model that incorporated density-dependence, a 

model that was generalized by Ranta et al. (2002). Another common approach has been 160 

to use simulations, based on comparisons between discrete strategies, to argue that spatial 

heterogeneity and stochastic events (i.e. demographic disasters and windfalls) influence 162 

the evolutionary stability of each mode of parity over small spatial scales (e.g. Ranta et 

al., 2001). Similarly, Zeineddine and Jansen (2009) examined the role that discrete modes 164 

of parity may play in evolutionary tracking, suggesting that species adopting an annual-

semelparous strategy may have an evolvability advantage over perennial-iteroparous 166 

congeners. Moreover, considerable evidence now supports two general conclusions: (1) 

that theoretically optimal life history strategies strongly depend on optimizing parity 168 

(Maltby and Calow, 1986; Keeley and Bond, 1999; Iguchi and Tsukamoto, 2001; 

Stegmann and Linsenmair, 2002; Kraaijeveld et al., 2003; Leiner et al., 2008; Trumbo, 170 

2013), but also (2) that parity is especially important for predicting reproductive 
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scheduling (Schaffer and Gadgil, 1975; Kozłowski and Wiegert, 1986; Iwasa, 1991; 172 

Kozłowski, 1992; McNamara, 1997; Cooke et al., 2004; Miller et al., 2012; Vaupel et al., 

2013; Oizumi, 2014), and/or the optimal allocation of reproductive effort to offspring 174 

(Cohen, 1966; Smith and Fretwell, 1974; Winkler and M., 2002; Einum and Fleming, 

2007; Gremer and Venable, 2014; Mironchenko and Kozłowski, 2014). Thus the current 176 

theoretical life history literature is replete with papers discussing the knock-on effects of 

the assumption that modes of parity are discrete rather than continuous. 178 

 

1.3 Empirical support for the discrete conception of parity 180 

Empirical support for the discrete model of parity is strongest where perennial-

iteroparous and annual-semelparous (or, rarely, perennial-semelparous) congeneric 182 

species have starkly different life histories. For instance, in a comparison of Mount 

Kenya species of the genus Lobelia, Young (1984) found that juvenile and adult mortality 184 

of the annual-semelparous species L. telekii were higher than in the closely related 

perennial-iteroparous species Lobelia keniensis. Young concluded that the difference in 186 

age-specific rates of mortality would strongly influence the expected value of future 

reproduction for each species, leading to perennial-iteroparity in one species and annual-188 

semelparity in the other (Young, 1990). Similar comparisons between semelparous and 

iteroparous congeners or confamilials have been conducted in insects (Fritz et al., 1982; 190 

Stegmann and Linsenmair, 2002), salmon (Dickhoff, 1989; Unwin et al., 1999; Crespi 

and Teo, 2002; Kindsvater et al., 2016), snakes (Bonnet, 2011), algae (De Wreede and 192 

Klinger, 1988) and dasyurid marsupials (Kraaijeveld et al., 2003; Mills et al., 2012). 
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Other studies have focused on reproductive effort, since a declining marginal cost of 194 

offspring in terms of reproductive effort should select for an annual- or perennial-

semelparous life history over an perennial-iteroparous one. This is the cited cause of the 196 

evolution of semelparity in Digitalis purpurea (Sletvold, 2002), and in Antechinus agilis 

(Smith and Charnov, 2001; Fisher and Blomberg, 2011). Growth rate is also important; in 198 

two subspecies of Yucca whipplei, the semelparous variant showed higher viability and 

faster time to germination than the iteroparous variant did (Huxman and Loik, 1997). 200 

Further studies highlight the mortality differences between juveniles and adults, which 

explains the evolution of semelparity in a variety of long-lived semelparous plants 202 

(Foster, 1977; Kitajima and Augspurger, 1989; Young and Augspurger, 1991), as well as 

in salmonids (Fleming, 1998; Crespi and Teo, 2002; Hendry et al., 2004; Sloat et al., 204 

2014).  

Models have been developed that use demographic parameters to predict age and 206 

size at first flowering for semelparous (monocarpic) plants; however, these models have 

been found to be more appropriate for long-lived than short-lived species (Metcalf et al 208 

2003, Rees and Rose 2002). More recently, mathematical modelling of evolutionary 

responses to discrete semelparous and iteroparous strategies has focused on whether the 210 

maintenance of both modes of parity can be a consequence of stochasticity in the ratio of 

juvenile to adult mortality (Murphy, 1968; Ranta et al., 2002), of differences in the 212 

effects of density on age-specific mortality (Bulmer, 1985), or as a consequence of 

population instability (Ranta et al., 2000). 214 
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1.4 – The continuous conception of parity 216 

 However, in many cases substantial unexplained variation in parity exists even 

after factors such as age-specific mortality, density dependence, and environmental 218 

effects are taken into account. For this reason it seems as though models based on the 

discrete conception of parity describe a limited range of special cases and not the 220 

majority of systems with congeneric or confamilial species with different reproductive 

strategies. This problem arises because theoretical models of the discrete conception of 222 

parity make two characteristic assumptions. First, these models assume that reproductive 

output is allocated among cycles (typically seasons or years) rather than expressed 224 

continuously. This means that offspring produced at two different times within a single 

season are “counted” as being part of the same reproductive episode, while offspring 226 

produced at two different times in two different seasons are counted as part of 

categorically different reproductive episodes. This permits the calculation of threshold 228 

values (e.g. of size or age) beyond which selection should begin to favour one mode of 

parity or the other, but is based on a distinction that is arbitrary. Second, each individual 230 

is assumed to express a single reproductive strategy; models do not predict 

phenotypically plastic modes of parity, or facultative switching between modes.  232 

These assumptions do not hold in many cases. The fact that semelparous 

reproduction rarely occurs “once”—i.e. in exactly one place, at exactly one time—has led 234 

to a new treatment of parity as continuously varying between extremes of “pure” 

semelparous and iteroparous reproduction. This approach has gained traction because 236 

there is considerable ambiguity in “breeding once” (Kirkendall and Stenseth, 1985). 
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Moreover, “annuality” and “perenniality”—terms that refer to the number of years in 238 

which organisms reproduce—cannot be used interchangeably with “semelparity” and 

“iteroparity”, which refer to the number of reproductive episodes organisms have (Fritz et 240 

al., 1982; Kirkendall and Stenseth, 1985). In “The Evolution of Life Histories”, Roff 

(1992) noted that, “if we consider our unit of time to be a single year, annuals can be 242 

termed semelparous and perennials iteroparous. A further division is possible within 

annuals, for some reproduce once and are, therefore, semelparous within any time scale, 244 

while others flower repeatedly throughout the summer and, hence, are iteroparous with 

respect to annuals that flower only once, but semelparous with respect to perennials” (p. 246 

248). That is, it is the simultaneity and the finality of the reproductive episode (i.e. the 

concentration of reproductive effort) that defines perfect semelparity. Therefore, the 248 

continuous conception characterizes “extreme” semelparity to be a single, complete, and 

exhaustive reproductive episode where all reproductive effort is invested at once. 250 

Examples of this strategy—which Kirkendall and Stenseth (1985) termed “uniparity”— 

include mayflies and mites of the genus Adactylidium (Edmunds et al., 1976; Corkum et 252 

al., 1997). Both male and female mayflies die shortly after mating and dispersing 

fertilized eggs. In Adactylid mites, offspring devour the mother from the inside out, and 254 

are thus obligately annual-semelparous (Elbadry and Tawfik, 1966; Goldrazena et al., 

1997). The correspondingly “extreme” perennial-iteroparous strategy is a long-lived 256 

perennial strategy that spreads reproductive effort out evenly among a very large number 

of reproductive cycles. Many species, including bristlecone pine, many deep-sea 258 

zoanthids, and other supercentennial species that reproduce regularly show such a habit 

(Baker, 1992; Druffel et al., 1995; Finch, 1998; Rozas, 2003). Intermediate strategies 260 
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complete reproduction over a shorter timescale than bristlecone pine, but over a longer 

timescale than Adactylid mites. 262 

The continuous conception of parity is therefore very simple: parity is a trait like 

any other, and continuous variation in factors affecting reproduction (e.g. resource 264 

availability, timing of reproduction, etc.), where subject to evolution by natural selection, 

should result in continuous variation in reproductive strategy (see: Salguero-Gómez et al., 266 

2016). Furthermore, rather than considering only whether organisms complete 

reproduction within a given year, and making no finer distinction, life history strategies 268 

should be compared by the degree to which they concentrate or disperse reproductive 

effort—and hence risk of reproductive failure—in time. For example, a mature biennial 270 

strategy (where an organism reproduces once per year in two consecutive years) 

distributes reproductive effort over a shorter timescale than does a long-lived perennial 272 

congener (where an organism reproduces once per year in many years); although the 

biennial strategy is not semelparous, it is further toward the “uniparous” end of the 274 

continuum of modes of parity than is the perennial strategy. Similarly, an annual-

semelparous life history that reproduces rapidly lies further toward this end of the 276 

continuum than does an annual-semelparous life history in which reproduction is spread 

over a longer period of time. 278 

 

1.5 Empirical support for the continuous conception of parity 280 

There is considerable empirical support, from lab and field studies alike, for the 
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notion that parity varies continuously. These results have made it increasingly clear that 282 

demographic explanations rooted in the discrete model of parity fail to provide an 

universal evolutionary explanation for the appearance of different modes of parity. The 284 

most obvious objections to the universal applicability of this theory come from species 

that are facultatively semelparous, from species that reproduce irregularly or 286 

opportunistically, or from comparisons between related iteroparous and semelparous 

species that do not show measurable differences in factors affecting intrinsic rates of 288 

increase, including age-specific rates of mortality. These situations are not uncommon in 

nature. The problem they present is significant because the evolutionary transition from 290 

semelparity to iteroparity (and back) is ubiquitous, and has occurred in a wide variety of 

taxa (see Table 1 for an example using data from angiosperm orders).  292 

There are important consequences for adopting the continuous conception of 

parity as a starting point for modelling the evolution of different modes of parity. 294 

Mathematical models based on the discrete conception of parity often predict threshold 

values—in mortality rate, size at initiation of reproduction, or expected growth rate—that 296 

do not agree with empirical observation (Omielan, 1991; Lessells, 2005; Piñol and 

Banzon, 2011; Su and Peterman, 2012; Trumbo, 2013; Vaupel et al., 2013). In particular, 298 

ESS models derived from assumptions rooted in the discrete conception of parity 

frequently underestimate the adaptive value of semelparous reproductive strategies; even 300 

after accounting for the effects of environmental stochasticity and density-dependence, 

ESS models predict that semelparous strategies should be less abundant—and less fit—302 

than they have been found to be (Benton and Grant, 1999). In addition, there are 

empirical cases that explicitly do not conform to the predictions of the discrete model. 304 
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For example, an analysis of 12 winter-establishing primrose species (Oenothera: 

Onagraceae) found no significant differences in mortality estimates or in environmental 306 

determinants of fitness for semelparous and iteroparous species (Evans et al., 2005). In 

some cases, the problem may be that life histories are too complex for organisms to 308 

follow discrete strategies; many salmon species also do not fit neatly into “classical” 

annual- or perennial-semelparous and perennial-iteroparous classifications (Unwin et al., 310 

1999; Hendry et al., 2004). Other research has suggested that deterministic models of 

investment may better fit long-lived than short-lived semelparous species, given that 312 

many annual semelparous species (usually plants) show substantial phenotypic plasticity 

in phenology (e.g. size at first flowering), offspring quality and overall fecundity (Burd et 314 

al., 2006).  

In order to provide a coherent exposition of the extensive body of recent work that 316 

shows empirical support for the continuous conception of parity, in what follows I focus 

on three “intermediate” life histories that are neither annual-semelparous nor perennial-318 

iteroparous, but express another mode of parity that falls somewhere in between. These 

include: (1) facultative iteroparity; (2) facultative semelparity; and (3) phenotypically 320 

plastic parity. Although these three examples are the most common modes of parity that 

are neither classically (annual- or perennial-) semelparous nor iteroparous, other 322 

intermediate strategies exist, particularly when species or clades have idiosyncratic life 

histories. In addition, an individual population or species may itself express multiple 324 

modes of parity. For instance, arctic cod (Boreogadus saida) are annual-semelparous in 

nature, but can reproduce in two consecutive years in captivity, making them 326 

facultatively iteroparous (Hop et al., 1995; Hop and Gjosaeter, 2013). However, males 
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and females of this species also seem to have different life histories – males begin to 328 

reproduce at an earlier age, and can allocate extreme amounts of reproductive effort to a 

single instance of reproductive activity; semelparity in this species is thus also 330 

phenotypically plastic (Nahrgang et al., 2014). Although examples of each life history are 

provided below, many more have been added to Table 2, a list of species showing 332 

facultatively varying or plastic modes of parity. 

 334 

1.6 Empirical evidence of facultative variation in parity 

1.6.1  Facultative Iteroparity 336 

 Many semelparous species have shown the ability to facultatively reproduce one 

or more times after an initial bout of reproduction has began and ended—this is termed 338 

“facultative iteroparity”. Facultative iteroparity can be adaptive when it either: (1) 

provides an opportunity to realize fitness gains from an unexpected abundance of 340 

resources, or (2) shifts reproductive effort from inopportune to opportune times. The first 

type of adaptive facultative iteroparity occurs when additional bouts of reproduction 342 

increase fitness by permitting unexpected “bonus” resources to be invested in new 

offspring. For example, mothers of the semelparous crab spider Misumena vatia (Araeae, 344 

Thomsidae) typically lay and provision a single brood of eggs (Gertsch, 1939; Morse, 

1979), however in response to high food availability and/or usually warm environmental 346 

conditions, they are capable of laying and caring for a second brood if sperm supplies are 

not depleted (Morse, 1994). A similar facultative double-broodedness in response to 348 
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unusually favourable environment has been observed in the green lynx spider Peucetia 

viridans (Fink, 1986). In addition, a small proportion of Chinook salmon 350 

(Onchorhynchus tshawytscha), which typically reproduce only once, have been found to 

survive and reproduce in two or three additional seasons (Unwin et al., 1999). Tallamy 352 

and Brown (1999) showed that large, well-provisioned female burying beetles in multiple 

species in the genus Nicrophorus can reproduce more than once, despite the fact that 354 

small females can typically breed only once.  

The second form of adaptive facultative iteroparity occurs when deferral of 356 

reproductive effort—from a primary reproductive episode to a secondary one—allows an 

organism to reproduce at a more opportune time. Reproduction is deferred to seek the 358 

highest marginal fitness return on invested reproductive effort. For example, when high 

organic pollution levels disrupt primary reproduction in the freshwater leech Erpobdella 360 

octoculata, reproduction ceases and remaining reproductive effort is deferred to a second 

reproductive bout produced the next year (Maltby and Calow, 1986). Similar behaviour 362 

has been seen in another Erpobdellid leech, Erpobdella obscura (Peterson, 1983; Davies 

and Dratnal, 1996) as well as in many cephalopods (Rocha et al., 2001). Adaptive 364 

deferral of reproductive effort is common in crab spiders. In Lysiteles coronatus, artificial 

brood reductions resulted in the production of a second brood, and the degree of deferral 366 

was proportional to the degree of the original reduction (Futami and Akimoto, 2005). 

This was also observed in the field in Eresid spiders of the genera Anelosimus and 368 

Stegodyphus, both of which facultatively produce a second brood in response to nest 

predation (Schneider and Lubin, 1997; Schneider et al., 2003; Grinsted et al., 2014). 370 

Although the adaptive potential of facultative iteroparity is often apparent, facultative 
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iteroparity may also be vestigial instead of adaptive. In this case, the organism’s life 372 

history merely reflects an ancestral state, and the second (or additional) bout of 

reproduction should confer little or no adaptive value (Golding and Yuwono, 1994; 374 

Hughes and Simons, 2014b).  

 376 

1.6.2 Facultative Semelparity 

Facultative semelparity occurs when species that are normally perennial-378 

iteroparous—i.e. have multiple, discontinuous reproductive episodes that span more than 

one year—are capable of expressing only a single reproductive bout (Christiansen et al., 380 

2008). This is a useful strategy for organisms to use to take advantage of unusually good 

environmental conditions for reproduction. For example, in the short-lived mustard 382 

Boechera fecunda (also known as Arabis fecunda; Brassicaeae), plants are capable of 

wide range of reproductive strategies, from near-instantaneous semelparity to multi-year 384 

iteroparity. This is because B. fecunda can produce many small axillary inflorescences in 

any given year, and their production does not preclude flowering by the same rosette in 386 

the subsequent year. However, plants can also produce large “terminal inflorescences” 

that exhaust remaining resources and lead to senescence and death. Although some plants 388 

produce axillary inflorescences for several years before a terminal inflorescence, others 

produce a terminal inflorescence in their first year (Lesica and Shelly, 1995; Lesica and 390 

Young, 2005). A similar system is seen in common foxglove, Digitalis purpurea 

(Scrophulariaceae), which is predominantly biennial or perennial-iteroparous, but can be 392 

facultatively semelparous if resource availability in the first year is high (Sletvold, 2002). 
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Facultative semelparity has also been observed in capelin (Christiansen et al., 2008; Loïc 394 

et al., 2012), squid, soil microarthropods (Siepel, 1994), dasyurid marsupials (Kraaijeveld 

et al., 2003; Martins et al., 2006), and in the flowering plants Ipomopsis aggregata 396 

(Silvertown and Gordon, 1989) and Cynoglossum officinale (Williams, 2009). Some 

facultatively semelparous species show a continuous range of types of reproductive 398 

episode, rather than discretely fatal or non-fatal ones. Erysimum capitatum (Brassicaceae) 

produces multiple reproductive episodes in environments where water is plentiful; 400 

however, where water is scarce it expresses a semelparous strategy (Kim and Donohue, 

2011). 402 

1.6.3 Phenotypically Plastic Parity 

Like other traits, mode of parity can be phenotypically plastic. This occurs when 404 

different modes of parity are expressed by a single species in response to environmental 

cues. Different modes of parity can occur both: (1) among individuals; or (2) within the 406 

reproductive episode of a single individual. Phenotypically plastic mode of parity is 

common source of intraspecific variation in life history characters; thus this is a major 408 

source of confusion for mathematical models that predict a single optimal value for all 

semelparous and all iteroparous habits. Such differences need not be dramatic—for 410 

example, as a consistent response to environmental triggers, even small differences in the 

length of a semelparous reproductive episode may have significant effects on fitness.  412 

Strong empirical evidence of phenotypically plastic mode of parity is found in sea 

beets (Beta spp., Amaranthaceae), which display reproductive strategies along “a gradient 414 

from pronounced iteroparity to pronounced semelparity” (Hautekèete et al., 2001, p. 
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796). Interestingly, the selective pressures faced by these species seem to elicit similar 416 

plastic responses. Environmental stressors cause individuals to trade off future fecundity 

for increased immediate reproductive effort, resulting in a parity gradient tending to 418 

semelparity when environmental stress becomes intense (Hautekèete et al., 2001, 2009). 

This pattern is consistent with the prediction that higher current reproductive effort can 420 

prevent organisms from being exposed to uncertain or risky environments (Williams, 

1966; Vahl, 1981; Rubenstein, 2011; Trumbo, 2013). Similar trade-offs were observed in 422 

Yucca whipplei (Huxman and Loik, 1997), Chusquea ramosissima (Montti et al., 2011), 

and Onopordum illyricum (Rees et al., 1999). Lobelia inflata is capable of producing 424 

different semelparous strategies, from a nearly instantaneous annual-semelparity, where 

plants produce many similar flowers quickly and simultaneously, to (nonadaptive) 426 

facultative biennial-iteroparity, where as much as half of all reproductive effort is 

invested in a second reproductive episode. The time of initiation of reproduction strongly 428 

predicted which of these strategies is realized (Hughes and Simons, 2014b; c).  

Many insect species are also capable of displaying a range of modes of parity 430 

among individuals (Trumbo, 2013). In the assassin bug (Atopozelus pallens), females 

deposit eggs in small clutches, approximately every two days. However, the number of 432 

clutches—and hence how prolonged this reproductive episode is—varies substantially 

(Tallamy et al., 2004). Similarly, European earwigs (Forficula auricularia) show 434 

condition-dependent semelparity; females either deposit all eggs into a single clutch or 

lay two clutches (Meunier et al., 2012; Ratz et al., 2016). Most insects showing variation 436 

in the number of clutches produced do so in response to abiotic cues, particularly 

temperature and day length (Bradshaw, 1986). This behavior can also be found in 438 
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ascidarians (Grosberg, 1988) and semelparous mammals (Wolfe et al., 2004; Mills et al., 

2012). 440 

Phenotypic plasticity within a reproductive episode of a single individual is 

noticeable when a semelparous organism displays a changing reproductive strategy—442 

varying along the continuum of parity—that cannot be attributed to developmental, 

environmental, or architectural constraints (Diggle, 1995, 1997). This pattern is more 444 

difficult to detect than phenotypically plastic strategies that differ between individuals, 

but in many systems observable differences exist between the “packaging” of 446 

reproductive effort, resulting in adaptive variation in phenology or offspring quality 

through time. This can be difficult, since because they reproduce only once, semelparous 448 

organisms are expected to show high reproductive effort (Bonser and Aarssen, 2006). 

However, the development of fruits of the semelparous plant Lobelia inflata varied 450 

continuously; in this system, late fruits showed accelerated phenology and higher 

offspring quality relative to early fruits. This pattern, which indicated that more 452 

reproductive effort was invested in later fruit, shows that L. inflata does not “reproduce 

once” but dynamically allocates reproductive effort throughout a sequence of repeated 454 

fruiting events ((Hughes and Simons, 2014a, 2015). Likewise, in populations of the 

semelparous plant Centaurea corymbosa, plants showed highly variable life cycles—456 

dynamically varying the proportion of reproductive effort allocated to sequential 

flowers—depending on environmental conditions and crowding (Acker et al., 2014). 458 

1.7 Evolutionary transitions between modes of parity are ubiquitous 

Transitions between different strategies along the semelparity-iteroparity 460 
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continuum are common throughout the tree of life. Furthermore, modes of parity appear 

to be evolutionarily labile within species, and many species show significant intraspecific 462 

differences in the expression of parity (e.g. Maltby and Calow, 1986; Hughes and 

Simons, 2014a; c). Thus while some clades consistently display a single mode of parity 464 

(e.g. most placental mammals are exclusively iteroparous), many clades show 

considerable variability (see Table 1 for data from plant orders). Among cephalopoda 466 

(Mollusca), Loligo opalescens, Octopus vulgaris, O. mimus, and O. cyanea  display 

extreme semelparity (Ikeda et al., 1993; Rocha et al., 2001), while Nautilus spp. show 468 

extreme perennial-iteroparity (Ward, 1983, 1987). However, other cephalopods, 

including Octopus chierchiae, Sthenoteuthis oualaniensis, and Dosidicus gigas show 470 

varying degrees of facultative iteroparity (Nesis, 1996; Laptikhovsky, 1998, 1999; Rocha 

et al., 2001), while still others, including Sepia officinalis, Loligo vulgaris, L. bleekeri, L. 472 

forbesi, and Ilex coindetii show facultative semelparity, and, in the case of S. officinalis, a 

strikingly variable duration of reproduction (Boletzky, 1987, 1988; Baeg et al., 1993; 474 

Gonzalez, 1994; Gonzalez and Guerra, 1996; Rocha and Guerra, 1996; Melo and Sauer, 

1999). Furthermore, in many of these species key traits—such as the timing and duration 476 

of reproduction—show substantial dependence on environmental effects (Rocha et al., 

2001). Similar lability in these traits is also present in other clades, including both 478 

angiosperms and animals (see: Maltby and Calow, 1986; Tallamy and Brown, 1999; 

Hautekèete et al., 2001; Crespi and Teo, 2002; Varela-Lasheras and Van Dooren, 2014). 480 

Thus, because evolutionary change from one mode of parity to another is a ubiquitous 

life-history transition, accurately characterizing parity as a life-history variable of interest 482 

may prove crucial to accounting for the adaptiveness of life-history strategies.  
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 484 

(2) Understanding the Evolution of Semelparous and Iteroparous 

Strategies in Light of the Continuous Conception of Parity  486 

What changes should be made in light of the evidence that parity is a continuous 

trait? In this section I will focus on three main recommendations. First, I provide a short 488 

discussion of how seasonality should not be conflated with mode of parity. Second, I 

discuss the necessity of developing new mathematical modelling approaches that treat 490 

parity as a continuous variable. This is not simple, since parity itself is a composite trait, 

and relies on the coordination of many biological functions at once. Third, I discuss why 492 

ecologists should ground future studies of adaptive life history strategies in mechanistic 

details derived from genetic studies of continuously-varying life history traits underlying 494 

reproduction and, consequently, parity. These recommendations should improve both the 

validity and reliability of predictive models of life-history evolution, while 496 

simultaneously providing a framework for interpreting empirical findings regarding the 

expression of reproductive effort through time. 498 

 

2.1 – Seasonality and Mode of Parity 500 

One major implication of treating parity as a continuous variable is that this 

reconception allows us to distinguish between parity and seasonality. Parity describes the 502 

concentration or diffusion of reproductive effort in time, which is distinct from the 

question of seasonal reproduction—i.e. how organisms should distribute reproductive 504 
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effort among seasons, when seasonal cycles determine the favourability of establishment, 

growth, and reproductive conditions (Cole, 1954; Charnov and Schaffer, 1973; Schaffer, 506 

1974b; Schaffer and Gadgil, 1975; Calow, 1979; Young, 1981; Bulmer, 1994; Evans et 

al., 2005; Ranta et al., 2007). It is, of course, clear that seasonality is related to parity. 508 

Insofar as an annual-semelparous organism is defined by the fact that it has a single 

reproductive episode that occurs within one year, it is likely to experience selection for 510 

strategies that optimize its reproductive schedule relative to season-specific 

environmental effects; this means that an annual-semelparous organism is more likely to 512 

show predictable seasonal patterns than a perennial-iteroparous congener that can escape 

a poor season by overwintering. However, the explanatory power of such seasonal 514 

adaptations may be much weaker when we compare a fast-reproducing semelparous 

organism with a slower-reproducing semelparous congener, or when we compare an 516 

iteroparous strategy where reproductive effort is distributed over two seasons with 

another where reproductive effort is distributed among ten seasons. Seasonal effects are 518 

likely to supervene on reproduction whenever regular intervals occur that have an impact 

on the favourability of reproduction. Thus it may be more fruitful to understand annuality 520 

and perenniality as strategies defined by the “digitization” of reproduction in response to 

seasonality. The advantage of this approach is that it makes it easier to understand 522 

flexible life histories, regardless of whether a species is semelparous or iteroparous.  

There is widespread empirical evidence that seasonality and parity can vary 524 

independently. One common pattern is integer changes in voltinism among organisms 

that share a common mode of parity. For example, the Muga silkworm (Antheraea 526 

assamensis) is semelparous and multivoltine throughout its natural range (from India to 
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Borneo). This species produces up to 6 generations per year, with the number of 528 

reproductive cycles depending on length of the season (Singh and Singh, 1998; Ghorai et 

al., 2009). However, the closely related Chinese tussar silkmoth, Antheraea pernyi, is 530 

bivoltine at the southern margins of its range, but is univoltine in northern China and 

Korea. Moreover, this continuous variation in voltinism along an ecological cline is due 532 

to continuous variation in environment-dependent biogenic monoamine production in the 

brains of diapause pupae (Fukuda, 1953; Matsumoto and Takeda, 2002; Liu et al., 2010). 534 

Life histories also vary continuously among populations of the wild silkmoth (Bombyx 

mandarina) and its domesticated counterpart (Bombyx mori), where populations in colder 536 

climates (e.g. European Russia) are univoltine, whereas those in China and Korea are 

bivoltine or multivoltine (Xia et al., 2009). Similar examples can also be found in 538 

crucifers (Williams and Hill, 1986; Springthorpe and Penfield, 2015), orchids (Chase et 

al., 2005), freshwater molluscs (Mackie and Flippance, 1983; McMahon and Bogan, 540 

2001), and Centaurea (Asteraceae; Acker et al., 2014), among others. In each of these 

systems, a distinct continuum of reproductive strategies despite the supervening effect of 542 

seasonality is readily observable. Additionally, new models are being developed that 

consider generation length independently from parity (Waples, 2016). Thus we can easily 544 

tease apart the question of whether reproduction is concentrated in time—i.e. whether a 

given species is semelparous—from the question of whether seasonality requires that, in 546 

temperate climates, late-reproducing individuals should enter diapause rather than 

reproduce immediately.  548 
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2.2 – Mathematical Modelling of Parity 550 

A second problem facing life history theory is the challenge of making new 

mathematical models that account for the continuity of modes of parity. Although 552 

empirical studies of many taxa support the continuous conception of parity, the evolution 

of different modes of parity from one another has generally been explained by 554 

demographic models that compare the special case where annual-semelparous and 

perennial-iteroparous strategies have different demographic implications. This means that 556 

mathematical models that incorporate the assumption that there is a discrete difference 

between semelparous and iteroparous strategies may not be able to account for the real 558 

eco-evolutionary dynamics of the reproductive behaviour of many organisms that do not 

show either annual-semelparous or perennial-iteroparous modes of parity, or the 560 

reproductive behaviours of species or populations that display continuous differences in 

parity. To develop a general model that can account for all modes of parity as adaptive 562 

responses to environmental conditions should, as an axiom, treat parity as a continuous 

trait, and should be able to explain both the evolution of semelparous strategies from 564 

iteroparous ones (or vice versa) as well as the adaptive value of intermediate modes of 

parity. In this section I argue that dynamic mathematical models that integrate molecular 566 

data with demographic factors are the best candidates to explain the evolution of different 

modes of parity. In addition, extant mathematical models used to explain the adaptive 568 

differences between semelparous and iteroparous life histories—or to calculate “optimal” 

trait values for distinct semelparous-annual and iteroparous-perennial strategies—can and 570 

should be redesigned to incorporate a continuum of possible modes of parity.  
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These new models will have to build on and learn from a considerable body of 572 

existing models detailing the eco-evolutionary dynamics of semelparous and iteroparous 

life history strategies. Early conceptual and mathematical models of optimal semelparous 574 

reproduction were generally simple, deterministic, and were designed to predict a single 

“threshold” value that optimized life history characters such as size at first reproduction 576 

(Bell, 1980; Young, 1981). Threshold models of this type include senescence-threshold 

models based on the Penna aging model (Piñol and Banzon, 2011), as well as 578 

development-threshold models such as age-structured life history models. Age-structured 

models treat age at reproduction, and hence parity, as a discrete variable, and assess the 580 

evolutionary consequences of the degree of overlap between juvenile (i.e. 

prereproductive) and adult (reproductive) classes in a population (Wikan, 2012). Among 582 

the best known of these are Leslie models, which predict either few evolutionary stable 

states for semelparous organisms (Cushing, 2009, 2015; Cushing and Henson, 2012; 584 

Cushing and Stump, 2013) or even that populations should consist entirely of individuals 

of a given age class (Rudnicki and Wieczorek, 2014). Still other threshold models make 586 

similar predictions for survival traits (Da-Silva et al., 2008).  

However, despite rare exceptions (e.g. Lesica and Young, 2005), threshold 588 

models generally fail to adequately predict reproductive phenotypes in field systems, 

prompting some authors to emphasize the importance of making fewer assumptions that 590 

contradict “real” life-history parameters—e.g. Burd et al. (2006) note that “empirical 

attention to norms of reaction across growth environments will be a more profitable 592 

approach than investigation of size thresholds per se”. That is, for short-lived 

semelparous species (and some long-lived semelparous species: see Rose et al., 2002), 594 
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the impact of stochastic variation is substantial, and of equal or greater importance than 

the global optimum predicted by deterministic models (Rees et al., 1999). Furthermore, 596 

Rees et al. (1999) show that that deterministic age-structured models, which rest on the 

assumption that parity is discrete, consistently overestimate time at first reproduction in 598 

monocarpic plants. Empirical evidence showing a wide and highly variable range of 

reproductive phenotypes in natural populations (e.g. Marshall and Keough, 2007) has 600 

prompted the formulation of new modelling approaches that consider a range of 

semelparous strategies in response to environmental heterogeneity as a source of 602 

stochasticity that confounds threshold models that consider semelparous reproduction to 

be optimized for a given environmental (reviewed in Metcalf et al., 2003). 604 

Recent mathematical models also fall into several types, each with a particular 

ecological focus. Integral projection models, which incorporate random fluctuations in 606 

environmental parameters related to reproduction, were developed to more accurately 

predict time to first reproduction and size at reproduction, both in iteroparous species 608 

(e.g. Kuss et al., 2008) and in semelparous species with a prolonged semelparous 

reproductive episode (e.g. Rees et al., 1999; Ellner and Rees, 2006 Rees et al. 1999; 610 

Sletvold 2005). Time-lagged models integral projection models attempt to account for the 

temporal discounting of reproductive value as well as size-specific effects on 612 

reproductive effort (Kuss et al., 2008). Newer age-structured stochastic models 

incorporate continuous variation in life history traits to predict optimal timing of 614 

reproduction; while these resemble earlier models that treat parity wholly as a discrete 

variable, the life-history traits in these models are treated continuously (Oizumi and 616 

Takada, 2013; Oizumi, 2014; Davison and Satterthwaite, 2016). 
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Several recent models have been developed to predict reproductive trait values 618 

given other (measured or measurable) life history parameters. This modelling 

methodology is intuitive and compatible with the idea that parity is a continuous trait. For 620 

example, Kindsvater et al (2016) used a stage-structured model to assess the degree to 

which trait covariation constrained life history adaptation in salmonids. Other kinds of 622 

data-driven models fall into two main types: (1) models that highlight the importance of 

phenotypically plastic reaction norms as maximizing fitness despite stochastic variability 624 

in environment (e.g. Burd et al., 2006); and (2) models that emphasize the innate 

variability in reproductive characters within species (e.g. Drouineau et al., 2014; Austen 626 

et al., 2015). Both of these ideas may be useful in modelling selective pressures on a 

continuum of modes of parity. Moreover, rather than using a single model to characterize 628 

semelparous investment in flowers and offspring, authors are now proposing a ‘meta-

modelling’ approach to annual plant reproduction, recognizing that semelparous 630 

reproduction can be fine-tuned by natural selection through phenotypic plasticity (Hughes 

and Simons, 2014a). However, despite the success of some of these new models, as yet 632 

they still suffer from a relative paucity of data relative to other areas of life-history 

theory. When discussing models designed to predict the optimal timing of the initiation of 634 

reproduction, Metcalf et al. (2003) wrote that,  “a glaring inconsistency between the [life 

history] models and the data is that all models predict a specific threshold flowering 636 

condition…but data from natural population show a graded response”.  

 One class of model that may prove to be useful in modelling the allocation of 638 

reproductive effort over time are dynamic state variable models (DSVMs). DSVMs are 

powerful dynamic optimization models used to characterize mechanistic relationships in 640 
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ecology, and have the benefit of being able to be solved computationally (Clark and 

Mangel, 2000). Developing a DSVM can offer insight into the relative impact of 642 

underlying causal processes (in this case, the underlying patterns of genetic regulation of 

reproductive traits) on a state variable of interest (in this case, total plant fitness). Because 644 

the model follows the value of a state variable, the effects of multiple fitness components 

can be considered at once. Moreover, by parameterizing a DVSM with phenotypic data, 646 

ecologists can determine the additive and multiplicative contributions of variation at 

different gene loci, or between related phenotypes of interest. This is an important 648 

advantage insofar as continuous models of parity should, where possible include 

mechanistic detail. DSVMs are compatible with this approach: they can integrate a wide 650 

range of functional, spatial, structural, behavioural, or environmental limitations 

constraining investment in reproduction, and can generate testable predictions by 652 

determining optimal reproductive decision schedules (e.g. Yerkes and Koops, 1999; 

Skubic et al., 2004; Peterson and Roitberg, 2010).  654 

 

2.3 - Molecular Regulation of Parity 656 

 The third implication of understanding parity as a continuously varying trait is 

that further study of parity should be rooted in mechanistic detail, and identifying the 658 

mechanistic basis of different modes of parity (e.g. the contributions of individual genes 

and/or molecular pathways responsible for initiating and continuing reproduction) should 660 

be an important priority for evolutionary ecology. Integrating theoretical ecology with 

molecular biological data was not possible when early life-history models were 662 
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developed, but since parity is determined by the onset and completion of reproductive 

episodes, and recent advances in molecular ecology have made it possible to understand 664 

the physiological and genetic basis of these events in many systems, this is, in many 

systems, an achievable goal. Numerous examples of continuously-expressed 666 

physiological processes result in continuous patterns of reproduction, and hence support 

the continuous conception of parity (Table 3). In this section, I will explain how parsing 668 

out the contributions of a single gene can improve our understanding of how modes of 

parity can vary continuously. To do so, I will discuss an important example: the control 670 

of the initiation of flowering in response to vernalization as it is regulated by 

FLOWERING LOCUS C (FLC) and its orthologues in the Brassicaceae. I discuss two 672 

such cases: (1) FLC regulation of vernalization response in Arabidopsis thaliana, a 

semelparous annual; and (2) PEP1 regulation of vernalization response in Arabis alpina, 674 

an iteroparous perennial. 

 In Arabidopsis, continuous variation in parity –i.e. the timing of floral initiation 676 

and the duration of flowering—is determined by continuous expression of flowering-time 

genes, including FLOWERING LOCUS T (FT) (Kardailsky, 1999; Yanovsky and Kay, 678 

2002; Kotake et al., 2003; Imaizumi and Kay, 2006; Turck et al., 2008; Simon et al., 

2015), FRIGIDA (FRI) (Johanson et al., 2000; Le Corre et al., 2002; Michaels et al., 680 

2004; Stinchcombe et al., 2004; Shindo et al., 2005; Schläppi, 2006), FLOWERING 

LOCUS C (Coupland, 1995; Amasino, 1996; Michaels and Amasino, 1999; Sheldon et 682 

al., 2000; Michaels et al., 2003, 2004; Bastow et al., 2004; Imaizumi and Kay, 2006; Kim 

et al., 2007; Chiang et al., 2009), GIGANTEA (GI) (Fowler et al., 1999; Mizoguchi et al., 684 

2005; Jung et al., 2007), and CONSTANS (CO) (Redei, 1962; Putterill et al., 1995; 
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Koornneef et al., 1998; Samach et al., 2000; Suárez-López et al., 2001; Valverde et al., 686 

2004). Through different pathways, GI and CO activate the floral integrator gene 

FLOWERING LOCUS T (FT), which transcribes a protein that activates floral identity 688 

genes in the shoot apical meristem (Turck et al., 2008; Tiwari et al., 2010). In contrast, 

FLC—along with FRI, which regulates FLC transcription—represses flowering in the 690 

absence of vernalization.  

Although much is known about the complex question of how flowering is 692 

induced, here I concentrate on FLC, since continuous differences in FLC expression 

cause continuous variation in the duration and timing of semelparous reproduction  694 

(Wilzcek et al., 2009; Burghardt et al., 2015). This variation causes continuous 

differences in parity. For instance, throughout Europe, parity in wild populations of 696 

Arabidopsis seems strongly determined by climate and/or latitude: toward the colder 

margins of its range, in northern Finland, plants show a fast-cycling summer semelparous 698 

annual life history, while populations near the Mediterranean show a winter annual life 

history, and populations in intermediate locations (e.g. the UK) display intermediate life 700 

histories (Thompson, 1994; Méndez-Vigo et al., 2011; Ågren and Schemske, 2012). Lab 

studies have identified FLC as the mechanism responsible for this life-history variation. 702 

For example, Wilzcek et al. (2009) introgressed a functional FRI allele into A. thaliana 

ecotypes with nonfunctional alleles. They predicted that this genetic modification—704 

which causes the upregulation of FLC—would see plants transition from a summer-

annual to winter-annual life history. Instead, plants with functional FRI alleles flowered 706 

only 10 days later than those with nonfunctional FRI alleles, causing the authors to note 

that their results “suggest that A. thaliana ecotypes cannot simply be divided into two 708 
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discrete classes of winter-annual and rapid-cycling genotypes. Rather, most ecotypes may 

be capable of both life histories” (p. 933). This prediction is consistent with recent data 710 

from studies of the impact of FLC on the life histories of A. thaliana ecotypes sourced 

from different parts of its native range. While populations varying at the FLC locus show 712 

substantial local adaptation with respect to important life history traits—including those, 

such as length of duration of reproduction, which underlie mode of parity—most 714 

ecotypes adopt new life histories when translocated to radically different environments 

(Ågren and Schemske, 2012; Dittmar et al., 2014; Ågren et al., 2016; Postma and Ågren, 716 

2016). 

Where the prevalence of different FLC alleles differs between populations, 718 

differential expression of FLC can result in different flowering phenologies, and even 

different modes of parity (Johanson et al., 2000; Michaels et al., 2004; Schläppi, 2006; 720 

Banta and Purugganan, 2011). This is likely an adaptive response; life-history models of 

the natural genetic variation at the FLC and FRI loci have shown that FLC expression 722 

explains a relatively high level of variation in fitness (Donohue et al., 2014; Burghardt et 

al., 2015; Springthorpe and Penfield, 2015). Moreover, empirical studies suggest that 724 

such fitness differences may account for the latitudinal cline in Arabidopsis life history 

found in natural populations (Caicedo et al., 2004). Thus it seems that local adaptation of 726 

different modes of parity result from populations experiencing stabilizing selection for 

climate-appropriate FLC alleles (Postma and Ågren, 2016).  728 

While fitness differences are tightly linked to phenotypic variation, major plant 

phenotypes such as flowering phenology are highly plastic in Arabidopsis. The genetic 730 
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and epigenetic regulation of FLC regulate the timing of important life-history transitions, 

determining a plant’s reproductive schedule, and hence its mode of parity (Albani and 732 

Coupland, 2010; Turck and Coupland, 2014). However, environmental factors such as 

seed maturation and germination temperatures can interact with plant genotypes to 734 

produce “clusters” of phenotypically similar, yet genotypically distinct, plant phenologies 

(Burghardt et al., 2016). Environmental variation can therefore facilitate the adoption of 736 

multiple flowering phenologies (e.g. summer annual, winter annual, rapid cycling, etc.)—

and thus modes of parity—from a single Arabidopsis ecotype (Simpson and Dean, 2002; 738 

Méndez-Vigo et al., 2011).  

The relationship between FLC and variation in mode of parity is best understood 740 

in Arabidopsis, continuous variation in parity arising from response to vernalization has 

also been identified in the confamilial species Arabis alpina. PERPETUAL FLOWERING 742 

1 (PEP1), the orthologue of FLC in A. alpina (Wang, Farrona, Vincent, Joecker, et al., 

2009), is responsible for regulating vernalization response. In Arabidopsis, FLC confers a 744 

obligate vernalization requirement on individuals; thus flowering is not possible until 

plants experience winter temperatures, which causes chromatin remodeling that prevents 746 

FLC transcription (Sheldon et al., 2000; Bastow et al., 2004). PEP1 also confers an 

obligate vernalization requirement to A. alpina, however this effect is (seasonally) 748 

temperature-dependent. That is, in the Pajares ecotype, PEP1 transcription is temporarily 

repressed by low temperatures, mediated by the continuous expression of COOLAIR-750 

family antisense RNAs produced in response to cold (Wang, Farrona, Vincent, Joecker, 

et al., 2009; Albani et al., 2012; Castaings et al., 2014a), and thus facilitating the regular 752 

alternation of vegetative and reproductive phases that characterize iteroparous-perennial 
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life histories. Like FLC, considerable natural variation exists at the PEP1 locus—most 754 

natural A. alpina ecotypes have a functional PEP1 allele, and under controlled conditions 

restrict flowering duration, although some accessions lack a functional PEP1 allele, and 756 

thus continuously flower without vernalization (Torang et al., 2015). That PEP1 alone is 

responsible for this phenotype has been confirmed using mutant lines (Wang, Farrona, 758 

Vincent, Joecker, et al., 2009; Wang et al., 2011; Albani et al., 2012; Bergonzi et al., 

2013). However, this transition is continuous rather than discrete, since the degree of 760 

PEP1 suppression depends both on PEP1 allele present in the accession as well as the 

duration of vernalization.  762 

Thus, in both Arabidopsis thaliana and Arabis alpina (among other Brassicaceae 

spp.), parity is linked to genetic variation at the FLC/PEP1 locus, and alleles from 764 

different, locally-adapted ecotypes show a range of distinct phenotypes (Aikawa et al., 

2010; Kemi et al., 2013; Zhou et al., 2013). Moreover, FLC itself is subject to a number 766 

of regulatory mechanisms, some of which result in independent life history differences 

(Gazzani et al., 2003; Shindo et al., 2005, 2006). FLC example is not an isolated case, nor 768 

have genes linked closely to parity been discovered only in plant species; although a 

comprehensive description of all genes linked to parity in all species is beyond the scope 770 

of this article, a few notable examples from a variety of well-studied taxa are presented in 

Table 3. Genes linked to traits underlying parity, including reproductive maturation, 772 

stress response, reproductive phenology, and senescence, have been the subject of many 

informative reviews (see: McBlain et al., 1987; Finch and Rose, 1995; Tower, 1996; 774 

Danon et al., 2000; Eulgem et al., 2000; Rion and Kawecki, 2007; Garcia De Leaniz et 

al., 2007; Hall et al., 2007; Schneider and Wolf, 2008; Xin et al., 2008; Costantini et al., 776 
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2008; Amasino, 2009; Thomas et al., 2009; Partridge, 2010; McCormick et al., 2011; 

Selman and Withers, 2011; Kenyon, 2011; Thomas, 2013; Blümel et al., 2015; Wang et 778 

al., 2015). 

 780 

3 – Conclusion 

We still know far too little about why the evolutionary transition from semelparity 782 

to iteroparity (or vice versa) is as common as it is, or under which ecological conditions 

intermediate strategies—such as facultative semelparity—will thrive. While models 784 

rooted in the conception of parity as a binary trait do a good job of accounting for the 

fitness differences between discrete semelparous-annual and iteroparous perennial 786 

alternative strategies, systems characterized by only these possibilities—and no others—

are special cases. In many cases the life history question at hand is more subtle: why does 788 

a given species evolve a facultative strategy, or why does another show intraspecific 

variation in the length of the semelparous reproductive episode? In such cases—which 790 

are not as rare as they were when the adaptiveness of parity was first being investigated—

the discrete conception of parity is a impractical oversimplification. 792 

Thus the main conclusion of this work is that parity should be treated as a 

continuous trait rather than a discrete one. This reconception of parity offers several 794 

notable advantages for life-history theory. First, treating parity as a continuous trait 

allows us to treat parity as a distinct life history syndrome, itself the result of correlated 796 

selection on a suite of traits, that may show finely-graded correlated variation within 
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species or populations. This is advantageous because parity is a composite trait, and the 798 

act of reproducing at a given time, of a given duration, etc. involves the recruitment and 

coordination of many independent parts, each of which may affect the expression of 800 

others. An integrative approach has proven to be valuable in studying other multifactorial 

composite traits (e.g. Buoro and Carlson, 2014). Furthermore, whether they share 802 

common genetic basis or not, obvious or visible life history characters may not be 

primary targets of selection, and evolution of such traits may occur as an epiphenomenon 804 

of selection on (one or many) other apparent or non-apparent underlying traits. Second, 

developing accurate mathematical and mechanistic models designed to explain fitness 806 

differences between life histories—as well as to understand the nature of the costs and 

trade-offs associated with initiating and completing reproductive episodes—will be best 808 

understood by acknowledging that living systems show a continuum of reproductive 

strategies between annual-semelparity and perennial-iteroparity. Considering only 810 

annual-semelparity and perennial-iteroparity as discrete alternatives, although a useful 

simplification for many models, is biologically accurate only in a limited number of 812 

special cases, and the continuous conception of parity is more likely to approximate the 

eco-evolutionary dynamics of natural systems that show intraspecific or plastic variation 814 

in the expression of parity. Finally, treating parity as a continuous variable that represents 

a syndrome of associated traits may make it easier to integrate life history studies with 816 

mechanistic details deriving from molecular ecology, insofar as composite life history 

traits such as parity are unlikely to be the result of a simple presence or absence of a 818 

single gene or allele. Instead, parity is likely to be the product of complex systems of 

genetic, translational, and post-translational regulation. 820 
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There are important issues to consider for further work on a continuum of modes 822 

of parity. First, life-history theorists should make their language clearer and tighten 

definitions, in order to avoid confusion and improve the effectiveness of evolutionary 824 

explanations. Parity, the degree of temporal concentration or diffusion of reproductive 

effort in time, is a distinct evolutionary question from whether organisms reproduce in 826 

one year or in more than one year (“classic” semelparity and iteroparity), or whether or 

not organisms have a distinct life cycle that is completed according to an annual cycle or 828 

not (annuality and perenniality). Consider two annual plants as an example: the 

concentration of reproductive effort in time—i.e. realizing a hyper-semelparous (or 830 

uniparous) reproductive strategy—is a different strategy than spreading reproduction out 

over many months, even if both strategies are completed within a single year. Moreover, 832 

the evolutionary and mechanistic reasons that account for seasonal behaviours—e.g. 

annuality and perenniality—are distinct from those that account for the degree of parity. 834 

Making these distinctions clear, both in language and in predictive models, should be an 

important priority for evolutionary ecologists interested in the problem of parity. 836 

Other important issues exist as well. A second question is that the extant body of 

theory—much of which describes various special cases in which demographic or 838 

environmental factors confer a fitness advantage on an annual-semelparous strategy over 

a perennial-iteroparous one (or vice versa)—should be preserved and reworked into a 840 

more general explanation of how factors affecting fitness through time determine optimal 

patterns of the distribution of risk in and among seasons. More general models should 842 
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consider a range of possible modes of parity. A third issue is that reproductive characters 

of long-lived semelparous species are generally easier to model than characters of short-844 

lived species, and while environmental heterogeneity plays an important role determining 

the optimal allocation of reproductive effort in annual semelparous species, long-lived 846 

semelparous species can afford to be “choosier” about when they reproduce, and 

therefore have been shown to more closely approximate model predictions. This may be 848 

especially true when, as in many long-lived perennial-iteroparous species, the 

relationship between age and cost of reproduction is nonlinear. Thus, developing models 850 

that accurately model the fitness dynamics of short-lived semelparous species should be a 

priority.  Fourth, intraspecific differences in life-history strategy, particularly between 852 

populations inhabiting dissimilar environments, can confound the degree to which 

empirical studies can test predictions of a priori models or parameterize them. Additional 854 

empirical comparisons of different modes of parity should therefore be as general as 

possible, and incorporate as many points along the continuum of modes of parity as 856 

possible, in order to maximize generalizability. Last, new models of modes of parity 

should, on a system-by-system basis, attempt to account for the underlying mechanisms 858 

that determine the timing and nature of the allocation of reproductive effort. Because 

modes are composite traits, integrating the molecular mechanisms that underlie many 860 

traits into a single model is not a simple task. Moreover, even orthologous genes with 

may have dramatically different effects in closely related species, and this 862 

unpredictability may considerably complicate the process of mechanistically modelling of 

modes of parity. Despite the considerable challenge that it poses, integrating molecular 864 

ecological studies of the fitness consequences of different genotypes with theoretical 
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mathematical models should be an important priority in the medium- to long-term future, 866 

and would represent an important area of consilience between molecular and theoretical 

ecology. 868 
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Plant Order Families Estimated 
Number of 

Species 

Class Exemplar 
Species 

Semelparous 
Species 
Present 

Iteroparous 
Species 
Present 

Notes Reference 

Acorales 1 2 M Acorus calamus 
 

x - (Kew World Checklist) 

Alismatales 13 4500 M Anthurium 
andraeanum 

x x facultative semelparity (Haggard and Tiffney, 1997; Haston et al., 
2009) 

Amborellales 1 1 - Amborella 
trichopoda 

x 
 

- (Kew World Checklist, 2017)  

Apiales 7 5500 D Daucus carota x x facultative semelparity 
in Heracleum spp. 

(Chandler and Plunkett, 2004;  Kew World 
Checklist, 2017)  

Aquifoliales 5 600 D Ilex aquifolium x x - (Kew World Checklist, 2017)  

Arecales 1 2600 M Cocos nucifera x x facultative semelparity 
in Rhopalostylis sapida 

(Silvertown et al., 1993)  

Asparagarles 14 36000 M Asparagus officinalis x x facultative semelparity 
in Yucca whipplei 

(Keeley et al., 1986)  

Asterales 11 27500 D Helianthus annuus x x facultative iteroparity in 
Lobelia inflata 

(Hughes and Simons, 2014b; c)  

Austrobaileyales 3 100 NA Illicium verum 
 

x - (Palmer et al., 2004)  

Berberidopsidales 2 6 D Berberidopsis 
corallina 

 
x - (Kew World Checklist, 2017)  

Brassicales 17 4500 D Brassica oleracea x x "perpetual flowering" 
under genetic control 

(Arabis alpina); 
phenotypically plastic 

semelparity in Brassica 
campestris 

(Biswas and Mandal, 1987; Wang, Farrona, 
Vincent, Fornara, et al., 2009;  Kew World 
Checklist, 2017) Albani PEP1; 2: Biswas, A. 

K., and S. K. Mandal. "Regulation of 
monocarpic senescence of Brassica 

campestris by the developing pods." 
Physiologia Plantarum 71.1 (1987): 89-94. 

Bruniales 2 80 D Desfontainia 
spinosa 

x x fire-dependent 
facultative parity 
(Bruniaceae spp.) 

(van Wilgen and Forsyth, 1992) Van Wilgen 
and Forsyth (1992) 

Buxales 3 120 D Buxus sempervirens 
 

x - (Kew World Checklist, 2017)  
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Canellales 2 136 D Canella winteriana x x - (Kew World Checklist, 2017)  

Caryophyllales 33 11000 D Silene dioica x x Plasticity of iteroparous 
reproduction in 

Ferocactus wislizeni; 
variation in many long-

lived Cactaceae 
perennial spp.; similar 
changes in Buckwheat 

(Polygonaceae) 

(Bowers, 2000; Song et al., 2013) 

Celastrales 2 1300 D Celastrus 
orbiculatus 

 
x - (Kew World Checklist, 2017) 

Ceratophyllales 1 10 - Ceratophyllum 
submersum 

x x plasticity of iteroparous 
life histories in European 

hornworts 

(Bisang et al., 2008) 

Chloranthales 1 75 - Sarcandra glabra 
 

x - (Kew World Checklist, 2017) 

Commelinales 5 850 M Commelina 
communis 

x x Phenotypically plastic 
semelparity in genus 

Commelina; varies from 
near-uniparity to 

extended semelparity 

(Faden, 1993, 2006)  

Cornales 6 600 D Hydrangea 
macrophylla 

x x Facultative iteroparity in 
stickleaf spp. 

(Keeler, 1987)  

Crossosomatales 7 80 D Crossosoma 
bigelovii 

 
x 

 
(Kew World Checklist, 2017)  

Cucurbitales 8 2600 D Begonia obliqua x x facultative iteroparity 
among cultivated 

begonias 

(De Wilde, 2010)  

Dilleniales 1 400 D Hibbertia stellaris x x facultative semelparity 
in Hibbertia spp 

(Stebbins and Hoogland, 1976) 

Dioscoreales 3 1050 M Dioscorea rotundata 
 

x - (Kew World Checklist, 2017)  

Dipsacales 2 1100 D Lonicera 
periclymenum 

 
x - (Kew World Checklist, 2017)  
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Ericales 25 11000 D Vaccinium 
macrpcarpon 

x x Facultative semelparity 
and facultative 

iteroparity in Impatiens 
spp. 

(Vervoort et al., 2011)  

Escalloniales 1 130 D Escallonia bifida x x - (Kew World Checklist, 2017)  

Fabales 4 20000 D Pisum sativum x x facultative iteroparity in 
many spp. 

(Nichols et al., 2007) 

Fagales 7 2000 D Quercus alba 
 

x - (Kew World Checklist, 2017) 

Garryales 2 18 D Garrya congdonii 
 

x - (Kew World Checklist, 2017) 

Gentianales 5 16000 D Gentiana verna x x plasticity of iteroparous 
reproduction in long 

lived perennial Frasera 
caroliniensis 

(Threadgill et al., 1981) 

Geraniales 5 900 D Geranium 
rotundifolium 

x x - (Kew World Checklist, 2017) 

Gunnerales 2 55 D Gunnera manicata x x facultative semelparity 
in Gunnera herteri 

(Wanntorp et al., 2002) 

Huerteales 4 20 D Huertea cubensis 
 

x - (Kew World Checklist, 2017) 

Lamiales 20 24000 D Lamium purpureum x x - (Kew World Checklist, 2017) 

Laurales 7 2500 D Laurus nobilis 
 

x - (Kew World Checklist, 2017) 

Liliales 10 1300 M Lilium candidum x x Many perennial Agave 
spp. have substantial 

phenotypic plasticity in 
parity 

(Nobel, 1977; Arizaga and Ezcurra, 1995; 
Rocha et al., 2005)  

Magnoliales 6 5000 - Magnolia virginiana x x - (Kew World Checklist, 2017)  

Malpighiales 35 16000 D Malpighia glabra x x - (Kew World Checklist, 2017) 

Malvales 9 6000 D Malva sylvestris x x - (Kew World Checklist, 2017)  

Myrtales 9 11000 D Myrtus communis x x - (Kew World Checklist, 2017)  

Nymphaeales 3 70 - Nymphaea lotus 
 

x - (Kew World Checklist, 2017)  

Oxalidales 7 1800 D Oxalis acetosella x x - (Kew World Checklist, 2017)  

Pandanales 5 1300 M Pandanus utilus 
 

x - (Kew World Checklist, 2017)  
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Table 1. Angiosperm orders show substantial diversity in mode of parity. Data is shown for all 59 plant orders from the APG III system. Class = (M) monocot or (D) dicot. Marks 876 
indicate whether the indicated reproductive strategy is present in that order. 

Paracryphiales 1 36 D Paracryphia alticola 
 

x - (Kew World Checklist, 2017) 

Petrosaviales 1 5 M Petrosavia sakuraii 
 

x - (Kew World Checklist, 2017)  

Picramniales 1 65 D Picramnia 
xalapensis 

 
x - (Kew World Checklist, 2017)  

Piperales 4 4000 - Piper nigrum x x facultative semelparity 
in Piper pellucida 

(Wanke et al., 2006)  

Poales 16 18000 M Zea mays x x facultative iteroparity 
and variable iteroparity 

in bamboo, wheat 

(Franklin, 2004; Montti et al., 2011; Baum et 
al., 2013) 

Proteales 3 1000 D Protea caffra 
 

x - (Kew World Checklist, 2017) 

Ranunculales 7 2800 D Ranunculus 
occidentalis 

x x phenotypically plastic 
parity in many 

Meconopsis spp. 

(Sulaiman and Babu, 1996)  

Rosales 9 7700 D Rosa blanda x x - (Kew World Checklist, 2017) 

Sabiales 1 100 D Sabia campanulata 
 

x - (Kew World Checklist, 2017)  

Santalales 7 1000 D Santalum ellipticum 
 

x - (Kew World Checklist, 2017)  

Sapindales 9 5700 D Acer saccharum 
 

x - (Kew World Checklist, 2017)  

Saxifragales 16 2500 D Saxifraga stellaris x x Saxifraga longifolia 
shows phenotypically 

plastic parity 

(García, 2003)  

Solanales 5 4000 D Solanum tuberosum x x plasticity of long-term 
monocarpic 

reproduction in Petunia 
spp. 

(Laroche and Bousquet, 1999)  

Trochodendrales 1 2 D Trochodendron 
aralioides 

 
x - (Kew World Checklist, 2017)  

Vitales 1 770 D Vitus vinifera 
 

x - (Kew World Checklist, 2017)  

Zingiberales 8 2100 D Zingiber officianale x x plasticity of mode of 
parity in Ensete spp. 

(Kirchoff, 1992; Birmeta et al., 2004)  

Zygophyllales 2 300 D Zygophyllum album x x - (Kew World Checklist, 2017)  
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Focal Species Clade 
Continuously 
varying traits 

identified 

Facultative 
Iteroparity 

Facultative 
Semelparity 

Continuous 
Variation in 

Parity 

Phenotypically 
Plastic Parity 

Reference 

Acer negundo Angiosperm timing of reproduction       x (Lamarque et al., 2015) 

Agave celsii, Agave difformis Angiosperm 
timing of 

reproduction; 
reproductive effort 

    x x (Rocha et al., 2005) 

Allogamus uncatus Insect 

timing of 
reproduction; 

duration of 
reproduction 

    x x (Shama and Robinson, 2009) 

Alosa sapidissima Fish 
timing of 

reproduction; clutch 
size 

  x x x (Leggett and Carscadden, 1978) 

Amblyrhychus cristatus Reptile timing of reproduction     x x (Vitousek et al., 2010) 

Antechinus stuartii Mammal adult mortality x   x   (Fisher and Blomberg, 2011) 

Arabidopsis lyrata Angiosperm 

timing of 
reproduction; 

duration of 
reproduction 

    x   (Remington et al., 2015) 

Arabis fecunda Angiosperm reproductive effort     x x (Lesica and Shelly, 1995) 

Bambusa narnhemica Angiosperm timing of reproduction     x   (Franklin, 2004) 

Beta vulgaris Angiosperm reproductive effort       x 
(Letschert, 1993; Hautekèete et al., 

2001, 2002, 2009) 

Boreogadus saida Fish 
adult mortality; 

reproductive effort 
    x   (Nahrgang et al., 2014) 

Botryllus sclosseri Tunicate 
timing of 

reproduction, clutch 
size 

x   x x 
(Grosberg, 1988; Harvell and 

Grosberg, 1988) 

Bradybaena pellucida Gastropod 
duration of 

reproduction 
    x x (Nyumura and Asami, 2015) 
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Cynodonichthys 
brunneus, Cynodonichthys 

magdalenae, Cynodonichthys 
kuelpmanni, Anablepsoides 

immaculatus, and Laimosemion 
frenatus 

Fish 
timing of 

reproduction; 
diapause length 

  x x x 
(Varela-Lasheras and Van Dooren, 

2014) 

Daphnia galeata Crustacean  timing of reproduction     x x (Henning-Lucass et al., 2016) 

Daucus carota Angiosperm timing of reproduction     x x (Lacey, 1988) 

Digitaria californica Angiosperm juvenile mortality     x   (Smith et al., 2000) 

Dosidicus gigas Mollusc 

timing of 
reproduction; 

duration of 
reproduction 

x   x x (Hoving et al., 2013) 

Emoia atroscostata Reptile timing of reproduction     x   (Alcala and Brown, 1967) 

Erpobella octoculata Leech 
adult mortality; 

reproductive effort 
x   x x (Maltby and Calow, 1986)  

Erysimum capitatum Angiosperm timing of reproduction   x x   (Kim and Donohue, 2011) 

Eulamprus tympanum Reptile 
clutch size; timing of 

reproduction 
    x x (Doughty and Shine, 1997) 

Forficula auricularia Insect timing of reproduction       x (Meunier et al., 2012) 

Fucus serratus; Himanthalia elongata Algae 
duration of 

reproduction 
    x   (Brenchley et al., 1996) 

Gaimardia bahamondei Bivalve 

timing of 
reproduction; 

duration of 
reproduction 

x   x x (Chaparro et al., 2011) 

Galaxias maculatus Fish timing of reproduction x   x (Stevens et al., 2016) 

Gasterosteus aculeatus Stickleback 
timing of 

reproduction; 
reproductive effort 

  x x x 
(Snyder, 1991; Bell and Foster, 1994; 

Baker et al., 2008, 2015) 

Gracilinanus microtarsus Mammal male adult mortality x   x x 
(Kraaijeveld et al., 2003; Martins et 

al., 2006) 

Idiosepius pygmaeus Cephalopod timing of reproduction x   x   (Lewis and Choat, 1993; Nesis, 1996) 

Ligia cinerascens Crustacean 
adult mortality; timing 

of reproduction 
x x x x (Furota and Ito, 1999) 
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Lobelia inflata Angiosperm 

timing of 
reproduction; 

duration of 
reproduction 

x   x x (Hughes and Simons, 2014 a,b,c) 

Loligo vulgaris Cephalopod 
timing of 

reproduction; clutch 
size 

x   x   
(Melo and Sauer, 1999; Sauer et al., 

1999) 

Mallotus villosus Fish 
adult mortality; timing 

of reproduction 
  x x x (Christiansen et al., 2008) 

Marmosops paulensis Mammal female adult mortality x   x x (Leiner et al., 2008) 

Mimulus guttatus Angiosperm duration of flowering     x x (Van Kleunen, 2007) 

Misumena vatia Arachnid juvenile mortality     x x 
(Morse, 1994; Morse and Stephens, 

1996) 

Nautilus spp. Cephalopod 
 timing of 

reproduction; timing 
of senescence 

 x    x x  (Ward, 1983, 1987) 

Oenothera deltoides; Oenothera 
pallida 

Angiosperm 
timing of 

reproduction; adult 
mortality 

x x x   (Evans et al., 2005) 

Oncorhymchus mykiss  Fish reproductive effort x   x x (Seamons and Quinn, 2010) 

Oncorhynchus nerka Fish timing of reproduction       x (Hendry et al., 2004) 

Oncorhynchus tshawytscha Fish adult mortality x     x (Unwin et al., 1999) 

Onopordum illyricum Angiosperm timing of reproduction   x     (Rees et al., 1999) 

Opisthoteuthis agassizii, Opistho- 
teuthis grimaldii and Grimpoteuthis 

glacialis 
Cephalopod 

timing of 
reproduction; 

reproductive effort 
    x   

(Aldred et al., 1983; Villanueva, 1992; 
Vecchione et al., 1998) 

Panicum bisulcatum, Cyperus 
michelianus, Fimbristylis miliacea, 

and Eclipta prostrata 
Angiosperm 

timing of 
reproduction; 

duration of 
reproduction 

    x x (Song et al., 2015) 

Parantechnius apicalis Mammal adult mortality   x   x (Wolfe et al., 2004) 

Plecoglossus altivelis Fish 
timing of 

reproduction; 
reproductive effort 

x   x x 
(Iguchi, 1996; Iguchi and Tsukamoto, 

2001) 

Puya raimondii Angiosperm reproductive effort   x x   (Jabaily and Sytsma, 2013) 

Rana arvalis Frog timing of reproduction       x (Richter-Boix et al., 2014) 

Sasa senanensis, Sasa kurilensis, and 
Sasa palmata 

Angiosperm 
timing of 

reproduction; 
reproductive effort 

x x   x (Mizuki et al., 2014) 
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Sepia officinalis Cephalopod 

adult mortality; timing 
of reproduction; 

clutch size; timing of 
senescence 

x   x x (Boletzky, 1988; Rocha et al., 2001) 

Stegodyphus lineatus Arachnid 
adult mortality; timing 

of reproduction 
    x x (Schneider and Lubin, 1997) 

Sthenoteuthis oualaniensis Cephalopod timing of reproduction x       (Rocha et al., 2001) 

Strix uralensis Bird timing of reproduction       x (Brommer et al., 2012) 

Uta stansburiana Reptile 
duration of 

reproduction,  
  x x x (Tinkle, 1969) 

Verbascum thapsis Angiosperm timing of reproduction     x   (Reinartz, 1984) 

Wyeomyla smithii Angiosperm timing of reproduction     x x (Bradshaw, 1986) 

Xerolenta obvia Gastropod timing of reproduction x   x x (Lazaridou and Chatziioannou, 2005) 

Xeropicta derbentina Gastropod timing of reproduction x   x x (Aubry et al., 2005; Kiss et al., 2005) 

Yucca whipplei Angiosperm reproductive effort   x x   (Huxman and Loik, 1997) 

 878 
Table 2. Species known to display facultative semelparity, facultative iteroparity, a continuum of modes of parity, or phenotypic plasticity with respect to mode of parity.  
  880 
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 882 

Study Organism Clade Gene /QTL Traits Reference 

Actinidia chinensis Angiosperm caroteinoid cleavage dioxygenase 8 (CCD8) 
branch development; timing of 

senescence 
(Ledger et al., 2010) 

Aedes aegypti, A. 
albopictus 

Insect 
cytochrome P450 gene 6Z6 (CYP6Z6), 6N12 

(CYP6N12), and M9 (CYP9M9) 
juvenile mortality (Kim and Muturi, 2012) 

Arabidopsis lyrata Angiosperm LG3, LG4 
developmental timing of reproductive 

transitions; branchiness 
(Leinonen et al., 2013; Remington et al., 2013, 

2015)  

Arabidopsis thaliana Angiosperm Early day-length insensitive (EDI) 
response to vernalization; timing of 

flowering 
(Alonso‐Blanco et al., 1998) 

Arabidopsis thaliana Angiosperm FLC timing of initiation of reproduction 
(Bastow et al., 2004; Caicedo et al., 2004; Kim et 
al., 2007; Aikawa et al., 2010; Deng et al., 2011)  

Arabidopsis thaliana Angiosperm FRI timing of initiation of reproduction 
(Le Corre et al., 2002; Stinchcombe et al., 2004; 
Shindo et al., 2005; Méndez-Vigo et al., 2011)  

Arabidopsis thaliana Angiosperm DOG1 
seed dormancy; timing of initiation of 

reproduction 
(Chiang et al., 2011, 2013)  

Arabidopsis thaliana; 
Pisum sativum 

Angiosperm 
More axillary growth (MAX4); Ramosus1 

(RMS1) 
axillary shoot outgrowth; timing of 

outgrowth 
(Sorefan et al., 2003) 

Arabis alpina Angiosperm PEP1 
timing of initiation of reproduction; 

perenniality 
(Wang, Farrona, Vincent, Fornara, et al., 2009; 

Albani et al., 2012; Castaings et al., 2014b) 

Brachionus plicatilis Rotifer 
small heat shock protein 1 (shsp-1), shsp-2, 

shsp-3, shsp-4 
dormancy; juvenile mortality (Denekamp et al., 2011)  

Colias eutytheme, C. 
philodice 

Insect phosphoglucose isomerase (PGI) lifespan, fecundity (Watt, 1983; Watt et al., 1983) 

Conregonus clupeaformis Fish Salmo salar zonadhesin-like fecundity (Nolte et al., 2009) 

Drosophila melanogaster Insect Met 
fecundity, timing of initiation of 

reproduction 
(Flatt and Kawecki, 2004)  
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Drosophila melanogaster Insect Juvenile hormone (JH), TOR 
lifespan, timing of transition to 

adulthood 
(Tatar et al., 2001, 2003; Kapahi et al., 2004; 

Katewa and Kapahi, 2011) 

Gadus morhua Fish Growth hormone 1 timing of juvenile maturation (Hemmer-Hansen et al., 2014) 

Gryllus firmus  Insect Juvenile hormone (JH) fecundity (Zera and Huang, 1999; Zhao and Zera, 2002) 

Haliotis refescens Mollusc engrailed, aragonite protein 24k Da (ap24) juvenile mortality (Zippay et al., 2010) 

Heliocidaris 
erythrogamma 

Echinoderm Abopec, Brn1, Brn2, Brn4 
feeding behaviour; timing of initiation 

of reproduction 
(Israel et al., 2016) 

Hordeum vulgare Angiosperm QSD1 seed dormancy (Sato et al., 2016) 

Ichthyomyzon castaneus, I. 
fossor 

Lamprey 
insulin-like growth factor 1 receptor (igf1r), 

cytochrome c oxidase subunit III (coIII) 
fecundity (Spice et al., 2014) 

Lactuca sativa Angiosperm DOG1 
seed dormancy; timing of initiation of 

reproduction 
(Huo et al., 2016) 

Miletaea cinxia Insect phosphoglucose isomerase (PGI) lifespan, fecundity 
(Klemme and Hanski, 2009; Saastamoinen et al., 

2009)  

Miletaea cinxia Insect troponin-t (TNT) timing of transition to adulthood (Marden et al., 2008)  

Mimulus guttatus Angiosperm More axillary growth (MAX) 
axillary shoot outgrowth; timing of 

outgrowth 
(Baker et al., 2012)  

Mimulus guttatus; M. 
nasutus 

Angiosperm - 
timing of reproduction; reproductive 

allocation 
(Hall et al., 2006) 

Oncorhynchus kisutch, O. 
keta, O. gorbuscha 

Fish Clock, Cytochrome timing of juvenile maturation (O’Malley et al., 2010) 

Oncorhynchus mykiss Fish 
Omy5 loci, including OC6, OC8, OC14, OC20, 

OC21, and OC30  
anadromy, timing of smoltification (Nichols et al., 2008; Pearse et al., 2014)  

Oncorhynchus mykiss Fish Clock spawning time (Leder et al., 2006) 
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Oncorhynchus mykiss Fish One3ASC, One19ASC biannual spawning (Colihueque et al., 2010) 

Oncorhynchus mykiss, 
Oncorhynchus kitsuch 

Fish 17a,20b-dihy- droxy-4-prengnen-3-one timing of senescence (Barry et al., 2010) 

Petromyzon marinas, 
Lampetra appendix 

Lamprey 
Gonadotropin-releasing hormone-I (GnRH-I) 

and –III (GnRH-III) 
timing of transition to adulthood (Youson et al., 2006) 

Petunia hybrida Angiosperm 
Decreased apical dominance 1 (DAD1), MAX1, 

MAX2, CCD7, CCD8 

axillary shoot outgrowth; timing of 
and reproductive effort allocated to 

floral development 
(Snowden, 2005; Drummond, 2012) 

Rhagoletis pomonella Insect 
jetlag (jet), clockwork orange (cwo), PAR-

domain protein 1 (Pdp1) 
timing of diapause termination (Ragland et al., 2011)  

Sarcophaga crassipalpis Insect 
heat shock protein 23 (Hsp23), Hsp70, Hsp90, 

lipid storage protein (LSP)-1, LSP-2 

timing of diapause termination; 
timing of reproduction; reproductive 

effort 
(Rinehart et al., 2000, 2007; Hahn et al., 2008) 

Thlaspi caerulescens Angiosperm Thlc1, Thlc2, Thlc3 
fecundity, timing of initiation of 

reproduction 
(Jiménez-Ambriz et al., 2007) 

Table 3. Genes and QTLs regulating continuously-expressed traits linked to parity. 
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