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Abstract

There is considerable interest in comparing functional genomic data across species. One goal of such work is
to provide an integrated understanding of genome and phenotype evolution. Most comparative functional
genomic studies have relied on multiple pairwise comparisons between species, an approach that does not
incorporate information about the evolutionary relationships among species. The statistical problems that
arise from not considering these relationships can lead pairwise approaches to the wrong conclusions, and
are a missed opportunity to learn about biology that can only be understood in an explicit phylogenetic
context. Here we examine two recently published studies that compare gene expression across species with
pairwise methods, and find reason to question the original conclusions of both. One study interpreted pairwise
comparisons of gene expression as support for the ortholog conjecture, the hypothesis that orthologs tend
to be more similar than paralogs. The other study interpreted pairwise comparisons of embryonic gene
expression across distantly related animals as evidence for a distinct evolutionary process that gave rise to
phyla. In each study, distinct patterns of pairwise similarity among species were originally interpreted as
evidence of particular evolutionary processes, but instead we find they reflect species relationships. These
reanalyses concretely demonstrate the inadequacy of pairwise comparisons for analyzing functional genomic
data across species. It will be critical to adopt phylogenetic comparative methods in future functional genomic
work. Fortunately, phylogenetic comparative biology is also a rapidly advancing field with many methods
that can be directly applied to functional genomic data.

Significance

Comparisons of genome function between species are providing important insight into the evolutionary
origins of diversity. Here we demonstrate that comparative functional genomics studies can come to the
wrong conclusions if they do not take the relationships of species into account and instead rely on pairwise
comparisons between species, as is common practice. We re-examined two previously published studies and
found problems with pairwise comparisons that draw both their original conclusions into question. One
study had found support for the ortholog conjecture and the other had concluded that the evolution of gene
expression was different between animal phyla than within them. Our results demonstrate that to answer
evolutionary questions about genome function, it is critical to consider evolutionary relationships.
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Figure 1: Pairwise and phylogenetic comparative approaches, illustrated on an example gene tree with multiple
genes per species. The internal nodes of the tree are speciation and gene duplication events. (A) Many
comparative functional genomic studies rely on pairwise comparisons, where traits of each gene are compared
to traits of other genes across species. This leads to many more comparisons than unique observations,
making each comparison dependent on others. (B) Comparative phylogenetic methods, including phylogenetic
independent contrasts (2), make a smaller number of independent comparisons, where each contrast measures
independent changes along different branches. Phylogenetic approaches are rarely used for functional genomic
studies.

Introduction

The focus of genomic research has quickly shifted from describing genome sequences to functional genomics,
the study of how genomes “work” using tools that measure functional attributes such as expression, chromatin
state, and transcription initiation. Functional genomics, in turn, is now becoming more comparative– there
is great interest in understanding how functional genomic variation across species gives rise to a diversity
of development, morphology, physiology, and other phenotypes (1). These analyses are also critical to
transferring functional insight across species, and will grow in importance in coming years.

Over the last three decades, a rich set of phylogenetic comparative methods has been developed to address the
challenges and opportunities of trait comparisons across species (2–7). A central challenge is the dependence
of observations across species due to the evolutionary history of species – more closely related species
share many traits that evolved once in a common ancestor. This violates the fundamental assumption of
observation independence in standard statistical methods. Phylogenetic comparative methods address this
dependence. They have largely been applied to morphological and ecological traits, but are just as relevant
to functional genomics (8). Even so, most comparative functional genomic studies have abstained from
phylogenetic approaches and instead rely on multiple pairwise comparisons across species (Figure 1A). This
leaves comparative functional genomic studies susceptible to statistical problems and is a missed opportunity
to ask questions that are only accessible in an explicit phylogenetic context.

Phylogenetic comparative methods account for evolutionary history and explicitly model trait change along
the branches of evolutionary trees (e.g., Figure 1B). The value of these methods relative to to pairwise
comparisons has been repeatedly shown in analyses of other types of character data (9–11). The application
of these methods is illustrated by a study of leaf functional attributes for about 100 plant species (12). If
phylogenetic relationships are not considered, analyses indicate a negative correlation of leaf lifespan with
leaf size. With the application of phylogenetic comparative methods, however, this correlation disappears
because most of the observed variance is due to differences between just two groups, conifers and flowering
plants. Phylogenetic comparative methods capture this shift as change along a single branch deep in the tree,
revealing that there is not a tendency of correlated change between these traits across the phylogeny. One
reason that comparative functional genomic sudies have not embraced phylogenetic approaches is that there
has not yet been a concrete demonstration that pairwise and phylogenetic comparative methods can lead to
different results when considering functional genomic data. Here we examine this issue by re-evaluating the
pairwise comparisons in two recent studies that compared gene expression across species.
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The first study, Kryuchkova-Mostacci and Robinson-Rechavi (KMRR) (13), analyzed multiple vertebrate
expression datasets to test the ortholog conjecture - the hypothesis that orthologs tend to have more
conserved attributes (specificity of expression across organs in this case) than do paralogs (14). Using pairwise
comparisons (Figure 1A), they found lower expression correlation between paralogs than between orthologs
and interpreted this as strong support for the ortholog conjecture.

The second comparative functional genomic study we evaluate here is Levin et al. (16). This study analyzed
gene expression through the course of embryonic development for ten animal species, each from a different
phylum. Using pairwise comparisons, they found there is more evolutionary variance in gene expression
at a mid phase of development than there is at early and late phases. They suggest that this supports
an “inverse hourglass” model for the evolution of gene expression, in contrast with the “hourglass” model
previously proposed for closely related species (17). Furthermore, they suggested that this provides biological
justification for the concept of phyla. We previously described concerns with the interpretations of this result
(18). Here we address the analyses themselves by examining the structure of the pairwise comparisons.

Results and Discussion

KMRR Reanalysis

Original pairwise test of the ortholog conjecture

KMRR (13) sought to test the ortholog conjecture. The ortholog conjecture (14) is the proposition that
orthologs (genes that diverged from each other due to a speciation event) have more similar attributes than
do paralogs (genes that diverged from each other due to a gene duplication event). The ortholog conjecture
has important biological and technical implications. It shapes our understanding of the functional diversity
of gene families. It is also used to relate findings from well-studied genes to related genes that have not been
investigated in detail. It has be applied to many trait of genes, from gene sequence to biochemical properties
to expression. While the ortholog conjecture describes a specific pattern of functional diversity across genes,
it is also articulated as a hypothesis about the process of evolution– that there is greater evolutionary change
in gene attributes following a duplication event than a speciation event.

Despite its importance, there have been relatively few tests of the ortholog conjecture. Previous work has
shown that ontology annotations are not sufficient to test the ortholog conjecture (19, 20). Analyses of
domain structure were consistent with the ortholog conjecture (21). There have been few tests of the ortholog
conjecture with regards to gene expression (19), and KMRR is the most thorough such expression study to
date.

KMRR considered several publicly available datasets of gene expression across tissues and species. Their
expression summary statistic is Tau (22), an indicator of tissue specificity of gene expression. Tau can range
from a value of 0, which indicates no specificity (i.e., uniform expression across tissues), to a value of 1, which
indicates high specificity (i.e., expression in only one tissue). Tau is convenient in that it is a single number
of defined range for each gene, though of course since the original expression is multidimensional this means
much information is discarded. This includes information about which tissue expression is specific to. For
example, if one gene has expression specific to the brain and another expression specific to the kidney, both
would have a Tau of 1.

The KMRR analyses are based on pairwise comparisons (Figure 1A) between Tau within each gene family.
Rather than make every pairwise comparison within each gene tree, they considered only a subset of pairwise
comparisons in each particular analysis. They first selected a focal species, which varied from analysis
to analysis. Ortholog comparisons were limited to pairs that include this species, and the only paralogs
considered were those with the highest expression in this species. Note that this subset of pairwise comparisons
still sample the same changes multiple times.

They found the correlation coefficient of Tau for orthologs to be significantly greater than the correlation
coefficient of Tau for paralogs, i.e. orthologs tend to have more similar expression than do paralogs. From this
they concluded that their analyses support the ortholog conjecture. They also concluded that this pattern
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provides support for a particular evolutionary process, that “tissue-specificity evolves very slowly in the
absence of duplication, while immediately after duplication the new gene copy differs” (13).

Phylogenetic reanalyses

We reanalyzed the KMRR study using phylogenetic comparative methods. We focused on one of the datasets
included in their analyses, that of Brawand et al. 2011 (24). This dataset is the best sampled in their analyses.
It has gene expression data for six organs across ten species (nine mammals and one bird), eight of which
were analyzed by KMRR and further considered here.

For each internal node in each gene tree, we calculated the phylogenetic independent contrast (2) (PIC) of
Tau. This is the difference in values of Tau for descendant nodes scaled by the expected variance, which is
largely determined by the lengths of the two branches that connect the node to its two descendants (Figure
1B). These contrasts were then annotated by whether each is made across a speciation or duplication event.
The original description of independent contrasts (2) focused on assessing covariance between changes in two
traits. Our use of contrasts is a bit different– we look for differences in evolutionary changes of one trait
(differential expression) between two categories of nodes (speciation and duplication).

We mapped the Tau values calculated by KMRR (13) for the Brawand et al. 2011 (24) dataset onto 21124
gene trees parsed from ENSEMBL Compara (25). These are the same pre-computed trees that the orthology/
paralogy annotations KMRR used are based on. 8854 gene trees passed taxon sampling criteria (4 genes)
after removing tips without Tau values and had at least one speciation event. Of these, 8513 were successfully
time calibrated. These calibrated trees were used to calculate phylogenetic independent contrasts for 20945
duplication nodes and 67799 speciation nodes. One of these trees is presented in SI Appendix Figure 4 to
demonstrate the analysis.

It is essential to have a null hypothesis that makes a distinct prediction from the prediction of the hypothesis
under consideration. A suitable null hypothesis in this case is that there is no difference in the evolution
of expression following speciation or duplication events (26). Under this hypothesis, we would predict that
contrasts across speciation nodes and duplication nodes are drawn from the same distribution. Under the
alternative hypothesis specified by the ortholog conjecture, that there is a higher rate of change following
duplication events than speciation events, we would expect to see the distribution of duplication contrasts
shifted to higher values relative to the speciation contrasts.

We did not find increased evolutionary change in expression following duplication events (Figure 2B). The
Wilcoxon rank test does not reject the null hypothesis that the rate of evolution following duplications is
the same as or less than the rate following speciation (p value = 1). Our phylogenetic comparative analysis,
unlike the previously published pairwise comparative analysis (13), therefore finds no support for the ortholog
conjecture in this system.

We next examined the possibility that ascertainment biases were differentially impacting the inference of
expression evolution following duplication and speciation events. Such a bias might obscure support for the
ortholog conjecture. We focused on two possible sources of bias, node depth and branch length. We found no
evidence that either affected our results (SI Appendix, Figure 5). We also examined the sensitivity of the
results to the calibration times applied to speciation events on the gene trees. This is important because it is
expected that genes from separate species have a common ancestor older than the time at which the species
diverged from each other (27, 28). There is also uncertainty associated with the timing of these speciation
events. We added random noise to the calibration times in replicate analyses, and all still failed to reject the
null hypothesis (SI Appendix).

Understanding the incongruence between pairwise and phylogenetic methods

In order to better understand why our phylogenetic analysis supports a different conclusion (i.e., no support
for the ortholog conjecture) than the published analysis of KMRR (13) (i.e., strong support for the ortholog
conjecture), we first checked to make sure we could reproduce their result based on pairwise analyses. This is
important since we are only looking at a subset of the data they considered, the Brawand et al. 2011 (24)
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dataset for gene trees that could be successfully time calibrated. In their Figure 1 (13), they present a higher
Tau correlation coefficient between ortholog pairs than paralog pairs. We find the same here, with correlation
coefficients of 0.75 for orthologs and 0.36 for paralogs.

Why is it that pairwise methods and phylogenetic methods lead to opposite conclusions? One reason
is that multiple pairwise comparisons repeatedly sample the same evolutionary changes and in so doing
violate statistical assumptions of independence, whereas phylogenetic comparative methods make multiple
independent comparisons across non-overlapping branches of the tree. The other reason is that pairwise
comparisons and phylogenetic comparative methods describe different things. Pairwise comparisons describe
contemporary patterns, while phylogenetic methods infer historical processes (11). There need not be a
different process of evolution following speciation and duplication for paralogs to be more different than
orthologs. Any difference could be due to the structure of the gene phylogenies alone. If paralogs tend to
be more distantly related to each other than orthologs, then there would be more time for differences to
accumulate even if the rate of change is the same between the two. This is, in fact, the case for these data.
While the mean distance (i.e., total branch length) between orthologs is 333 million years, the mean distance
between paralogs is 1473.8 million years. This is because the oldest speciation event is by definition the most
recent common ancestor of the species included in the study, but many gene families underwent duplication
before this time.

To test the hypothesis that ancient duplications that precede the oldest speciation event (SI Appendix, Figure
5A) impact the lower correlation of Tau between paralogs than between orthologs, we removed them. When
we consider only the duplication events the same age or younger than the oldest speciation event (SI Appendix,
Figure 5B), the paralog correlation coefficient increases from 0.36 to 0.56. This is much closer to the ortholog
correlation of 0.75.

The KMRR study did investigate the impact of node age on correlation, but in a different way. In their Figure
2 (13), they grouped orthologs and paralogs according to the ENSEMBL node name of their most recent
common ancestor, and plotted the correlation of Tau for each of these groups by the node age. They found
that across the investigated range of node ages, ortholog pairs have higher Tau correlation than paralogs.
We confirmed that we can replicate this result (Figure 2A). There are several difficulties with interpreting
this plot, though. First, it does not just reflect the evolutionary processes that generated the data, it is also
impacted by the phylogenies along which these processes acted. The expected covariance of traits that evolve
under neutral processes is in fact defined by the phylogeny (3). Second, the correlation for each group is
based on multiple non-independent pairwise comparisons.

To better understand this plot (Figure 2A), we performed simulations of Tau on the calibrated gene trees
and then regenerated the figures. We did not modify the gene tree topologies or their inferred histories of
duplication and loss. First, we simulated the evolution of Tau under the null model that it evolves at the
same rate following duplication and speciation events. Under the null model, the plot of correlation coefficient
to node age (Figure 2C ) is very similar as for the observed data (Figure 2A). As in the original study, there
is higher correlation coefficient across orthologs (0.74) than paralogs (0.31) when not considering node age.
Phylogenetic analysis of the data simulated under the null hypothesis (Figure 2D) do not reject the null
hypothesis (Wilcoxon p = 1), as expected.

We next simulated the evolution of Tau under the ortholog conjecture, where the rate of evolution of Tau
following duplication was 2 fold the rate following speciation. The pairwise results of this heterogeneous
model (Figure 2E) are nearly indistinguishable from the results under the null model (Figure 2C ), and also
have a higher correlation coefficient for orthologs (0.76) than paralogs (0.22). The phylogenetic analysis of
the ortholog conjecture simulation (Figure 2F) does reject the null hypothesis (Wilcoxon p = 1.7 × 10−63).

These simulations have several implications. The pairwise comparisons used by KMRR cannot distinguish
between the null hypothesis and ortholog conjecture. The pairwise results are strikingly similar under both
hypotheses (Figure 2C, 2E). These simulations also serve to validate the phylogenetic methods applied
to this problem. As expected, our phylogenetic analysis of independent contrasts does not reject the null
hypothesis when data are simulated under the null model, and does reject the null hypothesis when the data
are simulated under the ortholog conjecture. In contrast to pairwise methods, the phylogenetic analyses can
test explicit predictions based on hypotheses about evolutionary process.
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Figure 2: Pairwise (left column - A, C, E) and phylogenetic (right column - B, D, F) analyses of the original
data (first row - A, B), data simulated under the null hypothesis (second row - C, D), and data simulated
under the ortholog conjecture (third row- E, F). In the pairwise plots, each point indicates the correlation
coefficient of Tau for a set of pairwise comparisons annotated with a specific node name (e.g, Primates) and
event type (speciation or duplication, giving rise respectively to orthologs and paralogs). The phylogenetic
plots show the difference between the density distributions for Tau phylogenetic contrasts for speciation
and duplication events, where a value above 0 indicates an excess of speciation contrasts in the indicated
interval. A horizontal line at 0 would indicate that the density distributions are identical. The top left pane
(A) reproduces the pattern presented in Figure 2A of KMRR (13) of higher correlation across speciation
events than duplication events, which they took as evidence of the ortholog conjecture. The recovery of a
similar pattern under both simulations (C, E) indicates that it this pairwise approach does not make distinct
testable predictions. The phylogenetic analysis of the original data (B) does not show an excess of larger
contrasts for duplication events and does not reject the null hypothesis, providing no support for the ortholog
conjecture. The bottom right panes validate the phylogenetic approach by showing that it does not reject the
null when data are simulated under the null (D), but does reject the null when data are simulated under the
ortholog conjecture (F).
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Since greater rates of expression evolution following duplication do not explain the lower correlation of Tau
values in the pairwise comparison plots (Figure 2 A, C, E), this pattern must reflect some other property
that is shared across these analyses. We found that the lower correlations for duplication comparisons can
largely be explained by the greater variance in the age of duplication nodes. Each point in the pairwise
correlation plot (Figure 2 A, C, E) summarizes multiple pairwise comparisons across nodes of a given event
type (speciation or duplication, as indicated by color) and clade in the species tree (Theria, Mammalia,
Amniota, etc. . . , as indicated by the age of the clade along the x axis). These clade names in turn are derived
from the node annotations in the ENSEMBL Compara trees, which apply clade names to both speciation
and duplication nodes. While speciation nodes in the gene trees have a clear correspondence to clades in the
species trees, duplication nodes do not since duplication can occur at any point along any branch in the species
tree. Neighboring clade ages are therefore a very rough approximation of the age of duplication events. This
is apparent when node ages derived from calibrated trees are plotted against the age of the clade annotations
for each node (SI Appendix, Figure 6A). Because duplication events that are all annotated with the same
clade name can occur at very different times, pairwise comparisons across these nodes capture evolutionary
changes in Tau across very different different branch lengths. They therefore have lower correlation than
pairwise comparisons made across speciation nodes. Of the 956763 duplication nodes considered here, 263420
have a node age (as determined by the time calibrated trees) within 10% of their clade annotation. If only
these duplication events closest to their annotated clade nodes are retained, the pattern of lower correlation of
Tau evolution for duplication events disappears for the dataset simulated under the null model (SI Appendix,
Figure 5B). This correction, though, comes at the high cost of discarding 72.5% of duplication nodes.

Implications for the ortholog conjecture

There has been considerable recent interest in, and controversy about, the ortholog conjecture (14, 15, 26, 29,
30). While some studies have presented support for the ortholog conjecture, our results are consistent with
multiple studies that have not (14, 26, 31).

Our results suggest, at a minimum, that the ortholog conjecture is not a dominant pattern that is central to
explaining the evolution of phenotypic diversity in gene families. This suggests that an alternative “neutral
conjecture”, i.e. the conjecture that the evolution of gene traits tends to be the same following gene duplication
and speciation events, may better explain the process and patterns of most gene evolution. Under this neutral
conjecture, phylogenetic distance is a better predictor of the similarity of gene function than is the history of
gene duplication and speciation. The ortholog conjecture does not have to be an all or nothing question,
though. It may be the case that the rates of phenotypic evolution following duplication may be greater than
that following duplication in some organisms, gene families, and evolutionary processes (29). We just do
not find evidence for it when summarizing gene expression across tissues with Tau in these organisms. This
calls into question the general predictive power of the ortholog conjecture with respect to gene expression,
and until these processes are better understood it will be necessary to test for it in each situation. These
tests should be articulated in terms of clear alternative hypotheses (26) that make distinct phylogenetic
comparative predictions.

Lack of support for the ortholog conjecture has important biological implications. It indicates that the
mechanism of gene divergence (speciation versus duplication) may not have as strong an impact on phenotypic
divergence as sometimes proposed. It also has important technical implications. Having information on
whether two genes are orthologs or paralogs provides little added information about expression beyond
knowing how distantly related the two genes are. Rather than focus on whether genes are orthologs or
paralogs when attempting to predict function, it may be more effective to simply focus on how closely related
or distantly related they are. Closely related paralogs, for example, may tend to have more similar phenotypes
than more distantly related orthologs (26).

This is also an example of the limitations of the concepts of orthology and paralogy (32). These terms can
have straightforward meaning in small gene trees with simple duplication/speciation histories, but the utility
of the terms breaks down on larger more complex gene trees. Orthology and paralogy are annotations on the
tips of the phylogeny that are derived from the structure of the tree and history of duplication and speciation
at internal tree nodes. In this sense, orthology and paralogy are statements about the internals of the tree
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Figure 3: Distributions of pairwise similarity scores for each phase of development. Pairwise scores for
the ctenophore are red. Wilcoxon test p-values for the significance of the differences between early-mid
distributions and late-mid distributions are on the right. Model of variance, which is inversely related to
similarity, is on the left. (A) The distributions as published by Levin et al. (16). Low similarity (i.e., high
variance) in the mid phase of development was interpreted as support for an inverse hourglass model for the
evolution of gene expression. The five least-similar mid phase scores were all from the ctenophore. Published
KS p-values, based on duplicated data, are in parentheses. The inset ctenophore image is by S. Haddock
from phylopic.org. (B) The distributions after the exclusion of the ctenophore. The early and mid phase
distributions are not statistically distinct.

that are distilled into statements at the tips of the tree. Much is lost in the process, though. For most
questions it is much more direct to focus on the structure of the tree and the inferred processes within the
tree, such as which internal nodes are duplication or speciation events and how much change occurs along the
branches.

Levin et al. reanalysis

Original pairwise analyses of developmental gene expression

Levin et al. (16) analyzed gene expression through the course of embryonic development for ten animal
species, each from a different clade that has been designated as having the rank of phylum. They arrived
at two major conclusions. First, animal development is characterized by a well-defined mid-developmental
transition that marks the transition from an early phase of gene expression to a late stage of gene expression.
Second, this transition helps explain the evolution of features observed among distantly related animals.
Specifically, they concluded that animals from different phyla exhibit an “inverse hourglass” model for the
evolution of gene expression, where there is more evolutionary variance in gene expression at a mid phase of
development than there is at early and late phases. Closely related animals have previously been described as
having an hourglass model of gene expression, where evolutionary variance in expression is greater early and
late in development than at the midpoint of development (17, 33). Levin et al. conclude that this contrast
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between distantly and closely related animals provides biological justification for the concept of phyla and
may provide a definition of phyla.

Levin et al. (16) arrived at this conclusion by making multiple pairwise comparisons of ortholog expression
data sampled throughout the course of embryonic development. For each species pair, they identified the
orthologs shared by these species. This list of shared genes was different from species pair to species pair.
They characterized each of these orthologs in each species as having expression that peaks in early, mid, or
late temporal phase of development. They then calculated a similarity score for each temporal phase for each
species pair based on the fraction of genes that exhibited the same patterns in each species. The distributions
of similarity scores are plotted in their Figure 4d (16), and their Kolmogorov–Smirnov (KS) tests indicated
that the early distribution and late distribution were each significantly different from mid distribution (P <
10−6 and P < 10−12, respectively). This is the support they presented for the inverse hourglass model.

Reexamination of pairwise comparisons

We examined the matrix of pairwise comparisons used as the base for the KS tests and Figure 4d in Levin et
al. (16), and thus as support for the “inverse hourglass” model. We found several problems resulting from
the use of multiple pairwise comparisons. The first problems are specific to this particular implementation of
pairwise comparisons. We found that every data point was included twice because both reciprocal pairwise
comparisons (which have the same values) were retained. For example, there is both a nematode to arthropod
comparison and an arthropod to nematode comparison. As a consequence, there are 90 entries for the 45
pairwise comparisons, and by doubling the data the significance of the result appears stronger than it actually
is. After removing the duplicate values, the p values are far less significant, 0.002 for the early-mid comparison
and on the order of 10−6 for early-late. In addition, the test they used (KS test) is not appropriate for the
hypothesis they seek to evaluate. The KS test does not just evaluate whether one distribution is greater
than the other, it also tests whether the shape of the distributions are the same. In addition, the samples in
this dataset are matched (i.e., for each pairwise comparison there is a early, mid, and late expression value),
which the KS test does not take into account. The Wilcoxon test is instead appropriate in this case. When
applied to the de-duplicated data, the significance of this test is 0.02 for the early-mid comparison and on the
order of 10−7 for early-late.

Once we addressed the issues above with the implementation of pairwise comparisons, we were able to explore
more general issues that can be a problem when making multiple pairwise comparisons between species. We
found that all five of the lowest values in the mid phase distribution (Figure 3A) are for pairwise comparisons
that include the ctenophore (comb jelly). When the nine pairwise comparisons that include the ctenophore
are removed, there is no significant difference between the early phase and mid phase distributions (p = 0.14
for the early-mid comparison and p < 10−5 for the late-mid comparison) and no support for the inverse
hourglass (Figure 3b). This highlights a well understood property of pairwise comparisons across species
(2, 12): evolutionary changes along a given branch, like those along the ctenophore branch, impact each
of the multiple pairwise comparisons that includes that branch. The pairwise comparisons are therefore
not independent - different pairwise comparisons are impacted by changes along some of the same branches
(Figure 1A). This can give the impression of a general pattern across the tree that is instead specific to
changes along one part of the tree. The number of comparisons impacted by each change depends on the
structure of the phylogenetic tree, i.e. how the species are related to each other. Phylogenetic comparative
methods were developed specifically to address this problem (2).

While we demonstrate problems with pairwise comparisons that impacts the Levin et al. analysis, we did not
perform a phylogenetic reanalysis of this study, as we did for the KMRR study. This is because the similarity
metric computed in the pairwise comparisons of Levin et al. is not suitable for phylogenetic analysis. One
issue with the similarity metric is that it is based on different genes for different species pairs, and therefore
is not a trait whose evolution can be modeled across the phylogeny. A full phylogenetic reanalysis would be
possible using upstream analysis products to re-derive new expression summary statistics.
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Phylogenetic comparative methods in functional genomics

Our results highlight the importance of explicitly incorporating information about phylogenetic relationships
when comparing functional genomic traits across species. Some of the most widely used phylogenetic
comparative methods (2, 3) are already directly applicable to comparative functional genomic studies. There
are also interesting new challenges at this interdisciplinary interface that will need to be addressed to fully
realize the potential of phylogenetic comparative functional genomic studies. One such challenge is that most
phylogenetic comparative analyses of covariance between traits have been developed to address problems with
many more species (e.g., dozens or more) relative to the number of traits being examined. In comparative
functional genomic analyses, there are often far fewer species because adding each species is still expensive,
but high-throughput tools generate data for tens of thousands of traits per species. This creates statistical
challenges as the resulting covariance matrices are singular and, if not treated appropriately, imply many
false correlations that are artifacts of project design. We outlined these challenges and potential solutions
in the context of gene expression elsewhere (34). In the same manuscript we also considered another issue
of relevance here – the read counts generated by RNA-seq expression studies cannot be directly compared
across species. This is because there are various species-specific technical factors that can be mistaken for
differences in expression across species. These can be canceled out within species before making comparisons
across species (34).

Recent advances in phylogenetic comparative methods are particularly well suited to addressing questions
about the evolution of functional genomic traits. Most early phylogenetic comparative methods attempted to
account for evolutionary signal to correct statistical tests for correlations between traits, while more recent
methods tend to focus on testing hypotheses of evolutionary processes (35). The application of this newer
focus to functional genomics provides an exciting opportunity to address long standing questions of broad
interest, including the order of changes in functional genomic traits and shifts in rates of evolution of one
functional genomic trait following changes in another trait.

We are not the first to apply phylogenetic comparative methods to functional genomic data. While the
vast majority of comparative functional genomic studies have used standard pairwise similarity methods, a
small number of comparative functional genomic studies have employed phylogenetic comparative approaches
(36–38). For instance, a phylogenetic ANOVA (39) of the evolution of gene expression improves statistical
power and drastically reduces the rate of false positives relative to pairwise approaches.

Addressing the statistical dependence of pairwise comparisons is not the only advantage of using phylogenetic
comparative methods for functional genomic analyses. Another problem with the pairwise comparisons is
that, except at the tips, they summarize changes along many branches in the phylogeny. Two paralogs that
diverged from a duplication event deep in the tree may have many subsequent duplication and speciation
events, and changes along all these branches will impact the final pairwise comparison. Phylogenetic methods
have the advantage of isolating the changes under consideration (Figure 1B). Phylogenetic methods therefore
avoid diluting the change that occurs along the branches that follow the node in question with changes along
all subsequent branches. There may still be missing speciation events, due to extinction and incomplete taxon
sampling, and missing duplication events, due to gene loss, but these omissions affect both methods.

Conclusions

The fact that the first two comparative functional genomic studies we reanalyzed show serious problems with
pairwise comparisons indicates that there are likely to be similar problems in other studies that use these
methods. Future studies that compare functional genomic data across species will be compromised if they
continue to use pairwise methods. Studies of evolutionary functional genomics should not be focused on the
tips of the tree using pairwise comparisons. They should explicitly delve into the tree with phylogenetic
comparative methods.

These analyses illustrate how important it is to not conflate evolutionary patterns with the processes that
generated them. Finding a pattern wherein paralogs tend to be more different than orthologs is not evidence
that there are different processes by which orthologs and paralogs evolve. This is also the expected pattern
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when they evolve under the same process but paralogs tend to be more distantly related to each other than
orthologs are. The fact that multiple pairwise comparisons of developmental gene expression across diverse
species share a particular pattern is not evidence of a general process that explains the differences between
all species in the analysis. It is also the expected pattern when a single species has unique differences, and
the evolutionary changes responsible for these differences are sampled multiple times in pairwise comparisons
that span the same phylogenetic branches along which these differences arose. To use patterns across living
species to test hypotheses about evolutionary processes it is also necessary to incorporate information about
evolutionary relationships, i.e. phylogenies. There have been decades of work on building comparative
phylogenetic methods that do exactly that, and they are just as relevant to comparing functional genomic
traits across species as they are to comparing morphology or any of the other traits they are already routinely
applied to.

Methods

All files needed to re-execute the analyses presented in this document are available at https://github.com/
caseywdunn/comparative_expression_2017. The most recent commit at the time of the analysis presented
here was ed4802e4394e1fea838d934f52d873bc9e77eabe.

KMRR reanalysis

The KMRR study (13) followed excellent practices in reproducibility. They posted all data and code needed to
re-execute their analyses at figshare: https://figshare.com/articles/Tissue-specificity_of_gene_expression_
diverges_slowly_between_orthologs_and_rapidly_between_paralogs/3493010/2 . We slightly altered their
Rscript.R to simplify file paths and specify one missing variable. This modified script and their data files
are available in the github repository for this paper, as are the intermediate files that were generated by
their analysis script that we used in our own analyses. We obtained the Compara.75.protein.nh.emf gene
trees (25) from ftp://ftp.ensembl.org/pub/release-75/emf/ensembl-compara/homologies/ and include them
in our github repository. These gene trees include branch lengths, annotate each internal node as being a
duplication or speciation event, and provide a clade label for each internal node.

We considered only the data from Brawand et al. 2011 (24) for the eight taxa included in KMRR. We left in
sex chromosome genes and testes expression data, which KMRR removed in some of their sensitivity analyses.
This corresponded to the KMRR analyses that provided the strongest support for the ortholog conjecture
and therefore the most conservative reconsideration of it.

After parsing the trees from the Compara file with treeio, which was recently split from ggtree (40), we
added Tau estimates generated by the KMRR Rscript.R to the tree data objects. We then pruned away
tips without expression data, retaining only the trees with 4 or more tips. We also only retained trees with
one or more speciation events, as speciation events are required for calibration steps. This removes trees that
have multiple genes from only one species after pruning away tips without expression data.

The gene trees were then time calibrated. The goal is not necessarily to have precise dates for each node, but
to scale branch lengths so that they are equivalent across gene trees. This in turn scales the phylogenetic
independent contrasts (which take branch length into account) so they can be compared appropriately. Before
calibrating the trees, we had to slightly modify some of them. The node names in the ENSEMBL Compara
(25) gene phylogenies are parsed from the NCBI Taxonomy database, which has many polytomies, rather
than a bifurcating species phylogeny. One implication of this is that node names can be resolved in such a
way that a speciation node can have the same name as one of its speciation node ancestors, as others have
noted (41). If left unaddressed, this would force all intervening branches to have length zero and interfere
with calibration. In particular, Hominini is the name for the clade that includes humans and chimps, while
Homininae is the clade that includes humans, chimps, and gorillas. Because of the structure of the NCBI
Taxonomy, both clades are labeled as Homininae in the Compara trees. To remedy this, we identified all
clades labeled Homininae that have no gorilla sequence and renamed them Hominini. We then calibrated the
trees by fixing the speciation nodes to the dates specified in the KMRR code, with the exception of Hominini
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and Homininae. These we set to 7 million years and 9 million years, drawing on the same TimeTree source
(42) that KMRR used. We used the chronos() function from the R package ape (43) for this calibration,
with the correlated model. See the SI Appendix for additional sensitivity analyses to time calibration. Some
trees could not be calibrated with these hard node constraints, and were discarded.

For each node in the remaining calibrated trees, we calculated the phylogenetic independent contrast for
Tau across its daughter branches with the pic() function in ape (43). We then collected the contrasts from
all trees into a single table, along with other annotations including whether the node is a speciation or
duplication event. This table, nodes_contrast, was then analyzed as described in the main text for the
presented plots and tests.

Levin et al. reanalysis

Levin et al. helpfully provided data and clarification on methods. We obtained the matrix of pairwise
scores that underlies their Figure 4d and confirmed we could reproduce their published results. We then
removed duplicate rows, applied the Wilcoxon test in place of the Kolmogorov-Smirnov test, and identified
ctenophores as overrepresented among the low outliers in the mid-developmental transition column. An
annotated explanation of these analyses is included in the git repository at https://github.com/caseywdunn/
comparative_expression_2017/blob/master/levin_etal/reanalyses.md .
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Supplementary Information

KMRR Analyses

Summary statistics

Table 1: Number of speciation nodes N with contrasts by clade
name.

Clade N
Euarchontoglires 4810
Mammalia 11136
Homininae 6101
Amniota 10930
Catarrhini 14024
Theria 11818
Hominini 8980

Table 2: Number of tips N for each species in trees that were used
to calculate the independent contrasts.

Species N
Gallus gallus 12893
Gorilla gorilla 15694
Homo sapiens 16112
Macaca mulatta 16664
Monodelphis domestica 14962
Mus musculus 16088
Ornithorhynchus anatinus 16324
Pan troglodytes 15273

Investigation of potential ascertainment bias

While the age of speciation nodes is constrained, duplication nodes can be much older and therefore have
a wider range of ages (SI Appendix, Figure 5A). This is because many gene duplication events are older
than the most recent common ancestor of the species in the study. There are also technical factors that can
lead to an excess of duplication events deeper in the tree. Gene tree estimation errors, for example, tend
to lead to the overestimation of deep duplications (44). If independent contrast values also tended to to be
lower at greater node depth, it could interact with the preponderance of duplications at greater depth to
create a pattern of lower contrasts associated with duplication events. To test for such an effect, we remove
duplication nodes that are older than the oldest speciation node. The general results are unchanged and this
reduced dataset does not reject the null hypothesis that the rate of evolution following duplications is the
same as or less than the rate following speciation (SI Appendix, Figure 5B).

The independent contrast across a node is the amount of change observed between the daughter notes, scaled
by the expected variance (2). The expected variance is principally determined by the lengths of the branches
leading from the node to these daughters. The shorter the total length of the two branches leading to daughter
nodes, the larger the contrast for a given observed difference. This is because the same difference across a
shorter total branch length indicates a greater rate of evolutionary change. The expected variance of contrasts
for speciation nodes is constrained by the branch lengths on the species tree, but the expected variance of
contrasts for duplications has a much wider range (SI Appendix, Figure 5C ). This could lead to biases if the
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Figure 4: One of the gene trees from the phylogenetic analysis. The value of Tau (expression specificity)
is indicated by the sizes of the circles at the tips of the tree. Whether an internal node is a speciation or
duplication is indicated by color. Speciation nodes are labeled by clade name. Branch lengths are scaled to
time. The blue number is the independent contrast for each node.

lengths of branches that descend from duplication nodes tend to be overestimated. We therefore examined
only the contrasts that fell within in the range of expected variance seen for speciation contrasts, excluding
duplication contrasts that fall outside of this range. This reanalysis does not reject the null hypothesis either
(SI Appendix, Figure 5D), indicating that branch length bias is not responsible for the result.

Investigation of sensitivity to calibration times

We examined the sensitivity of our results to the specification of calibration dates for the speciation nodes.
In 10 reanalyses, we drew a new date for each calibration from a normal distribution with the mean of the
original date and a standard deviation 0.2 times the original date. If any daughter nodes became older than
their parent, we repeated the sampling until the dates were congruent with the topology. The minimum
Wilcoxon p in these reanalyses was 1, i.e. none of them reject the null hypothesis that the rate of evolution
of Tau is greater following duplication events than speciation events. This is consistent with the analysis that
uses the calibration dates as specified, indicating that our results are robust to the selection of calibration
times for speciation nodes.

Origin of pairwise correlation plot structure

Relationship between Tau and maximum expression

KMRR (13) Figure 3 differs from their other analyses in that it presents independent changes in expression
between triplets of genes. Each triplet has two paralogs that arose from a duplication event and one
unduplicated homolog. They find that there is a tendency for the paralog with the lowest expression to
have the highest Tau. From this they conclude that following duplication there is a common trajectory
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Figure 5: Investigation of possible ascertainment biases. (A) Magnitude of independent contrasts plotted
against node age. Speciation nodes are calibrated to particular times, whereas duplication nodes have a wider
range. (B) Difference between density distributions of contrasts for only the nodes that have an age less than
or equal to the maximum age of speciation nodes. (C ) Magnitude of independent contrasts plotted against
expected variance, which is largely determined by branch lengths. Contrasts for speciation nodes have a
narrower range of expected variance than do contrasts for duplication nodes. (D) Difference between density
distributions of contrasts for only the nodes that have expected variance within the range of contrasts across
speciation nodes.
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Figure 6: Origin of pairwise correlation plot structure. (A) Each speciation and duplication node in the
COMPARA trees is annotated with a clade name, and the age of that clade (shown on the x axis) is used as
the age of the pairwise comparisons (Figure 2 A, C, E, KMRR (13) Figure 2). The clade ages have a clear
correspondence to the speciation node ages (red). Duplication (blue) ages for nodes assigned to the same
clade, however, have large variation in calibrated node age (y axis). This means that summaries of expression
differences across duplication events represent evolutionary changes that occurred over a wide range of time
scales. (B) When duplication nodes whose calibrated node age deviates more than 10% from their annotated
clade age are removed from the data simulated under the null distribution, duplication comparisons no longer
have a uniformly lower expression correlation than speciation comparisons.
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Figure 7: Genes with higher maximum observed expression tend to have lower Tau. The blue line is the
linear model for the relationship between the two.
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of evolutionary change, where one paralog evolves to have lower expression and also become more tissue
specific. There is, however, a negative relationship between Tau and maximum expression across all genes
(SI Appendix Figure 7, r2 = 0.14, slope = −0.0519, p = 0). A simpler explanation for their plot is that it
reflects the global tendency for Tau to decrease with maximum expression. The null expectation for any two
genes sampled at random is for one to have higher maximum expression and lower Tau, and the other to
have lower maximum expression and higher Tau. This global pattern could be due to both biological factors
and the technical details of how Tau is calculated.
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Software versions

This manuscript was computed on Thu May 04 20:38:30 2017 with the following R package versions.

R version 3.3.3 (2017-03-06)
Platform: x86_64-apple-darwin13.4.0 (64-bit)
Running under: macOS Sierra 10.12.4

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] parallel stats graphics grDevices utils datasets methods
[8] base

other attached packages:
[1] ggrepel_0.6.5 phytools_0.5-64 maps_3.1.1 geiger_2.0.6
[5] gridExtra_2.2.1 digest_0.6.12 ape_4.1 stringr_1.2.0
[9] magrittr_1.5 dplyr_0.5.0 purrr_0.2.2 readr_1.1.0

[13] tidyr_0.6.1 tibble_1.2 tidyverse_1.1.1 hutan_0.0.0.9000
[17] ggtree_1.7.10 ggplot2_2.2.1 treeio_0.99.11 devtools_1.12.0

loaded via a namespace (and not attached):
[1] Rcpp_0.12.10 subplex_1.2-2
[3] lubridate_1.6.0 msm_1.6.4
[5] mvtnorm_1.0-6 lattice_0.20-35
[7] assertthat_0.1 rprojroot_1.2
[9] psych_1.7.3.21 R6_2.2.0

[11] plyr_1.8.4 backports_1.0.5
[13] evaluate_0.10 coda_0.19-1
[15] highr_0.6 httr_1.2.1
[17] lazyeval_0.2.0 readxl_0.1.1
[19] phangorn_2.1.1 combinat_0.0-8
[21] Matrix_1.2-8 rmarkdown_1.4
[23] labeling_0.3 splines_3.3.3
[25] foreign_0.8-67 igraph_1.0.1
[27] munsell_0.4.3 broom_0.4.2
[29] numDeriv_2016.8-1 modelr_0.1.0
[31] mnormt_1.5-5 htmltools_0.3.5
[33] expm_0.999-1 codetools_0.2-15
[35] quadprog_1.5-5 withr_1.0.2
[37] MASS_7.3-45 grid_3.3.3
[39] nlme_3.1-131 jsonlite_1.3
[41] gtable_0.2.0 DBI_0.6
[43] scales_0.4.1 stringi_1.1.3
[45] reshape2_1.4.2 scatterplot3d_0.3-38
[47] xml2_1.1.1 rvcheck_0.0.8
[49] fastmatch_1.1-0 deSolve_1.14
[51] tools_3.3.3 forcats_0.2.0
[53] hms_0.3 plotrix_3.6-4
[55] survival_2.41-2 yaml_2.1.14
[57] colorspace_1.3-2 rvest_0.3.2
[59] memoise_1.0.0 animation_2.4
[61] clusterGeneration_1.3.4 knitr_1.15.1
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[63] haven_1.0.0
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