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Abstract 

The aging brain undergoes alterations of both Structural Connectivity (SC) and time-
averaged Functional Connectivity in the resting state (rs FC). Here, we show by means of 
functional MRI (fMRI) human brain imaging that aging also profoundly impacts on the 
spontaneous temporal reconfiguration of this rs FC. Analyzing time-dependent 
correlations between human rs fMRI blood oxygen level dependent (BOLD) time series, 
we describe Functional Connectivity Dynamics (FCD) as a switching between epochs of 
meta-stable FC and transients of fast network reconfiguration. We find that the flux of 
FCD markedly slows down and becomes more “viscous” across the adult lifespan (18-80 
yrs), also accounting for the wide inter-subject variability of performance observed in 
cognitive screening tasks. Such remodeling of FCD discloses qualitatively novel effects 
of aging that cannot be captured by variations of SC or of static FC, opening the way to 
improved imaging-based characterizations of the functional mechanisms underlying 
cognitive aging. 

 

Highlights 

• Functional Connectivity Dynamics (FCD) at rest performs an anomalous random 
walk. 

• The speed at which the flux of FCD unrolls in time slows down with aging. 

• The “viscosity” of FCD grows, correlating with subject-specific cognitive 
fluency. 

• FCD methods are complementary to structural and functional connectivity 
analyses. 

 

Short summary 

Battaglia et al. show that aging affects Functional Connectivity Dynamics (FCD) in the 
resting state. Analyzing human fMRI data, they find that the flux of FCD slows down 
and becomes more “viscous” through aging, predicting inter-subject differences in 
cognitive performance.  
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Introduction 

As we age, our brain undergoes structural and functional changes. Tractographic 
studies revealed a tendency toward cortical ‘disconnection’, as manifested by an age-
related decline in white matter integrity (O’Sullivan et al., 2001; Salat, 2011). These 
decreases in structural connectivity (SC) are paralleled by disruptions of resting state (rs) 
functional connectivity (FC). Inter-regional BOLD correlations are reduced within rs 
networks (RSNs) such as the Default Mode or the Dorsal Attentional networks 
(Andrews-Hanna et al., 2007; Ferreira & Busatto, 2013), implicated in attention, memory 
and executive control functions, which decline in cognitive aging (Castel & Craik, 2003; 
Buckner, 2004). However, changes in rs FC are not just reflecting SC changes. For 
instance, FC between RSNs tends to increase with age (Betzel et al., 2014; Geerligs et al., 
2015). The correlation between SC and FC may either increase or decrease depending on 
the considered region and these variations in SC-FC coupling predict age better than SC 
or FC alone (Zimmermann et al., 2016). Here, we show that aging not only affects rs FC 
but also its spontaneous reconfiguration over time, i.e. Functional Connectivity 
Dynamics (FCD).  

Recent studies emphasized the structured temporal variability of rs FC (Tagliazucchi 
et al., 2012; Allen et al., 2012; Liu & Duyn, 2013; Hutchison et al., 2013a-b; Chen et al., 
2015), whose study is the defining focus of a research direction recently designated as 
“chronnectomics” (Calhoun et al., 2014). If rs FC is dynamic, a wealth of information 
may be lost by averaging over long imaging sessions. Averaged temporal variability might 
be mistaken as inter-subject variability. Furthermore, temporal FC variability may carry 
an inherent meaning, by manifesting ongoing cognition at rest (Gonzalez-Castillo et al., 
2015) with a direct impact on cognitive performance (Bassett et al., 2011; Shine et al., 
2016) or by reflecting the sampling of a repertoire of dynamical states (Hansen et al., 
2015). From a biomarking perspective, pathological conditions, such as Alzheimer’s 
dementia or schizophrenia (Jones et al., 2012; Damaraju et al., 2014), or differences in 
general attributes like gender or developmental stage (Yaesoubi et al., 2015; Hutchison & 
Morton, 2015), may alter FCD more than they affect time-averaged FC.  

Using a homogeneous brain imaging data set including N = 85 healthy human adult 
subjects (between 18 and 80 yrs), we quantified age-related variations in the rate of 
reconfiguration of FC networks – ‘speed’ of FCD – and describe the spatio-temporal 
coordination patterns (meta-connectivity) that constrain the time-variability of FC links. We 
found that the flux of FCD at the whole cortex level markedly slows down with age and 
that it becomes more ‘viscous’, i.e. with the smooth and free FC reconfiguration 
increasingly frustrated by conflicting inter-link influences. FCD-based markers were also 
predictive of individual differences in cognitive performance between subjects of similar 
age, as probed by both standard clinical assessments of cognitive impairments 
(Nasreddine et al., 2005) and a simple visuomotor coordination task (Houweling et al., 
2008). This capacity of tracking cognitive performance hints at the relevance of FCD for 
actual mental operations, where, speculatively, the slowing down of FCD may provide a 
brain imaging counterpart to the general reduction in information processing speed 
postulated by classic theories of cognitive aging (Salthouse, 1996; Finkel et al., 2007). 

 

Results 
Aging slows down Functional Connectivity Dynamics. A widespread manner to 
extract FC from rs fMRI is to parcellate the brain into N macroscopic regions – see 
Table 1 and Desikan et al. (2006) – and to compute pairwise correlations between the 
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region-averaged time series of neural activity ai, based on the entire rs imaging session 
(tens of minutes). The result of this procedure is an N-times-N FC matrix (Fig. 1A), 
whose spatial structure is reminiscent of the underlying N-times-N SC matrix, shown for 
comparison in Fig. S1A (Honey et al., 2009; Hansen et al., 2015). In order to go beyond 
static, time-averaged FC and estimate the time dependency of FC, we adopted a 
common sliding window approach – followed e.g. by Allen et al. (2012) –, repeating the 
FC construction separately for each time-window (of a fixed duration τ). By this we 
generated a stream of FC(t) matrices (Fig. 1B) and studied the similarity between 
different time-resolved networks. To do so, we introduced a metric of similarity between 
FC matrices and evaluated Functional Connectivity Dynamics (FCD) matrices (Hansen et al., 
2015). The FCD matrix entries FCDab provide the normalized correlation CC[FC(ta), 
FC(tb)] between any two FC(t) networks observed at times ta and tb.  

Fig. 2A shows FCD matrices for subjects of different ages (see Fig. S2 for different τ-
s). FC(t) matrices were stable during epochs lasting several time windows, as visualized in 
Fig. 2A by square-shaped red blocks along the main FCD matrix diagonal, denoting high 
similarity between FC(t) networks within the epoch. Such epochs of transient FC stability 
– or ‘FCD knots’– often terminated abruptly, and were intertwined with transients of 
instability, visualized in Fig. 2A by bluish stripes in the FCD matrix, denoting strong 
dissimilarity from previously visited FC(t) networks. During these transients – or ‘FCD 
leaps’ – FC(t) quickly morphed before stabilizing again into the next FCD knot. Note that 
the alternation between FCD knots and leaps does not imply the existence of crisply 
separated FC states (see Discussion). The typical duration of FCD knots depended on 
subject age. As shown by Fig. 1A, FCD in older subjects seemed to slow down with 
respect to younger subjects, as revealed by longer lasting FCD knots. 

To provide a quantitative description of the slowing down of FCD, we provided a 
statistical characterization of the rate of stochastic change in time of rs FC networks. We 
described the dynamics of FC as a stochastic exploration of the space of possible FC 
configurations. We sampled FC(t) at discrete times t0, t1 = t0+τ, … tk = t0+kτ, … and 
evaluated the lengths of the steps traveled in FC space between each of these 
‘stroboscopic’ observations. We measured step lengths as the correlation distance 
between two consecutive FC(t) networks, i.e. dτ[ti] = 1 - CC[FC(ti), FC(tj+ τ)]. In this way, 
FCD step lengths are large when two consecutive FC(t) observations are poorly 
correlated (as within a FCD leap) and close to zero when two consecutive FC(t) 
observations are highly correlated (as within a FCD knot). These measured dτ can also be 
interpreted as describing a speed of FCD reconfiguration, since consecutive FC(t) 
observations were always separated by the same amount of time τ. We sampled the 
statistical distributions of dτ for different ranges of τ and different subjects (see Methods). 
Distributions of dτ for two representative subjects of different ages are shown in Fig. 2B. 
For all considered τ-s and subjects (see also group averages in Fig. S3A and different τ-s 
in Fig. S3B), these distributions displayed a peak at a value dtyp, which we call the typical 
FCD speed. As shown in Fig. 2C, dtyp significantly decreased with age (-0.74 < R50 = -
0.58 < 0.44, 99% bootstrap c.i.), thus confirming our intuition. 

For the analyses underlying Figs. 2B-C, we used a range of time scales (pooled 
windows sizes from 31 to 12 s), which is unusual and relatively very fast when dealing 
with BOLD signals. If the adoption of such short window-sizes introduced a large noise 
in the estimation of the spatial structure of individual FC(t) matrices, it nevertheless 
allowed probing their temporal variability in a more regular way, by extracting longer dτ 
sequences and thus improving the estimation of dτ distributions at the single subject level 
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(see Discussion). The same trend was confirmed as well for larger, more standard τ-s, but 
age correlations were in this case weakened, although still significant (Fig. S3B). 

Functional Connectivity Dynamics is an anomalous stochastic process. The 
sampled FCD speed distributions had a second property. Their left tail had a slow decay 
(red distributions in Fig. 2B) and was significantly fatter than chance expectations (grey 
distributions in Fig. 2B), evaluated under the null hypothesis of no sequential correlations 
between consecutive steps in the FC(t) stream (removed by random shuffling of the 
order within the stream). Such over-representation of short step lengths dτ was 
consistently observed across all subjects and τ-s  (Fig. S3C) and is due to the fact that 
FC(t) networks transiently stabilized within FCD knots. Their speed of reconfiguration 
was thus reduced to only increase again when a FCD knot ‘melted’ into a FCD leap. The 
graphical cartoons in Fig. 2D visualize our interpretation of the phenomenon. The FC 
sequences in experimental data, alternating between short steps within FCD knots and 
longer steps during FCD leaps (Fig. 2D, top), bear analogies with anomalous stochastic 
processes showing persistence – i.e., long-lasting sequential auto-correlations of increments 
– such as Lévy flights (Mandelbrot, 1983; Metzler et al., 2014). The resulting FCD 
trajectories contrasted with the null hypothesis of vanishing sequential correlations 
between step lengths (Fig. 2D, bottom) in which the trajectories would spread 
homogeneously over the same volume in FC space. 

 We rigorously confirmed that FCD instantiate an anomalous stochastic process by 
performing a Detrended Fluctuation Analysis (DFA) of the sequences of dτ, 
supplemented by a (Bayesian) model-selection step (Ton & Daffertshofer, 2016). This 
robust procedure quantifies the strength of auto-correlations in a sequence by detecting a 
power-law scaling – described by a scaling exponent αDFA – in the divergence of a 
quantity 𝐹! 𝑘 , probing the strength of the fluctuations of dτ at different scales of 
observation k (see Methods). A value of αDFA = 0.5 corresponds to a Gaussian white noise 
process, in which the expected fluctuation after N uncorrelated steps grows as √N. In 
contrast, larger values 0.5 < αDFA ≤ 1 correspond to so-called fractional Gaussian noise 
which is anomalously persistent  (αDFA = 1.0 corresponding to a Lévy walk). Model 
comparison allows for discarding subjects for which a genuine power-law scaling is not 
present (Ton & Daffertshofer, 2016).  

Fig. 2E shows DFA log-log plots for two representative subjects (based on a FCD 
analysis with a short τ = 12 s). The slopes of the straight lines fitted to log 𝐹! 𝑘  
provide an estimate of αDFA. For all window-sizes up to τ < 29 s, at least 70% of the 
tested subjects showed a genuine power-law scaling of 𝐹! 𝑘 , according to (Bayesian) 
model selection (for τ = 12 s, N = 46 out of 49 subjects). For all of them, αDFA was 
significantly larger than 0.5 (p < 0.05, bootstrap c.i.). The median αDFA was closer to 1.0 
for elderly than for younger subjects (Fig. 2F). We also found a significant positive 
correlation between αDFA and age at the single subject level (Fig. S4A), robustly up to 
window sizes of τ ~ 29 s. (Figs. S4B–C). For longer τ-s  – and correspondingly shorter dτ 
sequences –, correlations were no longer significant.  

Aging reduces the temporal stability of functional connectivity modules. The 
slowing-down of FCD is not necessarily paralleled by an enhanced temporal stability of 
the topology of time-resolved FC networks. We studied in particular how the modular 
structure of FC(t) varied across time, as an effect of ongoing rs FCD. We first separately 
partitioned each of the FC(t) networks into non-overlapping graph modules, using a 
standard community detection algorithm. Since the obtained modules were generally not 
identical in different time-windows, we re-clustered them across time-slices (see Methods) 
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in order to maximize the window-to-window overlap between matched modules. We 
could thus track when brain regions were changing modular class, transiting toward a 
different community than the one they belonged to at a previous time. 

A dynamic community analysis of the FC(t) stream is shown in Fig. 3. In Fig. 3A (top) 
the time-dependent modular membership of different brain regions is color-coded. For 
the shown representative subject, the sampled FC(t) networks could contain up to five 
different modules, and the number of detected modules fluctuated in time. At every time 
step we quantified the ‘liquid fraction’ Λ(t) of regions, i.e. the fraction of regions within 
each module transiting to a different module at the next time step. We found that the 
average number of detected modules decreased with age (Fig. 3B) and that the average 
liquid fraction Λ within a module increased with age (Fig. 3C). Thus, the ongoing rs FCD 
had on elderly subjects a more destabilizing effect on the modular structure of the FC(t) 
networks, despite its slowing down.  

Our results are in agreement with an independent study by Schlesinger et al. (2016) 
which also found an enhanced temporal flexibility of FC modules in the elderly, as we do 
in Fig. 3C. However, Schlesinger et al. (2016) report an increasing number of modules, in 
contrast with our Fig. 3B. This discrepancy is of a technical nature, due to the different 
clustering procedures adopted in the two studies (see Methods). 

Aging increases the viscosity of Functional Connectivity Dynamics. To reveal 
further age-related effects, we introduced an alternative characterization of FCD. We 
converted the FC(t) stream of Fig. 1B into a collection of time series describing the time-
dependency of individual FC pairwise couplings (Fig. 1C). By extending the FC matrix 
construction from regional nodes to inter-regional links, we built a N(N-1)-times-N(N-1) 
matrix of correlations between the time-dependent strengths of N(N-1) FC links (N2 
pairs of regions, minus the self-loops). The resulting matrix –which we rebaptized Meta-
Connectivity (MC)– described inter-link covariance, similarly to FC describing inter-node 
covariance. MC matrices are particularly suitable for inter-group comparisons. In fact, 
they can be averaged over multiple subjects within a homogeneous group (expected to 
share common inter-link correlations), while this cannot be done for FCD matrices 
(portraying specific realizations of FC fluctuations, different for each subject in a group).  

MC captures higher-order correlations between triplets or quadruplets of brain 
regions, beyond pairwise FC. Indeed, estimating the strength of a meta-link MCij,kl 

between two functional links FCij and FCkl  requires monitoring the coordinated activity 
of minimum three brain region (for MC trimers, when the two links share a common root 
region, i = k) or, generally, four (for MC tetramers, when the two links do not share any 
vertex). Thus MC analysis tracks the static high-order correlation structures, as previously 
pointed out (Davison et al., 2015), which shape the coordinated stochastic fluctuations of 
second-order pairwise FC. 

Fig. 4A shows average MC matrices for different age groups, based (here and in the 
following) on sliding FCD windows of τ = 31 s. Both these MC matrices exhibited a 
modular structure, characterized by communities of temporally co-varying FC links. In 
Fig. 4A, in order to better emphasize this modular structure with respect to Fig. 1C, we 
have reordered rows and columns according to their membership to different MC 
modules. For each individual MC module, Fig. 4B displays a cortical map of the 
associated trimer weights MC(i), i.e. of the sum of the weights of trimer meta-links MCij,il 

belonging to a given MC module and being rooted in a region i. These maps (averaged 
over the two hemispheres, given the absence of large asymmetries) allow to visualize 
meta-hub regions with elevated MC(i), around which the different modules are organized. 
While a conventional FC hub region is a network node whose activity fluctuations highly 
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correlate with those of adjacent nodes, a meta-hub region is characterized by a high 
degree of correlation between the fluctuations of its incident FC links. MC modules and 
the associated meta-hub regions characteristically distribute across the whole rostro-
caudal range (Fig. 4B). 

These modules do not overlap with the spatial extent of any standard RSN 
(Damoiseaux et al., 2006). We would like to remark that focusing on trimer meta-
connectivity exaggeratedly emphasizes the localized nature of the MC modules. By 
considering all meta-links together – the majority of which were tetramers –, we found 
that every MC module ‘touched’ nearly every region through at least one meta-link 
(Fig. S5A). Hence, functional meta-networks formed pervasive higher-order correlation 
scaffolds that coordinate the temporal fluctuations of brain-wide FC networks. 

A striking effect of aging on our MC results is the surfacing of negative meta-links, 
apparent from the darker blue hue of the elderly group MC matrix (Fig. 4A, right). The 
results in Fig. 4C revealed that, although the median strength of individual MC weights 
decreased for elderly subjects (p < 0.001, Kruskal-Wallis), the bulk of their distributions 
largely overlapped (blue 95% c.i. in Fig. 2C). Nevertheless, the elderly group’s 
distribution developed a tail of negative MC outlier entries (dashed red ranges in 
Fig. 4C). Negative meta-links were detected within and between all MC modules 
(Fig. S5B-C). At the single subject level, we defined as FCD viscosity the quantity neg-MC, 
given by the total absolute strength of all negative MC entries. We found that FCD 
viscosity grows significantly with age (Fig. 4D). A growing neg-MC tracks the emergence 
of a mixture of negative and positive interactions between different FC links. These 
conflicting actions and reactions result in a reduced freedom for links belonging to 
different MC modules to fluently follow independent ‘fluctuation choreographies’. In 
other words, the flux of FCD not only becomes slower with aging but also more 
clinging, more ‘viscous’ (hence the chosen name of FCD viscosity). 

Functional Connectivity Dynamics predict cognitive performance. We were also 
interested in whether FCD alterations correlate with the age-related decline of cognitive 
and motor performance, which varies greatly between subjects of a same age group, and 
particularly among elderly subjects (Lindenberger & von Oertzen, 2006). We first related 
FCD to cognitive performance in a subset of old subjects between 60 and 70 yrs tested 
via the Montreal Cognitive Assessment (MoCA). MoCA is a standard cognitive screening 
tool for Mild Cognitive Impairment (Nasreddine et al., 2005), which recapitulates into a 
single global score the partial performances achieved in subtests for visuo-spatial abilities, 
language, orientation, attention, working memory and other executive functions.  

The global MoCa score significantly correlated with the typical FCD speed dtyp (the 
faster the FCD, the better the score, Fig. 5A) and with neg-MC (the more viscous the 
FCD, the worse the score, Fig. 5B). We then considered performance in a simple 
unimanual visuo-motor coordination task, adapted from (Houweling et al., 2008). In this 
task, performance was measured, following (Daffertshofer et al., 2000), as the average 
frequency-locking – quantified by a coefficient 0 < Φ < 1 – between the rotations of two 
circles presented on a screen, a visual cue and a second, subject-generated, cyclic force 
(squeezing an air-filled rubber ball at certain frequency, see Supporting Materials and 
Methods). Once again, the correlations of Φ with dtyp (Fig. 5C) and with neg-MC (Fig. 5D) 
were significant (see Table 1). 

Importantly, the correlations of the FCD speed dtyp and of the FCD viscosity neg-MC 
with performance indicators (MoCA or Φ) continued to be significant even when 
regressing out the common declining trend with age (see partial correlations, CC(·, ·| 
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Age), in Table 1), showing that the large variability of FCD metrics within a common age 
class accounts for inter-subject variability in cognitive performance. 

Among the partial MoCA scores, only the working-memory subtask score correlated 
significantly with neg-MC or dtyp  (e.g. CC(neg-MC, MoCA-wm | Age) = 0.65, p < 0.01, 
bootstrap). The average liquid fraction Λ within FC(t) modules weakly anti-correlated 
with the global MoCA score, but not with partial scores, and not at the level of partial 
correlations. DFA could not be performed on the subjects undergoing cognitive and 
motor performance assessment due to the shorter length of their rs fMRI scans. 

Functional Connectivity Dynamics conveys new information. FCD speed and 
viscosity correlate with age, but many other features do it, such as SC (Fig. S1A), time-
averaged FC (Fig. 1A), or even the variances σ(FC) (Fig. S1B), capturing the fluctuation 
strengths of individual FC links, but not their covariance. We may thus ask whether FCD 
analyses really provide new information about the aging process, or, on the contrary, the 
age-related information carried by FCD is redundant with simpler or more traditional 
categories of predictors. 

To identify possible redundancies, we attempted to predict the age of single subjects 
based on: just SC; just FC; just σ(FC); just MC; a mix of features of the four different 
types. Not being interested in prediction performance by itself but rather on assessing 
the relative predictive power of the different feature types, we used a simple linear 
regression scheme, fitting a linear relation between age and the strengths of a set of 
predictive features on a training sub-sample –i.e., an age-balanced random split of the 
whole sample– and cross-validating the prediction error on a complementary testing sub-
sample (see Methods). Considering all pairs of regions i and j, we tested as predictor sets 
all possible quadruplets of structural coupling strengths SCij , of time-averaged functional 
coupling strengths FCij and of their variances over time σ(FCij). We then considered 
quadruplets of link-integrated meta-connectivity strengths MC(ij), i.e. sums of all the 
meta-links MCij,kl converging on a fixed link FCij(t). Finally, we also considered mixed 
quadruplets composed of exactly one feature of the SCij type, one of the FCij type, one of 
the σ(FCij) type and one of the MC(ij) type. Note that we used integrated strengths MC(ij) 
–~N2 of them– rather than directly the ‘raw’ meta-connectivity matrix entries MCij,kl  –
~N4 of them–, to include the same number of predictors within each of the tested 
categories and thus compare them in a completely fair manner. Fig. 6A shows the cross-
validated age prediction errors for the best quadruplet within each of the categories, and 
Fig. 6B-C report the specifically chosen highly performing quadruplets. For all the tested 
predictor categories we could achieve an age prediction error significantly below chance-
level, confirming that all the categories convey age-related information. The best 
quadruplet of MC(ij) predictors performed significantly better than the best quadruplets 
of SCij, FCij and σ(FCij) predictors (p < 0.01, Kruskal-Wallis with multiple comparisons 
correction). Importantly, the best quadruplet of mixed predictor types performed even 
better (p < 0.05, Kruskal-Wallis with multiple comparisons correction), hinting at the fact 
that different predictor types convey synergetic age-related information. 

When systematically charting the correlations with age of distinct link features (cf. 
Fig. S6) we found indeed that it is difficult to anticipate whether, e.g., the strength of 
structural or functional links SCij and FCij also correlates with age when the integrated 
meta-connectivity strength MC(ij) does. All possible scenarios were present. For instance: 
when MC(ij) was anti-correlated significantly with age, sometimes SCij was anti-
correlated, sometimes it was correlated (clouds of green dots in Fig. S6A) and some 
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other times it did not correlate at all (clouds of red dots). In other words, we could not 
identify any trivial pattern of redundancy between SC, FC, σ(FC) and MC features. 

Finally, beyond the specific ‘best’ cases of Figs. 6A-C, we studied the performance in 
discriminating young from elderly subjects at the level of whole ensembles of predictor 
quadruplets. For every possible predictor quadruplet, we computed: the precision of 
discrimination, i.e. the fraction of correct classifications as old subjects; and the sensitivity 
of discrimination, i.e. the fraction of old subjects correctly inferred as such (see Methods). 
We then show in Fig. 6C the distributions of precision-sensitivity score pairs obtained 
for all the possible quadruplets. Among the different categories, quadruplets of SCij had 
the best median precision and quadruplets of MC(ij) had the best median sensitivity. 
Quadruplets of mixed type features achieved on their turn both a median precision close 
to SCij quadruplets and a median sensitivity close to MC(ij) quadruplets, confirming once 
again, at the ensemble level, that positive synergies between predictor types can be 
exploited to better extract age-related information.  

 

Discussion 
The structured intrinsic time-variability of rs FC may carry useful, generally 

disregarded information about ongoing neural dynamical processes and their age-related 
alterations. Here we characterized the coordinated evolution of rs FC, revealing 
correlations of FCD and MC with subject’s age and also with inter-subject variability in 
task performance. 

Many studies in ‘chronnectomics’ have attempted isolating FC states that 
stereotypically reoccur across time and subjects (Hutchison et al., 2013b; Calhoun et al., 
2014). However, the retrieved states and their number may be affected by the clustering 
algorithm used and by the availability of data. Furthermore, it may be difficult to 
statistically prove that FC is switching between states that are really distinct (Hindriks et 
al., 2016; Laumann et al., 2016). Here we bypassed FC state extraction, by focusing on 
sequential correlations in continuous and stochastic FC(t) streams. We found that FCD 
trajectories ‘explore’ the space of FC configurations at a temporally inhomogeneous 
speed (Fig. 2D). Such anomalous random process may occur even within a single FC 
state, in such a way that the distance between FCD knots could become compatible with 
a scenario of overall FC stationarity (Hindriks et al., 2016).  

Switching between FC knots and leaps may reflect the underlying complex dynamics 
of cortical circuits, with system’s trajectories alternatively exploring faster and slower 
manifolds in a complex system’s phase space (Jirsa et al., 2012; Hansen et al., 2015). 
From a functional perspective, walks of the Lévy type have been associated to optimal 
search, e.g., for food in an ecological environment (Viswanathan et al., 1999) or for 
winning bidding strategies in auctions (Radicchi et al., 2012). It is tempting to consider 
anomalous stochastic FCD as a neural process efficiently ‘foraging’ for cognitive 
resources by searching for FC patterns adapted to the information sharing and transfer 
demands (Battaglia et al., 2012; Kirst et al., 2016) of ongoing mental computations. 

Theories of cognitive aging have advanced that a cause for declining performance 
would be the insufficient access to cognitive resources due to a reduced speed of 
information processing (Salthouse, 1996; Finkel et al., 2007). Cognitive aging has been 
associated to deficits in disengaging from active brain functional states, more than to 
alterations of the states themselves (Clapp et al., 2011; Cashdollar et al., 2013). In fact, 
aging affects FCD by reducing the reconfiguration speed of FC networks. Slowing down 
of cognition hence parallels slowing of FCD. Having said that, we do believe that more 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 24, 2017. ; https://doi.org/10.1101/107243doi: bioRxiv preprint 

https://doi.org/10.1101/107243
http://creativecommons.org/licenses/by-nc-nd/4.0/


and better-adapted experiments should be designed to probe speed of processing or task 
switching to move beyond mere conjectures. Speculatively, certain modifications of FCD 
may also be interpreted as a further example of the compensatory mechanisms ubiquitary 
in aging (Grady et al., 2012), e.g., the fact that elderly subjects’ FCD leads to a more 
flexible FC modular structure, despite being slower (Fig. 3), even if the ‘liquidity’ of FC 
modules seems to anti-correlate rather than correlate with the MoCA score (Table 1). 

Aging has a widespread impact on the strength of SC and FC (O’Sullivan et al., 2001; 
Salat, 2011; Andrews-Hanna et al., 2007; Ferreira & Busatto, 2013; Betzel et al., 2014) 
and also on the temporal variance σ(FC) of individual FC links (Grady & Garrett, 2014). 
However, age alterations of SC, FC, σ(FC), and MC are quite independent (Fig. S6) and 
yield non-redundant age information. As a result, mixing different categories of 
predictors can lead to superior precision and sensitivity in age prediction and age-group 
discrimination (Fig. 6). The combined tracking of SC-, FC- and MC-based features may 
thus lead to a superior parameterization of the “healthy” trajectory of aging and, 
potentially, to an earlier detection of deviations from it, providing new imaging-based 
markers in pathological aging. It has indeed already been observed that some early 
modification of rs FC in Alzheimer’s disease can be explained as alterations of relative 
dwelling times, rather than alteration of the rs networks themselves (Jones et al., 2012). 

The age dependency of FCD may be the expression of artifacts, such as modifications 
of the neurovascular coupling itself (D’Esposito et al., 2003) or other physiological 
processes of non-neural origin, such as breathing (Birn et al., 2006). Furthermore, 
stronger age-related effects on BOLD FCD are observed for short temporal windows –
cf. analogous conclusions by Schlesinger et al. (2016)–, which are ‘borderline’ for the 
time resolution of fMRI and more sensitive to artifacts. Although windows of ~30s as 
the one we adopt in most of our analyses still provide an acceptable compromise 
between avoidance of artefacts and tracking of fast temporal FC fluctuations (Leonardi 
& Van De Ville, 2015), future studies will have to simultaneously look at FCD based on 
signals that reflect neural activations more directly and have a better time resolution, such 
as EEG (Chang et al., 2013). Our findings of correlations between FCD and cognitive 
performance (Fig. 5 and Table 1) also suggest, ultimately, that FCD changes are not 
artifactual and add to previous independent studies (Bassett et al., 2011; Shine et al., 
2016) hinting at an actual link between rs BOLD FCD at a fast temporal resolution and 
task-relevant neural information processing. 

Mean-field whole-brain computational models (Deco et al., 2011) provide finally a 
further welcome avenue for assessing the non-artifactual nature of FCD – virtual brains 
do not have blood –, while allowing, more importantly, for reverse-engineering its 
dynamic underpinnings. Generic whole-brain models are already able to qualitatively 
reproduce switching FCD (Hansen et al., 2015), but future simulations might be fitted to 
individual subjects via automated pipelines (Schirner et al., 2015) to render the FCD 
trajectory of evolution across aging in a more quantitative manner. Models embedding 
SC typical of different age classes may reproduce the slowing down of FCD as an 
emergent byproduct of SC ‘disconnection’ itself. Or, more likely, they may show that this 
disconnection must be compensated to account for observations by a drift of the global 
‘dynamic working point’ of operation of cortical networks, which could be possibly 
induced by altered neuromodulation (Bäckman et al., 2006) or metabolism (Arenaza-
Urquijo et al., 2013). 
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Figures 

 

 
Fig. 1. From Functional Connectivity to Functional Connectivity Dynamics. (A) 
Traditionally, correlations between the BOLD activity time-series ai(t) of N different 
brain region nodes i and j (left) are averaged over long times and compiled into the 
entries FCij of a ‘static’ N-times-N Functional Connectivity (FC) matrix (right). (B) 
Sliding windows of a shorter temporal duration, it is possible to estimate a stream of 
time-resolved FC(t) networks (top). The degree of similarity (inter-matrix correlation) 
between FC(t) networks observed at different times is then represented into a T-times-T 
recurrence matrix, or Functional Connectivity Dynamics (FCD) matrix, where T is the total 
number of probed windows, depending on window size and overlap (bottom). (C) 
Alternatively, one can consider each individual FC link as a dynamic variable FCij(t) 
attached to the graph edge between two regions i and j (top). Generalizing the 
construction of the FC matrix in panel (A), we can thus extract a N(N-1)-times-N(N-1) 
matrix of covariance between the time-courses of different FCij(t) links. We re-baptized 
this inter-link covariance matrix as Functional Meta-Connectivity (MC) matrix. 
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Fig. 2. Age effects on Functional Connectivity Dynamics. Correlations between FC 
networks observed at different times t1 and t2 during resting state are compiled into FCD 
matrices (cf. Figure 1B). (A) FCD matrices for subjects of increasing age (window size 
τ = 60 s, see Fig. S2 for other τ-s). Blocks of large inter-network correlation indicate 
epochs in which FC is stable (FCD knots), separated by transients of faster FC 
reconfiguration (FCD leaps). Visual inspection suggested that FCD knots lasted longer 
with increasing age. This is confirmed by computing the rates of FC reconfiguration dτ, 
or FCD speed. (B) Distributions of FCD speed, shown here for two representative 
subjects (log-log scale, pooled window sizes 12 s ≤ τ < 31 s) displayed a peak at a value 
dtyp (typical FCD speed) and a fat left tail, reflecting an increased probability with respect to 
chance level to observe short FCD steps (95% confidence intervals are shaded: red, 
empirical; gray, chance level). (C) The FCD speed dtyp decreased with age (see Fig. S3 for 
larger τ-s). The FC space was seemingly explored through an anomalous random process 
in which short steps were followed by short steps with large probability (sequential 
correlations), leading to clustered trajectories (panel D, top). This contrasts with a 
standard random process, visiting precisely the same FC configurations but without long-
range correlations (panel D, bottom). (E-F) The persistence of FCD could be proved 
through a Detrended Fluctation Analysis (DFA). (E) DFA log-log plots for two 
representative subjects (τ = 12 s, see Fig. S4 for DFA at other τ-s). Shadings correspond 
to the inter-quartile range for the probability densities of the fluctuation strength at 
different scales of observation, estimated prior to maximum-likelihood fitting (plotted 
dots give the mean values). DFA exponents αDFA are generally larger than 0.5, indicating 
anomalously persistent fluctuations, and are larger for elderly than for young subjects 
(panel F, two groups: N = 26, 18-25y; and 57-80y, N = 33; p < 0.001, U Mann Whitney). 
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Fig. 3. Age effects on the temporal stability of the FC modular structure. We 
studied how the community structure of FC(t) networks across time as an effect of 
ongoing rs FCD, adopting a window size of τ = 31 s (16 TR, window step of 1 TR). We 
then re-clustered the obtained network modules across the different time-slices to 
maximize their consistency between consecutive windows. (A) Membership of different 
brain regions to different FC(t) modules for a representative subject (top). The figure also 
shows the corresponding time-courses for the number of retrieved FC network modules 
(middle) and for the ‘liquid fraction’ Λ(t), i.e. the fraction of brain regions transiting from 
one module to another across one time step and the next (bottom). (B) The average 
number of retrieved FC(t) modules decreased with age (p < 0.01, bootstrap with 
replacement); (C) The time-averaged liquid fraction Λ within each module increased with 
age (p < 0.01, bootstrap with replacement), denoting a reduced temporal stability of the 
FC(t) modular structure, despite the overall slower speed of FCD. 
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Fig. 4. Age effects on inter-link Meta-Connectivity. Correlations between the time-
courses of pairs of inter-regional FC links are compiled into Meta-Connectivity (MC) 
matrices (cf. Figure 1C). (A) Group-averaged MC for two distinct age groups (N = 28, 
18-25y; and 57-80y, N = 34) based on a FCD window size of τ = 31 s (16 TR, window 
step of 1 TR, as in Fig. 3). In panel (B) regions are colored according to their meta-
connectivity weight MC(i), i.e. the sum of the strengths of meta-links between FC links 
incident on the i-th region (average over the two hemispheres). Modules of temporally 
co-varying links were organized around distinct meta-hub regions with elevated MC 
weight. (C) Distributions of MC strengths for the two age groups (all trimer MCij,il and 
tetramer MCij,kl meta-links, cf. upper right cartoon diagrams). Boxes display the 
interquartile range, whiskers the 95% confidence interval and dotted-red lines the full 
range, revealing outliers. Median strengths were different between age groups (p < 0.001, 
Kruskal-Wallis) but not the distributions themselves. However, negative outlier meta-
links developed with age. (D) At the single subject level, neg-MC, i.e. the total sum of the 
absolute values of negative MC entries, correlates with age (p < 0.01, bootstrap). In other 
words, the FCD flux becomes more ‘viscous’, with a frustrated freedom of fluctuation, 
due to conflicting positive and negative influences. 
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Fig. 5. Correlation between FCD and cognitive/visuo-motor performance. 
Cognitive performance was tested via Montreal Cognitive Assessment (MoCA, N = 21) 
and visuo-motor performance in a unimanual visuo-motor task (N = 36), in which hand 
pressure on a rubber balloon had to be frequency-locked with the speed rotation of a 
visual stimulus during the fMRI scan. Typical FCD speed dtyp (left) and FCD viscosity 
neg-MC (right) correlated or anti-correlated, respectively, with both (A) the global MoCA 
score, and (B) the average frequency-locking coefficient Φ (**p < 0.01; ***p < 0.001; 
bootstrap). Partial correlations in which the common declining trend with age was 
regressed out were also significant (see Table 1). 
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Fig. 6. FCD brings complementary information about brain aging. To gauge the 
relative amount of age-related information conveyed by different types of predictive 
features, we performed age-prediction based on a simple linear regression scheme 
between age and different quadruplets of features. Panel A shows boxplots (whishers, 
95% c.i.; box, interquartile range; red line, median) of the absolute cross-validated 
prediction error based on the best quadruplet of homogeneous-type features (4x) chosen 
among: strengths SCij of SC links; strengths FCij of time-averaged FC links; variances over 
time σ(FCij) of FC links; and, meta-connectivity strengths MC(ij) = Σkl MCij,kl. We also 
considered mixed quadruplets including one feature for each of the four feature 
categories. Quadruplets of MC(ij) features achieved the smaller median cross-validated 
prediction error, further improved by quadruplets with mixed feature types (respectively, 
p < 0.01 and  p < 0.05, Bonferroni-corrected, Kruskal-Wallis). Panels B-C show the best 
quadruplets of same-type features (B) or the best mixed-type quadruplet (C), 
corresponding to the prediction performances shown in panel A. Icons with red (blue) 
links correspond respectively to predicting features correlating (anti-correlating) with age. 
(E) When discriminating subjects into two classes (older or younger than the median 
age), quadruplets of different types reached different precision and sensitivity in 
classification. We display joint distributions (over all the possible quadruplets for each 
given type) of the achieved precision and sensitivity scores (cross-validated median). 
While SC-type quadruplets were the most precise, MC-type quadruplets where the most 
sensitive. Mixed-type quadruplets achieved high precision (SC-like) and high sensitivity 
(MC-like) simultaneously, profiting of a positive synergy between the complementary 
information conveyed by different predictors. 
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Tables 
 

Table 1. Significant correlations between FCD markers and cognitive/visuo-
motor performance 

 

Type of correlation Median Bootstrap 95% c.i. 

CC(neg-MC, MoCA) 0.66 (0.40, 0.82)*** 

CC(neg-MC, MoCA | Age) 0.59 (0.35, 0.75)*** 

CC(neg-MC, Φ)  0.58 (0.33, 0.74)*** 

CC(neg-MC, Φ | Age) 0.50 (0.17, 0.70)** 

CC(dtyp, MoCA) 0.51 (0.21, 0.72)** 

CC(dtyp, MoCA | Age) 0.41 (0.05, 0.68)* 

CC(dtyp,Φ) 0.59 (0.10, 0.78)** 

CC(Λ, MoCA) -0.32 (-0.49, -0.02)* 

 
We report 95% bootstrap confidence intervals for all significant correlations between 
FCD metrics and performance scores. Stars indicate the confidence level up to which the 
reported correlation was tested as significant: *p < 0.05; **p < 0.01; ***p < 0.001 
(bootstrap with replacement).	
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Methods 

 
Contact for reagent and resource sharing 

Further information and requests for resources should be directed to and will be fulfilled 
by the Lead Contact, Demian Battaglia (demian.battaglia@univ-amu.fr).  

 

 Experimental model and subject details 

 Subjects. Overall N = 85 healthy adult subjects (N = 53 females, N = 32 males) were 
voluntarily recruited at Charité - Universitätsmedizin Berlin to participate in rs fMRI and 
DSI scans and, for a subset of them, also in a visuo-motor study. The first subset of N = 
49 subjects (‘rs-only’) had ages uniformly distributed over the 18-80y range. The second 
set of N = 36 subjects (‘rs+tasks’) was further split into a first (N = 15, 20-25 yrs) and a 
second (N = 21, 59-70 yrs) age groups. All subjects had no self-reported neurological, 
psychiatric or somatic conditions. For the ‘rs+tasks’ subset, healthy cognitive function 
was furthermore assessed with the Montreal Cognitive Assessment (MoCA) (Nasreddine 
et al., 2005). For all the analyses of Figs. 1-4 and S1-6, in which cognitive performance 
was not relevant, we merged the two subsets of subjects. We distinguished for inter-
group comparisons between a ‘Young group’ composed of subjects in the first age-quartile 
of the ‘rs-only’ subset and the first age group of the ‘rs+tasks’ subset (overall N = 28, 18-
25 yrs, median age = 22.5 yrs), and an ‘Elderly group’ composed of subjects in the fourth 
age-quartile of the ‘rs-only’ subset and the second age group of the ‘rs+tasks’ subset 
(overall N = 33, 59-80 yrs, median age = 65 yrs). 

In addition to general exclusion criteria for participation in an MRI experiment, 
subjects with a self-reported musical background were excluded, as musical training may 
affect the performance of the rhythmic visuo-motor task. Left-handed subjects, 
identified using the Edinburgh Handedness Inventory, were also excluded. Subjects were 
informed of the procedure of the study and basics of fMRI acquisition, and written 
consent was obtained prior to data collection. The study was performed in accordance 
with the local medical ethics committee protocol at the Charité Hospital (Berlin, 
Germany). 

 

Method details 

MRI acquisition. Magnetic resonance imaging (MRI) acquisition was performed on a 
3T Siemens Trim Trio scanner. Every subject was scanned in a session which included a 
localizer sequence (3, 8mm slices, repetition time [TR] = 20 ms, echo time [TE] = 5 ms, 
voxel size = 1.9×1.5×8.0 mm, flip angle [FA] = 40°, field of view [FoV] = 280 mm, 192 
mm matrix), a T1-weighted high-resolution image (4:36 minutes, MPRAGE sequence, 
192, 1mm sagittal slices, voxel size 1x1x1mm, TR = 1940 ms, TE = 2.52 ms, FA = 9°, 
FoV = 256 mm, 256 mm matrix), a T2 weighted image (2:16 minutes, 48, 3mm slices, 
voxel size 0.9x0.9x3mm, TR = 2640 ms, TE1 = 11 ms, TE2 = 89 ms, FoV 220 mm, 256 
mm matrix), followed by diffusion weighted imaging (8:23 minutes, 61, 2mm transversal 
slices, voxel size =2.3×2.3×2.3 mm, TR = 7500, TE = 86 ms, FoV 220 mm, 96 mm 
matrix). Subjects were then removed from the scanner to have their EEG cap put on, 
and then simultaneous fMRI-EEG images were acquired in a single run (22:30 minutes, 
BOLD T2*weighted, 32, 3mm transversal slices, voxel size = 3×3×3 mm, TR = 1940 
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ms, TE = 30ms, FA = 78°, FoV = 192 mm, 64 mm matrix). Five dummy scans were 
automatically discarded by the Siemens scanner.  

 fMRI data preprocessing.  fMRI data was preprocessed following Schirner et al. (2015). 
Here, FEAT (fMRI Expert Analysis Tool) first-level analysis from the FMRIB 
(Functional MRI of the brain) software was used. Motion correction was performed 
using EPI field-map distortion correction, BET brain extraction, and high-pass filtering 
(100s) to correct for baseline signal drift, MCFLIRT to correct for head movement 
across the trial. We checked that additional head movement correction by regressing out 
the six FSL head motion parameters did not significantly modify correlations with age of 
FCD and MC markers extracted from our BOLD time series. Functional data was 
registered to individual high-resolution T1-weighted images using linear FLIRT, followed 
by nonlinear FNIRT registration to Montreal Neurological Institute MNI152 standard 
space. Voxel-level BOLD time series were reduced to 68 different brain region-averaged 
time series, according to a Desikan parcellation (Desikan et al., 2006). See table S1 for the 
regions under consideration. We did not perform slice-timing correction, smoothing, or 
normalization of BOLD intensities to a mean.  

Resting state. During resting state scans, subjects were to remain awake and reduce head 
movement. Head cushions were used to minimize head movement, and earplugs were 
provided. Scans for the ‘rs-only’ and the ‘rs+task’ subsets of subjects had different 
durations. For the ‘rs-only’ subset, 20m of uninterrupted rs scan were performed. For the 
‘rs+task’ subset, five minutes of rs were collected before the task acquisition (see later), 
and then further five minutes after the task.  

Visuo-motor coordination task (frequency-locking Φ score). The N = 36 subjects in the 
‘rs+tasks’ subset also succeeded in performing a visuo-motor coordination task while in 
the scanner. The task followed a unimanual paradigm, which was adapted from a 
bimanual paradigm introduced in (Houweling et al., 2008). During the task, subjects were 
told to lay still inside the scanner with an air-filled rubber ball in their right hand. A 
screen, animated using a custom-made LabView program, was projected in the scanner. 
To reduce eye movement, subjects were instructed to fix their gaze at a cross, displayed 
in the middle of the screen between two rotating disks. The left disk served as visual cue, 
rotating at a computer-generated speed, while the subject’s squeezing of the ball 
controlled the speed of the right disk. The goal was to make the subject-generated 
rotating disk align in (counter) rotation with the computer-generated rotating disk, which 
was done by squeezing the rubber ball in a 4:3 frequency to the visual cue. For perfect 
performance, the two disks would rotate in synchrony. Because the computer-generated 
disk rotated at a 4:3 frequency to the subject-generated circle, subjects had to squeeze the 
ball at 1.35 cycles per second to match the 1.8 cycles per second of the computer-
generated disk in order to achieve synchrony 

Behavioural measures were collected (1 performance score per trial) based on the 
frequency locking of the two rotating circles. If the two disks rotated perfectly in-
synchrony (i.e. subject was able to match the frequency of bulb-squeezing to the 
computer generated cue), the performance score would be 1. Not frequency-locked 
rotations of the two disks would result in a performance score of 0. More specifically, the 
frequency locking of the computer-generated circle and the subject-generated disk was 
quantified by the normalized spectral overlap between the power spectra of the two 
forces, Px and Py, as described in detail in (Daffertshofer et al., 2000): 
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with ρ = 4/3, corresponding to the target frequency ratio between the two rotating 
disks. Behavioural performance was expected to improve across trials as subjects learned 
the task, but in this study focused just on the average performance over the ten trials, 
ignoring learning. 

MoCA cognitive assessment. MoCA assessment was performed by N = 21 elderly subjects 
of the ‘rs+tasks’ subset. The MoCA includes multiple sub-tasks probing different 
cognitive domains such as: short-term memory and delayed recall; visuo-spatial abilities; 
phonemic fluency, verbal abstraction and naming; sustained attention and concentration; 
working memory; executive control in task switching; spatio-temporal orientation. The 
test was administered in a German version (downloadable from 
http://www.mocatest.org). The maximum global score ‘MoCA’ achievable is of 30 
points, up to 5 of which are contributed from the partial score ‘MoCA-wm’ from the 
working memory (‘Erinnerung’) task. Participants were considered in good/healthy 
mental state, when achieving scores higher than 25. All details can be found in 
(Nasreddine et al., 2005). 

 
Quantification and statistical analysis 

Extraction of time dependent Functional Connectivity. As, e.g., in (Allen et al., 2012), time-
dependent Functional Connectivity matrices FC(t) were estimated by sliding a temporal 
window of fixed duration τ and by evaluating zero-lag Pearson correlations between rs 
BOLD time series ai(t) from different brain regions:  

 

where temporal averages  are taken over the restricted time interval [t, t + τ]. All 
entries were retained in the matrix, independently of whether the correlation values were 
significant or not or without fixing any threshold (i.e., we treated FCij entries as 
descriptive features operationally defined by the above formula). 

Evaluation of Functional Connectivity Dynamics (FCD) matrices. We introduced a notion of 
similarity between any two FC(t1) and FC(t2) matrices following (Hansen et al., 2015), 
based on the Pearson correlation between the entries of their upper-triangular parts: 

 
FCD matrices depend thus on the window-size τ adopted when extracting the FC(t) 
stream. 

Evaluation of FCD step lengths and their distribution. Correlation distance provide a natural 
(bounded) metric for the space of FC(t) matrices. We can measure the distance traveled 
in FC space when stepping from one matrix FC(t) to the next matrix in a sequence by 
evaluating: 

 
Since the time step τ is maintained constant, these step lengths can be interpreted as rates 
of FC reconfiguration across time, and, thus, FCD speed. 

It was difficult to estimate histograms of dτ at the single subject level based on a single 
window-size τ because the number of sampled points within a single rs fMRI session was 
too small, especially for the longer window-sizes. Observing that the single-subject 
histograms that we obtained were similar for close window sizes, we chose to group 
observations obtained for different scales into three size-groups: ‘slow’ window-sizes 
(270s to 93s), ‘normal’ window-sizes (91s to 33s) and ‘fast’ window-sizes (31s to 12s). 
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The exact choice of included τ within each size-group was done to have τ 
homogeneously distributed over the size-group range and to have, after pooling, roughly 
the same number of dτ observations available for building each of the three histograms 
(hence the larger ranges for the ‘slow’ and ‘normal’ size-groups, since the longer the τ the 
fewer non-overlapping windows could be allocated within the fixed length of the imaging 
session). Histograms for the three size-groups averaged over all subjects can be seen in 
Fig. S3A, together with a group-averaged histogram for ultra-fast window-sizes (10s to 
6s), which still surprisingly has a ‘well-behaved’ shape. Single-subject histograms for the 
‘fast’ size-group are shown in Fig. 2B. Confidence intervals for the histograms were 
evaluated according to a standard Agresti-Coull binomial proportion approximation.  

The typical FCD speed dtyp was determined as the mode of a single-subject window-
sizes pooled dτ histogram and was as such dependent on the chosen size-group. When 
there were multiple dτ values associated to the same maximum count then dtyp was given 
by the average of these multiple dτ values. 

Histograms under the null hypothesis of lack of sequential correlations were 
computed as above, apart from the following change. Before computing the dτ values, the 
order of the observed FC(t) matrices in the observed stream was randomly permuted. In 
this way the FC mean and variance were preserved for each possible link, but the 
eventual sequential correlations were disrupted by construction. The randomization of 
order was performed 500 times and independently for each of the window sizes pooled 
to build the overall null hypothesis sample. With respect to null hypothesis expectations, 
single subject histograms very frequently showed: an under-representation of long step 
lengths; an over-representation of short step lengths; or both. We studied how frequent 
these two types of discordancies from chance-level expectations were by computing dτ 
histogram made of 20 dτ bins for all subjects and all window-sizes τ (no longer pooled). 
We ignored the actual values of the center of the twenty dτ bins (which were different for 
each of the τ-s) and only considered their ordinal rank – always 1 to 20 for all τ-s – , in 
order to systematically compare across different window-sizes τ in which bins (relatively 
short or relatively long step lengths) an over-representation or an under-representation of 
counts were significantly occurring. The results of this analysis are shown in Fig. S3C. 

Detrended Fluctuation Analysis (DFA). The Detrended fluctutation analysis (DFA) 
allows us detecting intrinsic statistical self-similarity embedded in a seemingly non-
stationary time series. It is particularly adapted to the study of time series that display 
long-range persistence, and it is in this sense similar to other techniques, such as Hurst 
exponent analysis, requiring however the stationarity of the analyzed signal. See (Metzler 
et al., 2014) for a review. In order to capture self-similarity and auto-correlations among 
increments in a time series, DFA infers a self-similarity coefficient by comparing the 
detrended mean square fluctuations of the integrated signal over a range of observation 
scales in a log-log plot. If the log-log plot has an extended linear section, (i.e. if the 
scaling relation is a genuine power-law over a reasonably broad and continuous range of 
scales, see later for the meaning of ‘genuine’), it means that fluctuations ‘look the same’ 
across different temporal scales, i.e. we have statistically the same fluctuations if we scale 
the intensity of the signal respecting the DFA exponent. 

We performed here DFA over the time series of dτ ’s to detect sequential auto-
correlations within them. First the sequence dτ (t1), dτ (t2), … dτ (tL) was converted into an 
unbounded process: 
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Let K denote the number of samples in the time series, that are split into M non-
overlapping segments q = 1…M of length k each, with M = ⎣K/k⎦. For each segment q 

the fluctuation strength was computed as the squared difference between Dτ(t) and its 
trend Dτ

(trend)(t) (in the linear case this is the regression line of Dτ(t) over the interval t = 
1...k) : 

 
In the case of scale-free correlation this fluctuation strength scales with segment size k . 
That is, (on average) one finds a linear power law of the form: 

log 𝐹! 𝑘 = 𝛼!"# log 𝑘 + 𝐶 

The scaling parameter αDFA is the primary outcome measure of DFA. In the case of the 
scale-free processes with the aforementioned power law, αDFA resembles the Hurst 
exponent (Metzler et al., 2014), leading to the interpretation: 

. 0 < αDFA < 0.5 : dτ  – or Dτ – contains anti-persistent fluctuations 

. αDFA = 0.5 : dτ is uncorrelated white Gaussian noise – or Dτ resembles Brownian 
motion 

. 0.5 < αDFA < 1 : dτ  – or Dτ – contains persistent fluctuations 

. 1 ≤ αDFA : dτ is non-stationary (strictly speaking, DFA is undefined in this case) 

Prior to construing outcome values, however, it is mandatory to verify that a linear 
power law scaling actually exists. If it was not the case indeed the output value αDFA could 
not be interpreted as a scaling exponent, but just as yet another meaningless number. 
Following (Ton & Daffertshofer, 2016), we tested the hypothesis of power-law scaling 
using a (Bayesian) model comparison approach. This allowed identifying the subjects for 
which the DFA log-log plot was better fit by a straight line than by any other tested 
alternative model. Only these subjects with a proper linear section in the DFA log-log 
plot were retained for the following steps of DFA exponent extraction and analysis of 
correlations with age. 

In order to test the hypothesis of power law against alternative models, we evaluated 
the density of fluctuations over the consecutive segments, i.e. the density of 𝐹! 𝑘  – 
beyond its mean value 𝐹! 𝑘  – using a kernel source density estimator. Based on this 
probability density, one can estimate the log-likelihood for a certain model to generate 
fluctuations of a given strength (on a log-scale) as a function of log 𝑘. To perform model 
selection, the toolbox then computes the corrected Akaike Information criterion for each 
one of the tested models: 

 
where p is the number of free parameters to fit in the model and the number of points 
used to estimated the density of 𝐹! 𝑘 . Note that this model selection criterion 
automatically embeds a penalization for models with larger number of parameters, thus 
protecting against over-fitting. The model yielding the lowest AICc was selected as the 
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relatively best one, and in the case this was the linear one the corresponding ℒ!"#-fitting 
parameter was considered as 𝛼!"#. 

To improve fitting and model selection we increased the number of available data-
points by extracting more than just one dτ sequence from each given subject. Additional 
dτ sequences were constructed based on streams of stepped FCD windows with the same 
length τ, but with slightly shifted beginnings. In detail, in addition to the standard 
sequence dτ (t1), dτ (t2), … dτ (tL), we also extracted also a second sequence dτ (t1 + δt), dτ 
(t2 + δt), … dτ (tL-1 + δt), a third sequence dτ (t1 + 2δt), dτ (t2 + 2δt), … dτ (tL-1 + 2δt), … 
and, finally, a last sequence dτ (t1 + qδt), dτ (t2 + qδt), … dτ (tL-1 + qδt) with qδt < τ and 
(q+1)δt ≥ τ. We subsequently performed independent DFAs for each one of these 
shifted sequences and merged the associated clouds of k vs DFA(k) points prior to 
model selection.  

We used a range of 5 < k < 20, to discard data chunk sizes that were too short or 
long data chunk sizes yielding an overall number M of chunks that was too small. 

Note that our DFA exponents still depend on the FCD window-size τ, which also 
provides the actual unit of measure for DFA scales. The k values of dτ ’s included in each 
DFA chunk are evaluated based on (k+1)τ s of BOLD rs activity. Therefore, the 
robustness of DFA results must still be verified across different FCD window-sizes, as 
shown in Fig. S4. We based the analysis shown in Fig. 2E-F with a window-size of 
τ ~12 s (and hence estimated the scaling exponent αDFA over time-scales between 60 s 
and 240 s). In Fig. S4B the significance of age-to- αDFA correlation at the single-subject 
level is shown also for different τ-s via permutation testing. The significance of inter-
group differences between αDFA values for different τ-s was assessed via the U-Mann 
Whitney non-parametric two-sided test (Fig. S4C). All tests were performed with 
different group sizes at every considered τ value, since different subjects could be 
considered or not to show a genuine power-law scaling for different τ-s. 

A genuine power-law scaling in the DFA of subjects within the ‘rs+task’ subgroup 
could be established only for very few subjects and not always the same for different τ-s. 
This was probably due to the shorter length of rs BOLD time-series acquired for the 
‘rs+task’ subset of subjects. Therefore, we limited DFA to the ‘rs only’ subset of subjects 
and correlations of αDFA with cognitive and visuo-motor performance could not be 
tested. 

FC modular flexibility analysis. To study how the modular structure of FC(t) matrices 
changes across time as an effect of ongoing FCD, we performed a modular analysis of 
the graph structure of each FC(t) matrix separately. 

We used the Louvain algorithm to extract the modules of each of the networks 
FC(ta) separately. This involves an iterative scheme in which modules obtained at a given 
iteration step were used as the initial condition for the next step until when the obtained 
modularity goal function converged. The procedure was repeated 500 times and the 
module partition associated to the best score was maintained. We denote the obtained 
modules as M1(ta), M2(ta), …, MK(a)(ta) where K(a) is the number of FC modules extracted 
at time ta. Since modules were generated independently for each considered time-
window, there was no guarantee that a module Mk(ta) was related to a module Mk(tb) with 
which it – contingently – shared the same module index. For instance, it might be that 
the module at time M1(ta) has a larger overlap with the module M4(tb) than with the 
module M1(tb). We therefore relabeled the module indices in order to guarantee the larger 
overall similarity across time between all modules sharing a common label. This 
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relabeling enabled us to meaningfully track the displacement of brain regions between 
different modules. To align the retrieved modules, we determined inter-module distance 
as the number of elements in the set-theoretical symmetric difference between them: 

 
where:  

 
This was followed by a modified K-means clustering of the modules: i) choosing K, the 
maximum number of modules as the maximum K(a) observed across time in the rs 
session for each given subject; ii) by using the above definition of inter-module distance 
as metric for the clustering; and, iii) by imposing that at each step of the K-means 
iterative algorithm (including the final one after convergence) every temporary cluster 
always included one and only one module deriving from each of the time-windows. After 
convergence of the clustering algorithm, all modules within each of the clusters of 
modules were reassigned a common label corresponding to the index of the K-means 
cluster. For instance, a given cluster of modules Q could contain modules Q = {M4(t1), 
M2(t2), M5(t3), … M3(tmax - δt), M1(tmax)}. All these modules were then relabeled as {MQ(t1), 
MQ(t2), MQ(t3), … MQ(tmax - δt), MQ(tmax)} after our matching via re-clustering procedure. 
For the analyses underlying Fig. 3 we adopted δt = 1.94 s (corresponding to one TR). 
The module labels indicated in the top panel of Fig. 3A correspond to the labels Q after 
re-clustering of modules. The middle plot gives the evolution over time of K(a) for a 
specific subject. 

Next, we estimated the fractions of brain regions changing module when moving 
from a time t to the following time t + δt. The number of region-switching events 
affecting a given module Q was given by: 

 
We evaluated the time-dependent ‘liquid fraction’ of regions as the following quantity 
(averaged over the modules present at time t):  

 
For a specific subject this quantity is plotted in Fig. 3A’s bottom panel. Figs. 3B and 3C 
show correlations between subject age and the averages over time of the number of 
modules K(t) and of the liquid fraction Λ(t), respectively. 

MC analysis. Out of the stream of FC(t) matrices, we extracted M = N(N-1)/2 time 
series of pairwise FC couplings given by the entries FCij(t) for all pairs of regions i and j 
with i < j ≤ N. We used a window-size of τ = 16 TR (~31 s) with a window step of one 
TR (1.94 s). The entries of the meta-connectivity matrix MC were given by the 
conventional Pearson correlation values: 

 
We compiled these correlation entries into a format that allowed us to easily identify the 
pair of links involved into each meta-link and the participating brain regions. That is, we 
built MC matrices of (N2-N)-times-(N2-N) size, where different rows corresponded to 
different directed pairs of regions – i.e. both the pair (i,j) and the pair (j,i) were included – 
and only links corresponding to self-loops – i.e. of the type (i,i) – were excluded. The 
price to pay for this choice of clarity was to introduce redundancy among MC matrix 
entries, since: 
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For the sake of computational efficiency, however, we computed only P = M(M-1)/2 
independent Pearson correlations between pairs of possible FC link time series FCij(t) 
and FCkl(t), with i < j, k < l, i ≤ k, j < l and copied this inter-link correlation value into 
the eight degenerate MC matrix entries.  

Besides the strengths MCij,kl of individual meta-links, we also computed integrated 
meta-connectivity strengths for individual links 

 
This quantity, depending uniquely on the two indices i and j, and not anymore on the 
four indices i, j, k and l, measures the total strength of all inter-link interactions involving 
a given link (ij). We could compute an analogous integrated strength for each brain 
region i : 

 
We limited in this case the sum to ‘trimer’ meta-links only, having the considered region i 
as ‘root’. We call ‘trimers’ these special meta-links MCikil which give the strength of 
interaction between two functional links (ik) and (il) that share the common root region 
i. Trimer meta-links involve therefore a total number of three different brain regions. 
Trimers are thus distinct from general tetramer meta-links, which involve two links 
touching a total of four different brain regions. 

In the adopted format, the MC matrix can be considered as the adjacency matrix of 
a graph whose nodes are FC links. Thus communities of temporally co-varying FC links 
can simply be evaluated by extracting node-based communities out of the MC matrix. To 
extract MC modules, we adopted, as for the modular structure of FC(t) matrices, a 
standard Louvain algorithm, and selected the best modularity solution out of 500 
independent runs. We extracted the modular structure in Fig. 4A out of the group 
average of single subject MC matrices taken over the ‘Young’ group of subjects (see 
above the ‘Subjects’ subsection for information about this group’s composition). 

We found that negative strength meta-links are particularly informative about age. 
Hence, we defined 

 
where θ(x) denotes the Heaviside function which is equal to 1 if x ≥ 0 and equal to 0 
otherwise. In this way, neg-MC gives the sum of the absolute values of all the negative 
entries of the MC matrix. Growing neg-MC denotes the emergence of frustration and 
conflicting inter-link influences, and, hence, an increasing ‘viscosity’ of the FCD flux. 

Age prediction via linear regression. We took into account a large number of different 
possible features as potential predictors of age. These predictors included the strengths 
of structural connectivity links SCij or of time-averaged functional connectivity links FCij, 
their variance over time σ(FCij) and their integrated meta-connectivity strength MC(ij). 
We also considered node-based features, such as the total strengths of a region under 
structural connectivity and functional connectivity, i.e. SC(i) and FC(i), and regional 
trimer meta-connectivity strengths MC(i). As shown in Fig. S6, for every possible brain 
region i and link (ij), we tested whether these quantities correlated with subject age and 
whether correlations were significant (via bootstrap with replacement, p < 0.05).  
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We performed age-prediction based on different sets of features. As predictor sets we 
used quadruplets of: SCij’s, FCij’s, σ(FCij)’s or MC(ij)’s; and, finally, mixed quadruplets 
composed of exactly one SCij, one FCij, one σ(FCij) and one MC(ij) features. For each of 
these types, we tested all the possible feature quadruplets, keeping track of their 
performance in age-predictions and then isolating the best quadruplet of each type.  

For each chosen set of predictor features, prediction performance was evaluated 
following a cross-validation procedure. First, we randomly split the subjects into two age-
balanced halves by including within each of the halves subjects belonging to all four age 
quartiles in equal number. One half was designated as the ‘training’ set; the second half 
was designated as the ‘testing’ set. Then, we fitted a linear relation between age and the 
chosen predictor set (standard least-square procedure) based on the subjects in the 
training set, and evaluated this linear relation over the subjects in the testing set to 
extrapolate their age. Subsequently, we compared the predicted age with the actual age, 
and evaluated absolute errors of prediction |agereal – agepredicted| and averaged them over 
the testing set to obtain the mean absolute error (MAE). Distributions of the expected 
MAE were then built by replicating 1000 times the random splitting of the overall sample 
into training and testing subsets. The boxplot in Fig. 6A shows the median, inter-quartile 
range and 95% confidence interval for the MAE distributions associated with the best 
quadruplet of links for each of the predictor set types. The best predictor sets achieving 
these performances are detailed in Figs. 6B-C. 

 Discrimination into age-classes. Next to the best features for each of the predictor types, 
we studied the general performance of all the different features in a simpler task, in 
which only the age-class of a subject had to be predicted, rather than her/his actual age. 
Subjects were split into two classes, age ‘older than median’ (the target class) and age 
‘higher than median’. Again subjects were separated into training and testing sets. A 
linear regression was then performed over the training set only. Ages for the testing set 
were predicted using these fitted linear relations. Finally, an age class was inferred 
depending on whether the predicted age was lower or higher than the actual whole 
sample median, used as a discrimination threshold. We evaluated performance metrics in 
terms of sensitivity (a.k.a.  recall): 

 
and precision: 

 
where TP denotes the number of true positives, FP the false positives and FN the false 
negatives in age-class discrimination over the testing set. Distributions of Sensitivity and 
Precision were finally built for each predictor quadruplet, by repeating the random split 
into training and testing subsets 1000 times. Fig. 6D depicts the joint histograms of the 
achieved median Precision and Sensitivity pairs sampled over all considered quadruplets 
of predictors (4x SCij, 4x FCij, 4x σ(FCij), 4x MC(ij) and four mixed types). 

 

Data and software availability 

All anonymized datasets and custom analysis scripts will be made available on demand to 
the lead contact after publication of the manuscript. For the availability of structural and 
functional imaging data pre-processing pipelines see (Schirner et al., 2015). For the DFA 
toolbox see (Ton & Daffersthofer, 2016). 
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Supplemental information 
 

Supplemental figures 
 

 
Fig. S1. Additional features affected by brain aging. Besides FC and FCD features 
we also monitored the changes through the human adult lifespan of additional features. 
(A) We extracted SC matrices via DSI using the same parcellation adopted for FC and 
FCD. Here we show a SC matrix averaged over the whole sample. (B) We also 
investigated the temporal variance of every FC link independently, ignoring inter-link 
covariances, unlike in MC analysis. Here we show a σ(FC) matrix (evaluated with a 
sliding window size of τ = 31 s, as for the MC matrices in Fig. 4) averaged over the 
whole sample.  
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Fig. S2. FCD matrices for different sliding window sizes. FCD analyses for the same 
subjects considered in Fig. 2A are shown, for three different FCD window sizes τ-s. To 
simplify comparison, in the left column we reproduced the same FCD matrices already 
presented in Fig. 2A. Blocks of relatively elevated inter-network correlation 
corresponding to FCD knots were clearly visible for all time scales and ages.  
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Fig. S3. Additional information on FCD step length distributions. (A) Distributions 
of FCD step lengths sampled over all subjects (all ages mixed), for different ranges of 
sliding window sizes. The first three ranges chosen to pool time-scales (‘long’: 
270 s ≥ τ ≥ 93 s; ‘normal’: 91 s ≥ τ ≥ 33 s; ‘short’: 31 s ≥ τ ≥ 12 s) were set to guarantee 
that within each group roughly the same overall number of dτ values was sampled. For 
comparison, we also show the case of ultra-short window sizes (10 s ≥ τ ≥ 6 s). A typical 
FCD speed peak could be extracted for every time-scale group but that depended on the 
pool of used window-sizes. Fatter right tails developed for shorter window sizes. (B) For 
longer sliding window sizes, the typical FCD speed continued to anti-correlate with age 
(bootstrap with replacement, p < 0.05). The effect size, however, was smaller than for the 
faster sliding window size adopted in Figure 2C. (C) Single-subject dτ distributions 
displayed an over-representation of short step lengths and an under-representation of 
long step lengths with respect to chance level for all age-groups and all time-scales. To 
test this, we performed a bin-by-bin comparison between empirical and null-hypothesis 
distributions of dτ. We matched the results of these comparisons for all window sizes 
(here, one-by-one, no longer pooled), by collating them bin-by-bin according to the 
ordinal rank of the bins. The results of this comparison are shown for different age 
groups. In all cases, the relatively shorter (longer) step length bins were associated with 
larger (smaller) than chance level frequencies (blue or red, respectively). This separation 
between over- and under-representation for different step length ranges became ‘crisper’ 
with increasing age, as denoted by a reduced fraction of bin-by-bin non-significant 
comparisons (green).   
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Fig. S4. Additional information about Detrended Fluctuation Analysis of FCD. 
(A) Scaling exponents αDFA extracted from a Detrended Fluctuation Analysis of the 
sequence of FCD step lengths correlated positively with age at the single subject level 
(scatter plot for a FCD window-size of τ = 12 s). (B) Correlations between αDFA and 
subject age were significantly positive for all the tested FCD window-sizes up to 27 s (*, 
p < 0.05; **, p < 0.01; ***, p < 0.001; permutation test). The grey curve corresponds to 
the expected correlation in the null hypothesis case of no association (shaded interval, 
95% confidence interval under permutation test). (C) Group averages of αDFA for young 
and elderly subjects (18-25 yrs, max N = 13; 57-80 yrs, max N = 12) as a function of the 
adopted FCD window-size τ. Inter-group comparison were significant for several short 
windows lengths (meaning of *, **, *** as in panel B; U Mann-Whitney test). Note that 
compared groups had different sizes for different τ values, depending on how many 
subjects were retained as showing a genuine power law scaling in the DFA plot by the 
(Bayesian) model selection step. Up to τ < 29 s, at least N = 35 out of 49 tested subjects 
with DFA (‘rs only group’) showed a genuine power-law scaling (N = 46 for  τ = 12 s, 
Fig. 2F and Fig. S4A).  
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Fig. S5. Additional information on MC analysis. (A) MC modules were organized 
around different MC hub regions, as indicated by the MC trimer weight surfaces in 
Figure 4B. At the same time, all the modules had a brain-wide reach and are therefore 
highly distributed. In fact, for each brain region and for each MC module, it was possible 
to find a FC link that was incident to (meta-connected to) the area (the MC module) 
under consideration. (B-C) As shown in Figure 4D, negative meta-links developed with 
age. These negative meta-links were not equally distributed among MC modules and the 
largest fractions of them interconnect FC links in Module #4 (organized around orbito-
frontal cortex) with FC links in Module #2 (fronto-parietal) or other modules, as 
indicated by the relative counts in panel (B), based on the group-averaged MC matrix 
over elderly subjects of Figure 4A. Equivalently, negative meta-connections originating 
from this Module #4 tended to have a larger absolute value, as shown in panel (C). In 
other words the FCD flux of regions in Module #4 was more ‘viscous’.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 24, 2017. ; https://doi.org/10.1101/107243doi: bioRxiv preprint 

https://doi.org/10.1101/107243
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Fig. S6. Different types of predictor features yield non-redundant information 
about aging. (A) We considered individual pairs of regions i and j. For each of these 
pairs, we computed the correlation with age of: the strength of structural coupling, SCij; 
the time-averaged value of functional connectivity, FCij; the variance over time of time-
resolved functional connectivity, σ(FCij); and the meta-connectivity strength of the 
considered FC link, MC(ij) = Σkl MCij,kl . We realized scatter plots of the correlations of 
these different predictor types with age for each possible pairwise link. (B) Next, we 
considered individual regions i and computed their regional SC strength, SC(i) = Σj SCij, 
their regional FC strength FC(i) = Σj FCij, and finally their regional meta-connectivity 
strength MC(i) = Σjkl MCij,kl. Analogously, we made scatter plots of their age correlations 
vs. each other for all the possible regions. In both panels (A) and (B), grey dots 
correspond to not significant correlations, red (or green) circles to cases in which at least 
one (or both, respectively) correlation coordinate is significant (p < 0.05, bootstrap with 
replacement). All the scatter plots in both panels (A) and (B) were unstructured, 
indicating that correlations with age for a predictor of a given type cannot trivially be 
anticipated from the knowledge of correlations with age for a different type of predictor, 
evaluated for the same region of pairwise link. It seems that SC, FC, σ(FC)and MC 
predictors generally did not contain redundant information about the aging process.  
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Supplemental table 

 
Table S1. Used cortical parcellation and abbreviations 

 
Abbreviation Cortical Area 

ENT Enthorinal cortex 

PARH Parahippocampal cortex 

TP Temporal pole 

FP Frontal pole 

FUS Fusiform gyrus 

TT Transverse temporal cortex 

LOCC Lateral occipital cortex 

SP Superior parietal cortex 

IT Inferior temporal cortex 

IP Inferior parietal cortex 

SMAR Supramarginal gyrus 

BSTS Bank of the superior temporal sulcus 

MT Middle temporal cortex 

ST Superior temporal cortex 

PSTC Postcentral gyrus 

PREC Precentral gyrus 

CMF Caudal middle frontal cortex 

POPE Pars opercularis 

PTRI Pars triangularis 

RMF Rostral middle frontal cortex 

PORB Pars orbitalis 

LOF Lateral orbitofrontal cortex 

CAC Caudal anterior cingulate cortex 

RAC Rostral anterior cingulate cortex 

SF Superior frontal cortex 

MOF Medial orbitofrontal cortex 

LING Lingual gyrus 

PCAL Pericalcarine cortex 

CUN Cuneus 

PARC Paracentral lobule 

 
INS Insula 

Parcellation based on Desikan et al. (2006). 
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