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Abstract 

Category learning  is a critical  neurobiological function that allows organisms to simplify 

a complex  world.  Rostrolateral prefrontal cortex (rlPFC)  is often active  in neurobiological 

studies of  category  learning; however, the specific  role this region serves  in category  learning 

remains uncertain.  Previous category learning studies have hypothesized  that the rlPFC  is 

involved in switching between rules, whereas others have emphasized  rule abstraction  and 

evaluation. We aimed  to clarify  the role of  rlPFC  in category  learning and dissociate  switching 

and evaluation  accounts using two common types of  category  learning tasks: matching  and 

classification. The matching  task involved matching  a reference  stimulus to one of  four  target 

stimuli. In  the classification  task, participants  were shown  a single stimulus and learned  to 

classify it into one of  two categories.  Matching and classification  are similar  but place  different 

demands on switching and evaluation.  In  matching, a rule can be known  with certainty  after a 

single correct  answer.  In  classification, participants may need to evaluate  evidence for  a rule 

even after an initial  correct response.  This critical  difference allows isolation  of  evaluative 

functions from switching functions. If  the rlPFC  is primarily  involved in switching between 

representations, it should cease to be active  once participants  settle on a given rule in both tasks. 

If  the rlPFC  is involved in rule evaluation,  its activation  should persist in the classification  task, 

but not matching.  The results revealed  that rlPFC  activation  persisted into correct  trials in 

classification, but not matching,  suggesting that it continues to be involved in the evaluations  of 

evidence for  a rule even after participants  have arrived at the correct  rule. 
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Highlights 

● Differences between rule-based matching  and classification  tasks were highlighted. 

● Rostrolateral prefrontal cortex is involved in evaluation  of  evidence for  a rule in 

rule-based category  learning tasks. 

 

1. Introduction 

Friend or  foe? Predatory or  prey? Edible  or  poisonous? Category learning  is a 

fundamental cognitive capacity that is critical  for  survival. Grouping  objects into categories 

allows organisms to generalize  information to novel examples  and make inferences  about their 

characteristics. For  example, having the category  bird can help a person  identify  new  species 

they have never seen before as  birds, and make predictions  about their biological  features. As  a 

complex cognitive function, many brain regions are involved in category  learning including the 

prefrontal cortex (PFC),  medial  temporal lobes, striatum,  and visual cortex (Ashby  & Maddox, 

2005, 2011; Poldrack & Foerde, 2008; Seger & Miller, 2010; Smith & Grossman,  2008). 

Although there are many types of  category  learning, one of  the most studied types in 

cognitive neuroscience is rule-based category  learning. In  rule-based category  learning, people 

learn a logical  rule that can be used  to determine  whether items  are members of  the category  or 

not. Many  real world  categories  are associated  with logical,  albeit imperfect, rules. For  example, 
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members of  the category  bird can often be categorized  based on whether they fly and lay eggs. 

Broadly speaking, rule-based categorization  is thought to depend upon executive  cortico-striatal 

loops that connect  the PFC  and the head of  the caudate  nucleus (Alexander et al., 1986; Seger & 

Miller, 2010).  Although early work  with patients  and fMRI  tended to treat  the PFC  as  being 

involved in executive  functions as  a whole (Konishi et al., 1998, Robinson et al., 1980),  recent 

work  in cognitive neuroscience has  begun to test whether specific  subregions  of  the PFC  serve 

distinct mechanisms (Seger, 2008; Seger & Miller, 2010; Ma  et al., 2016). 

One  critical PFC  region that has  thus far eluded a thorough explanation  in terms of  its 

role in category  learning is the lateral  parts of  the fronto-polar cortex, also known  as  the 

rostrolateral prefrontal cortex ( rlPFC ).  The rlPFC  is known  to be involved in a broad array of 

higher-level cognitive functions including  abstract symbolic reasoning and analogical  problem 

solving ( Green et al., 2006; Specht et al., 2009),  relational  category learning (Davis  et al., 2017), 

and goal-directed  reward learning  ( Spreng  et al., 2010).  It is often described as  a seat of  human 

reasoning powers  as  it is significantly  larger in humans than other primates,  and its development 

across  childhood tracks the development  of  fluid reasoning capacities  ( Gogtay et al., 2004; 

Semendeferi et al., 2011). 

In  humans, increased  rlPFC  activation is often observed for  rule-based tasks involving 

abstract symbolic ( Specht et al., 2009)  or  relational  reasoning (Davis  et al., 2017; Gray  et al., 

2003; Wendelken  & Bunge,  2009 ).  The rlPFC ’s  precise mechanistic  role in these tasks has  been 

described in a number of  different  ways.  One  characterization of  the rlPFC  focuses  on switching 

between representations.  For  example, the rlPFC  has  been found  to be more active  when 

participants  switch between cognitive  sets in rule-based tasks (Konishi et al., 1998, 2002; 
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Monchi et al., 2001; Strange et al., 2001; Liu et al., 2015),  in tasks requiring switching between 

internally focused and externally  focused attention  (Burgess  et al., 2007),  and in reward learning 

tasks when  exploring the values of  different  choices (Daw  et al., 2006).  

Other studies of  rlPFC  function have focused on its role in forming abstract  symbolic rule 

representations and testing  and evaluating  such  rules (Badre & D'Esposito,  2009; Vendetti  & 

Bunge, 2014; Wendelken  et al., 2012).  Classic examples  of  the rlPFC’s  involvement  in symbolic 

rule use  include  its stronger engagement  for  rules requiring higher-order relational  integration 

(rules that integrate  over multiple  lower-order relationships)  in tasks akin to Raven’s progressive 

matrices (Christoff et al., 2001; Kroger  et al., 2002),  and tasks requiring participants  to answer 

whether such  a higher order relation  is present in a stimulus (Bunge et al., 2009; Nee et al., 

2014).  More  recently, the rlPFC  has  also been found  to be engaged in the incremental  learning of 

rules across  trials (Badre et al., 2010; Davis  et al., 2017).  In  these cases, the rlPFC  may not only 

be integrating  relationships within stimuli  to form rules, but also integrating  or  accumulating 

information across  trials to evaluate  evidence for  a rule and test how  it applies to new  stimuli. 

Indeed, in Davis  and colleagues  (2017),  the rlPFC  was  active early in learning  as  participants 

acquired a new  relational  rule, but then later  only on trials in which they needed to apply the rule 

to novel stimuli.  This evaluative  role in integrating  and accumulating  information for  a rule 

potentially connects the rlPFCs  role in rule learning  with recent  findings of  its engagement 

during meta-cognitive  judgments (Fleming  et al., 2012),  and may explain  why  the rlPFC  is often 

active during learning  of  rules that do not strictly  involve higher-order relational  integration 

within a stimulus or  trial  (e.g., Seger & Cincotta,  2006; Liu et al., 2015). 

To test the distinction  between rule switching and evaluation  accounts of  rlPFC  function, 
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we  compared activation during two commonly  used  rule-based tasks from the category  learning 

literature — matching and classification  tasks. Matching tasks, like the Wisconsin Card Sorting 

Test (Heaton, 1993),  involve matching  a multidimensional  reference stimulus to a set of  target 

stimuli that each match  the reference  on a single dimension. There is a rule that determines 

which target  to match  the reference  to that is based on the stimulus dimensions. Participants  learn 

the matching  rule through trial  and error. For  example,  in the matching  task that we  used  in the 

present study, reference  stimuli were schematic  beetles that differed in terms of  their legs, tail, 

antennae, and mandibles.  Participants learned to match  these reference  stimuli to target  beetles 

by choosing different  candidate targets and receiving  feedback. Often matching  tasks will cycle 

through a number of  rules forcing participants  to abandon rules and shift to a new  rule when  old 

rules cease to be useful.  

As  a neuropsychological measure, the primary process  of  interest  in matching  tasks like 

the Wisconsin Card Sorting Test is the process  of  shifting between cognitive  sets to 

accommodate novel rules and suppress  the previously correct  rules. Consistent with the theory 

that the rlPFC  governs  representational  switching, results from a number of  neuroimaging 

studies have identified  activation in rlPFC  during trials in which the rule is switched (Konishi et 

al., 1998, 2002; Monchi et al., 2001; Strange et al., 2001; Liu et al., 2015).  However,  switch 

trials as  well as  the immediately  following trials in which the novel rule is being acquired  also 

place demands upon rule evaluation  mechanisms. Participants must not only switch between the 

previous and new  candidate  rule representations,  but also begin to test and evaluate  evidence for 

new  candidate rules. One  critical  aspect of  simple matching  tasks, like the Wisconsin Card 

Sorting Test, is that participants  gain some conclusive  information to evaluate  a rule on every 
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trial: if a choice  is wrong,  a candidate rule can be eliminated;  if a choice  is correct,  the rule is 

known  with certainty.  This aspect of  matching  tasks means that evaluation  of  evidence for  a rule 

and switching are strongly intertwined  because participants  will switch rules whenever they are 

wrong  (Konishi et al., 1998; Monchi et al., 2001)  and quit evaluating  new  information once they 

are correct.  Thus, for  participants performing rationally,  every possible switch trial  is also a trial 

in which new  information  is being obtained  and evaluated . Likewise, every trial  that provides 

new  information about the rule is a trial  in which the participant  has  switched the rule they are 

using. 

We contrast matching  tasks with another common type of  rule-based category  learning: 

classification tasks. In  classification tasks, participants learn a rule that allows them to sort 

multidimensional stimuli into two or  more categories  based on trial  and error. When the rule is 

based on a single dimension, classification  tasks involve very similar  mechanisms to 

single-dimension matching tasks like the Wisconsin Card Sorting Test. Participants  test 

candidate rules, update their candidate  rules based on feedback,  and maintain  rules in working 

memory once they have arrived at them. Indeed, because of  this overlap in processing 

requirements, many neurobiological  theories of  category  learning assume that matching  and 

classification tasks have strong overlap in terms of  the systems involved in acquiring  and storing 

new  rules and use  results from both types of  tasks interchangeably  (e.g., Ashby  & Maddox, 

2005).   However,  classification tasks differ from matching  tasks critically in requiring more 

extensive cross-trial evaluation  of  evidence for  a rule, while otherwise keeping the demands on 

representational switching constant.  

In  classification tasks, participants are shown  single examples  of  stimuli and learn, using 
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trial-and-error, to classify the stimuli  into one or  more categories  based on the stimulus 

dimensions. Psychologically,  as  in matching  tasks, participants must evaluate  evidence for  the 

correct rule by switching their attention  between different  stimulus dimensions to test various 

candidate rules across  trials. Also,  like matching  tasks, it is possible to eliminate  a particular  rule 

based on feedback  in a single trial  — if a participant  tries the rule “thick  legs = Category A”, 

incorrect feedback will tell  them that they need to switch the rule they are using and eliminate 

this rule. However,  individual  correct trials in classification  tasks contain less information about 

the correct  rule than in matching  tasks. From an optimal  observer standpoint, a single trial  in a 

matching task can tell  whether a rule is correct  or  incorrect, however, even when  behaving 

optimally,  on average, even several correct  trials in a classification  task can leave  potential 

candidate rules to decide  amongst (see Figure 1 for  an illustration  of  evaluative demands in the 

tasks).  This optimal  observer perspective  suggests  that some intrinsic  uncertainty about the rule 

should remain  even after participants  begin getting  trials correct. 

Of  course, participants in classification  tasks rarely perform like an optimal  observer. 

Instead, extensive  research suggests  that participants  in classification  tasks use  a 

win-stay-lose-shift strategy where they will not switch from a rule when  they are getting  correct 

feedback and will only switch to remaining  candidate rules when  they get negative  feedback 

(Shepard et al., 1961; Nosofsky,  Palmeri,  and McKinley, 1993; Wilson & Niv, 2011; Niv et al., 

2015).  Likewise, they will not tend to eliminate  rules based on all of  the information  they have 

encountered (as  the optimal  observer in Figure 1 does),  and instead will eliminate  rules 

sequentially. Together with the optimal  observer perspective,  participants’ tendencies to not 

switch rules while they are getting  trials correct  suggests  a critical asymmetry between matching 
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tasks and classification  tasks that can be harnessed to isolate  evaluation processes  from 

switching. Specifically,  because uncertainty  will remain  regarding the true rule even after 

participants  begin getting  trials correct,  but subjects will not switch rules while getting  items 

correct, we  can isolate  trials in which they continue  to evaluate  evidence for  a rule but do not 

switch between rules. 
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Figure 1. Examples of  matching (A)  and classification tasks (B)  and how  rules are eliminated  in 

both tasks. In  matching  tasks, when  the rule is correctly  selected, all other rules are eliminated. 

Contrastingly, in classification  tasks, even if a correct  rule is selected  initially, from an optimal 

observer’s  standpoint, several additional  trials may be necessary to rule out other rules that are 

possible given the history of  stimulus-category  pairings participants  have seen up to that point. In 

both of  these cases, participants  have arrived at the correct  rule dimension (“legs” in bold) on the 

first trial  of  the depicted  sequence. In  matching,  a single instance  of  correct feedback establishes 

that “legs” are the rule-dimension.  In  classification, although the participant  may start out using 

the legs rule, they may only fully eliminate  other possible rules that are consistent with the 

stimulus history after a number of  correct  trials. For  example,  if in the first trial  the participant 

chooses  category ‘A’  for  the thin legged beetle  and gets correct  feedback, all rules will still  be 
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under consideration.  When an optimal  observer chooses  the same category  for  the thin legged 

beetle on the second trial  and receives  correct feedback, only the rules “pointy tail  = ’A’;  thick 

antennae = ‘A’;  and bisected  mandibles = ‘A’”  become  active. They only become  eliminated 

after the optimal  observer encounters variations  of  the “thin legs = ‘A’”  rule, in which these 

candidate rules do not also hold. 

 

To test how  differences  in evaluation  demands between matching  and classification  tasks 

impact rlPFC  activation, we  had participants  complete the matching  and classification  tasks 

using schematic  beetle stimuli. In  both tasks, participants  would iteratively learn rules via trial 

and error. Once rules were learned  (defined by four  correct  trials in a row)  the rule would switch 

and the participant  would begin learning  a new  rule. For  each rule there was  therefore  a rule 

learning phase, when  participants  were narrowing down  and switching between rules, and a brief 

rule application phase, in which participants  were using the final rule that they have arrived at 

(Figure 2).  

 

Figure 2. An  example of  how  the rule learning  and rule application  phases  were separated  for 

analysis. The last four  or  more contiguous correct  trials were labeled  as  rule application.  In  this 

phase participants  applied a final rule they had learned.  All trials before the final four  contiguous 

correct trials were labeled  as  rule learning. 
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The different  accounts of  rlPFC  function can be used  to make predictions  for  the rule 

learning and application  phases.  If  the rlPFC  is primarily  involved in switching, it should only be 

active during the rule learning  phases  of  both matching  and classification  tasks, when 

participants  are trying different  rules and switching between them. Contrastingly,  if the rlPFC  is 

involved in evaluation , it should be active  not only during the rule learning  phase of  both tasks, 

but also during the rule application  phase for  classification  when  participants have arrived at the 

correct rule, but are still  evaluating evidence in support of  it. Because rule evaluation  is not 

necessary during matching  once the correct  rule is found,  rlPFC  should not be active  during the 

application phase of  the matching  task. 

To foreshadow  our  results, we  found  evidence  consistent with the rule evaluation 

hypothesis. The rlPFC  was  more active  in the classification  task than the matching  task during 

both the rule learning  and rule acquisition  phases,  suggesting that the rlPFC’s  role extends 

beyond when  participants  are switching between rules in rule-based category  learning tasks. 

2. Method 

2.1. Participants 

Twenty-seven participants  were recruited  from the Texas Tech University community  via 

an electronically  posted announcement.  Participants were required to be at least 18 years of  age, 

right-handed, have a minimum  of  an eighth grade education,  speak English fluently,  and not 

have any contraindications  for  MRI  research. Participants  were compensated  with $35 for  the 

study. Two  participants fell asleep during their scanning session  and therefore  were removed 

from the further analyses. One  participant  opted out from the last two scanning runs,  but the rest 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 30, 2017. ; https://doi.org/10.1101/107110doi: bioRxiv preprint 

https://doi.org/10.1101/107110
http://creativecommons.org/licenses/by/4.0/


RO STROLATERAL PREFRONTAL  CORTEX IN  CATEGORY  LEARNING 
13 

of  their data were used  in the analyses. The study was  approved by Human Research Protection 

Program at Texas Tech University. 

2.2. Stimuli and  Procedure 

Participants were asked to sign a consent form, MRI-safety checklist  and complete  a 

computer-based tutorial. The participants  were informed that the rules would be based off  of  the 

four  different features of  the stimuli,  about switching rules after several consequent correct  trials 

(to minimize  anticipation of  a new  rule, we  did not tell  them after how  many trials the rule will 

be switched), and were told each rule would be based on a single feature.  Participants completed 

example trials and a brief test to examine  their understanding of  instructions,  and they were 

allowed to ask  questions if they were confused about any procedures. Upon  completion  of  the 

screening forms  and the tutorial,  participants were placed  into the scanner. In  the scanner, 

participants  completed four  runs  of  the matching  task and four  runs  of  the classification  task in 

an order that was  balanced  across  participants. 

Two  tasks, matching and classification,  utilized sixteen images of  schematic  beetles 

representing all possible combinations  of  the following four  binary feature  dimensions: legs 

(thick or  thin), mandibles  (closed or  bisected),  antennae (fuzzy or  dotted), and tail  (pointy or 

round; see Figure 3 for  two examples  with opposite features). For  both tasks, the sixteen stimuli 

were presented in sequential  randomized blocks. In  a randomized  block, a participant  would go 

through all sixteen stimuli  in a random order before seeing any of  the same stimuli  again. With 

this randomization,  it was  possible for  as  many as  all of  the features to change from trial-to-trial, 

or  as  few  as  zero, if the last stimulus of  a randomized  block and the first stimulus of  the next 

block were the same. 
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Figure 3. Stimuli of  schematic beetles with completely  distinct feature dimensions. The feature 

dimensions were legs (thick or  thin), mandibles  (closed or  bisected),  antennae (fuzzy or  dotted), 

and tail  (pointy or  round). 
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In  the matching  task, each screen contained  a reference  beetle and four  target  beetles, 

each of  which matched  the reference  beetle on a single dimension (see Figure 4).  The position of 

the beetles  on the screen was  randomized  to minimize  effects of  feature  salience and balance 

motor responses.  

 

Figure 4. Example of  the matching  task. Participants  saw  a reference beetle on the bottom  and 

four  target beetles on top. The target  beetles each matched  the reference  beetle on a single 

feature. Participants would select  a target  beetle and then receive  feedback about whether their 

choice was  correct or  incorrect. 
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In  the classification  task, each screen contained  a single beetle  (see Figure 5).  The beetles 

were assigned into category  A  or  B, based on a random rule, defined by a single feature.  

 

Figure 5. Example of  the classification  task. Participants  saw  a single beetle  on the screen and 

were asked to categorize  it as  a member  of  Category A  or  B. After participants  made the choice, 

they were given feedback  about whether their choice  was  correct and the correct  category label.  

 

In  both tasks, participants  had 3.5 seconds  to categorize  a stimulus using a button box 

held in their right hand. After a brief fixation  (1,  2, or  3s; mean = 2s),  participants  were provided 

with feedback  for  2s,  during which the beetle  was  presented again along with a message 

“Correct/Incorrect/Failed to respond” in the matching  task or  “Correct/Incorrect/Failed  to 
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respond.” and “The correct  category is A/B” in the classification  task. After the feedback,  a brief 

fixation was  presented (1,  2, or  3s; mean = 2s).  Upon  achieving  a termination  criterion of  four 

correct answers  in the row,  the rule was  switched to a new  randomly selected  rule. When a run 

was  completed, participants were presented with a number of  correctly  solved rules during the 

run  (i.e., “You  successfully learned  [number] categories!  Good  job!”). Participants  had 

thirty-two trials in each run  and eight runs  total  (four  runs  in a block for  each task), followed by 

an anatomical  scan. After the scan, participants  were thanked, compensated  and dismissed from 

the study.  

2.3. fMRI  Data  Acquisition 

The data were collected  at Texas Tech Neuroimaging  Institute using a Siemens Skyra  3T 

scanner with a 20-channel  head coil. A  T1-weighted  sagittal MPRAGE  was  obtained with TR = 

1.9s,  TE = 2.49, flip angle = 9, matrix  of  256x256, field of  view = 240, slice thickness= 0.9 mm 

with a gap of  50%,  1 slice. T2-weighted  BOLD  echo planar images (EPI)  were obtained  with 

TR=2s, TE=30ms, flip angle = 90, matrix  = 64x64, field of  view = 192, slice thickness = 4 mm, 

35 ascending axial  slices, 156 volumes in each scanning run.  The slice prescription  was  tilted off 

of  parallel with AC/PC  to reduce susceptibility  artifact in orbital  frontal cortex (Deichmann  et 

al., 2003). 

2.4. fMRI  Data  Preprocessing and  Analysis 

MRI  data preprocessing included  the following steps: DICOM  imaging  files were 

converted to NifTI files using dcm2nii  from the Mricron software package  (Rorden & Brett, 

2000).  Skulls were removed using the BET tool (Smith, 2002)  from FSL  software package 

(Jenkinson  et al., 2012; Woolrich  et al., 2009)  for  the BOLD  EPI images and ANTs  ( Avants  et 
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al., 2009)  with OASIS  template (Avants  & Tustison, 2014)  for  the T1 anatomical  images. 

Motion correction  was  carried out using a 6-DOF  affine transformation  implemented in FSL’s 

MCFLIRT tool ( Jenkinson et al., 2002).  Data were smoothed with an 8 mm FWHM  Gaussian 

kernel based on the standard criterion  of  two times the voxel size (Poldrack et al., 2011)  and 

high-pass  filtered (100s  cut off).  Finally,  data were manually  checked for  quality issues  such  as 

visual spikes  produced by the scanner, incorrect  brain extraction,  and excessive motion.  The 

quality check revealed  visual artifacts  in the first run  for  four  participants,  and these runs  were 

thus excluded  from further analysis.  

Functional MRI  data analysis was  carried  out using a standard three-level  analysis in 

FSL’s  FEAT, as  implemented in Nipype ( Gorgolewski  et al., 2011).  The first-level  analysis 

consisted of  prewhitening  using FSL’s  FILM  ( Woolrich et al., 2001)  to account  for  temporal 

autocorrelation, task-based regressors  (see below) convolved with double-gamma  hemodynamic 

response,  and their temporal  derivatives. Additional confound regressors  of  no interest included 

six motion  parameters, their temporal  derivatives and regressors  for  scrubbing high motion 

volumes exceeding  a framewise displacement  of  0.9mm (Siegel, et al., 2014).  The same high 

pass  filter setting that was  used  to process  the fMRI  data was  used  to process  the design matrix. 

First-level  statistical maps were registered  to a standard space in a two-stage registration 

consisting of  (1)  registration  of  each BOLD  timeseries  to respective  participants’ T1 MPRAGE 

using the BBR algorithm  ( Greve & Fischl, 2009)  and (2)  registration  of  the T1 to the standard 

space (MNI-152  brain template)  using nonlinear  ANTs  registration ( Avants  et al., 2009). 

Second-level analysis combined  across  runs  within a participant,  and was  carried out using a 

fixed effects model in FLAME  ( Beckmann  et al., 2003; Woolrich  et al., 2004; Woolrich,  2008). 
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Second-level regressors  included task type (matching  vs.  classification).  

Third-level mixed effects analyses, treating  participant as  a random effect,  examined 

whether first and second-level  contrasts were significant  across  participants using a permutation 

test, implemented  in FSL’s  Randomise function ( Winkler  et al., 2014).  This permutation  test is a 

non-parametric approach to group-level  analysis and multiple  comparison correction  that 

estimates the null distribution  of  cluster sizes from permutations  of  the data, alleviating  recently 

publicized  concerns about the accuracy  of  the parametric  approximations underlying Gaussian 

Random Field Theory (Eklund et al. 2016).  The final thresholding of  statistical  maps at p < 0.05 

was  done via a cluster mass correction  (Bullmore et al., 2000),  with a primary/cluster-forming 

threshold of  t (24)=2.49, p < 0.01, one-tailed,  and variance  smoothing set at 8 mm. For  a priori 

ROI  analysis within the fronto-polar mask, we  used  the same cluster-mass based thresholding, 

but confined the analysis to the smaller  volume.  

All trials in both tasks were divided into either  a rule learning  phase in which participants 

were acquiring  the correct  rule or  a rule application  phase in which participants  had acquired  the 

rule and were applying it (see Figure 2 for  an example  of  the phases  for  the classification  task). 

In  the matching  task, all correct  trials were considered as  rule application  trials due to the nature 

of  the task, and all incorrect  trials as  rule learning.  In  the classification  task only the last four  or 

more continuous correct  trials were considered as  rule application,  and the rest of  the trials as 

rule learning.  More  than four  correct  trials in a row  in which subjects used  the same rule could 

occur in the classification  task, even with the rule being programmed  to switch after four  correct. 

Specifically, due to our  use  of  random blocks of  stimuli,  there were cases where the old rule 

could continue  to work  temporarily after a switch because stimuli  would have features consistent 
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with the same category  response  (A  or  B) in both the new  and old rule.  For  example,  if the 

previous rule was  ‘thick legs = category  A’  and the new  rule was  ‘thick antennae  = category  A’ 

then sometimes  participants might see stimuli  that had both of  those dimensions, and thus the old 

rule would continue  to work.  Because participants  would not know  the rule had switched until 

they received  negative feedback, we  included any trials that were correct  and consistent with the 

old rule in the application  phase, and the new  rule was  marked as  starting on the next incorrect 

feedback.  

The following task-based regressors  (explanatory  variables; EVs)  were used  in the 

level-1 model: (1)  stimulus presentation  (onsets)  for  rule application  trials, (2)  onsets for  rule 

learning trials, (3)  onsets for  trials when  participants  did not answer,  (4)  correct  feedback, (5) 

incorrect feedback, and (6)  feedback  for  trials when  participants  did not answer.  These EVs  were 

compared in the following contrasts: (1)  rule application  versus  baseline, (2)  rule learning  versus 

baseline, and (3)  rule application  versus  rule learning.  Each contrast was  tested in both directions 

(e.g., task > baseline  and baseline  > task). The baseline  (fixation) was  implicitly modeled as  the 

intercept, and thus task-based parameter  estimates were interpreted  as  change in activation  for 

task relative  to the baseline.  Statistical maps describing the results of  these contrasts were 

thresholded to correct  for  multiple comparisons at the whole-brain level  and within an a priori 

frontal pole mask (ROI),  which was  defined as  the max-probability  frontal pole region from the 

Harvard-Oxford  atlas included  in FSLView  (Desikan, et al., 2006).  

To test if activation  of  the rlPFC  may be attributed  to difficulty  or  time-on-task 

differences, we  included a second version of  the level-1  analyses, controlling  for  trial-by-trial 

reaction times as  a separate  EV,  and testing the same contrasts as  described above.  
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3. Results 

3.1. Behavioral results 

To examine  how  number of  rules solved and trials to the rule termination  criterion 

differed between task types, we  used  a Poisson  mixed effects model from the lme4 package 

(Bates et al., 2015)  and a mixed effects Cox regression survival model from the Coxme package 

(Therneau, 2015)  in R (R Core Team,  2014).  Consistent with the assumption that the 

classification task placed  more demands on rule evaluation  over trials than matching,  participants 

solved more rules during matching  ( M = 15.6, SD  = 4.14)  than during the classification  task ( M  = 

9.92, SD  = 3.22),  z = 5.58, p  < .001. Likewise, participants  took fewer trials to reach a rule 

termination criterion in matching  ( M = 6.56, SD  = 4.67)  than in the classification  task ( M  = 

11.73, SD  = 7.56),  z  = 12.11, p  < .001. 

To test whether the tasks may have differed in time-on-task,  we  analyzed the reaction 

times from correct  trials during the application  phase with a mixed effects regression model, also 

from the lme4 package.  We found  that participants  took longer to complete  correct matching 

trials ( M  = 1.78 seconds,  SD  = 0.21)  than correct  classification trials ( M  = 1.29 seconds,  SD  = 

0.26),  likely due to the more complex  display and larger number of  response  options, t (24)  = 

9.59, p < .001. 

3.2. Imaging  results 

To examine  the neuroimaging  results, all trials were sorted into either  rule learning  or 

rule application  phases.  In  the matching  task, all correct  trials were considered as  rule application 

trials due to the nature of  the task, and all incorrect  trials were considered rule learning.  In  the 
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classification task only the last four  or  more contiguous correct  trials were considered as  rule 

application, and the rest of  the trials as  rule learning.  Trials when  participants  failed to respond 

were not included  in any phase. 

3.2.1. Rule learning and  rule application in the  matching task.  

Both the switching and rule evaluation  accounts of  rlPFC  function predict  that there 

should be greater  rlPFC  activation during the learning  phase of  the matching  task than during the 

application phase. The switching account  predicts greater  rlPFC  activation during the learning 

phase because participants  are switching between rules during rule learning  but not during rule 

application. The rule evaluation  account predicts predicts greater  rlPFC  activation during the 

learning phase because participants  will know  the rule with full certainty  and stop evaluating 

after a single correct  answer  is found.  Consistent with these accounts, we  found  a cluster in the 

rlPFC  ROI  that was  activated  more for  learning  than application  trials (Figure 6).  To verify that 

this difference  was  not due to difficulty  or  time-on-task, we  ran a second analysis showing  that 

this cluster remained  active when  controlling for  reaction times (Supplemental  Figure 1).  No 

significant activation for  the task vs  baseline  contrasts was  observed in rlPFC  for  the whole-brain 

or  the small-volume  corrected ROI  analysis. 
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Figure 6. Brain activations  in rule learning  > rule application  contrast in the matching 

task. The red box is included  to convey that the analysis was  restricted  to a small  volume (frontal 

polar cortex). 

 

Because we  did not find any whole brain or  ROI-based  activation  in the rlPFC,  to further 

elucidate the pattern  of  activation in the rlPFC  during the different  phases  of  the matching  task, 

we  extracted parameter estimates for  each phase from an unbiased ROI  based on the 

classification data. An  independent  ROI  was  used  to avoid selection  bias from the original 

contrast, which may magnify the size of  the difference  or  bias the direction  of  activation 

(Kriegeskorte et al. 2006).   This ROI  was  based on an 8mm sphere drawn  around the peak for  the 

rule application  versus  baseline contrast (MNI  coordinates:  x = -36,  y = 56, z = 4 mm).  
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As  Figure 7 illustrates, the rlPFC  is deactivated  relative to baseline  in the rule application 

phase for  matching,  consistent with the possibility  that this brain region may cease to contribute 

to categorization  performance once switching or  rule evaluation  are no longer needed. As  with 

the small  volume-corrected ROI  analysis, the difference  between mean parameter  estimates for 

rule learning  and application  in the rlPFC  was  significant,  t(24)  = 3.36, p  = .002.  

 

Figure 7. Mean parameter  estimates for  the matching  and classification  tasks taken from an 

rlPFC  ROI,  where an 8 mm sphere was  drawn  around the highest peak found  in the rule 

application > baseline  contrast for  classification  task (MNI  coordinates: x = -36,  y = 56, z = 4 

mm).  

 

Beyond the rlPFC,  additional  areas revealed  to be more active  during learning  than 

application in the matching  task included  parietal and lateral  occipital regions. These results are 
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consistent with other studies examining  activation during learning  phases  of  similar rule-based 

category learning tasks (Seger & Cincotta,  2006; Liu et al., 2015),  and are consistent with 

previous suggestions that the superior parietal  cortex is involved with cognitive  control functions 

during rule-based category  learning. Whole-brain results for  the opposite contrasts (rule 

application > rule learning)  were also consistent with previous findings from rule-based category 

learning studies (Seger & Cincotta,  2006; Nomura et al., 2007),  with greater  activation in the 

MTL (hippocampus and parahippocampal  gyrus)  during rule application.  Theories of  category 

learning suggest that the MTL is involved in the long-term  retention and retrieval  of  category 

information during category  learning (Ashby  & Maddox,  2011; Ashby  et al., 2011; Davis  et al., 

2012a, 2012b).  Additional  regions more active  for  rule application  included the ventromedial 

prefrontal cortex, a region we  have recently  identified as  being associated  with stronger decision 

evidence during categorization  (Davis  et al. 2017),  putamen,  parietal cortex, occipital  cortex, 

temporal cortex, and insular cortex (all brain maps and other project  details are posted on Open 

Science Framework at https://osf.io/ge8vf/ ). 

3.2.2. Rule learning and  rule application in the  classification task.  

In  the classification  task, we  did not find any significant  differences in rlPFC  activation 

between learning  and application  phases  in the whole-brain or  ROI  analysis. Looking further at 

comparisons between task and baseline,  we  found  that the rlPFC  was  significantly  activated 

relative to baseline  in both rule learning  > baseline  and rule application  > baseline  contrasts in 

both the whole brain and ROI  analyses (see Figure 7 for  the parameter  estimates in rlPFC; see 

Figure 8 for  the whole brain activations  in the classification  task; also see Supplemental  Figure 2 

for  the whole brain results, controlling  for  the reaction  time). Together, these results suggest that 
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the rlPFC  is engaged in a more evaluative  role that persists into the application  phase in the 

classification task. This result is inconsistent  with switching accounts because participants 

generally would not be switching rules once they have arrived at a rule that does  not result in 

negative feedback. However,  they may continue  evaluating confirmatory evidence for  their 

chosen rule because the rule is rarely known  with certainty  after the first correct  trial in the 

classification phase. 

Beyond the rlPFC,  similar  to the matching  task, parietal  and occipital  regions were 

activated in the rule learning  > rule application  contrast for  the classification  task. Additional 

areas that were more active  for  rule learning  than application  included the dorsolateral  PFC  (see 

Supplemental Figure 3),  which is thought to be involved in maintaining  and manipulating 

information in working  memory during rule-based categorization  (Monchi et al., 2001; Filoteo  et 

al., 2005; Seger & Cincotta,  2006),  and the cerebellum.  No  regions were significantly  more 

active in rule application  compared to rule learning  (rule application  > rule learning)  in the whole 

brain results. 
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Figure 8. Task vs  baseline comparisons for  the classification  task. Classification  > baseline 
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contrasts are in red-yellow and baseline  > classification  in blue.  

 

3.2.3. Comparing  rule learning in the  matching and  classification tasks.  

The rlPFC  was  more strongly activated  in the classification  task than in the matching  task 

during learning  (Figure 9)  in both whole brain and ROI  analyses. These results were not affected 

by controlling for  reaction time, suggesting that they are not due to time-on-task  or  difficulty 

differences between the task types (Supplemental  Figure 4). 

 In  addition to rlPFC,  occipital,  inferior parietal,  temporal, lateral prefrontal cortices, and 

cerebellum were more activated  for  classification compared to matching.  Occipital and superior 

parietal cortices as  well as  thalamus  were more active  during the rule learning  phase for 

matching than for  classification.  

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 30, 2017. ; https://doi.org/10.1101/107110doi: bioRxiv preprint 

https://doi.org/10.1101/107110
http://creativecommons.org/licenses/by/4.0/


RO STROLATERAL PREFRONTAL  CORTEX IN  CATEGORY  LEARNING 
29 

 

Figure 9. Brain activations  for  the classification  > matching  contrasts. Classification  > matching 
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contrasts are in red-yellow and matching  > classification  in blue.  

 

3.2.4. Comparing  rule application in the  matching and  classification tasks.  

The primary goal of  the current study was  to compare  rule evaluation  versus  switching 

accounts of  rlPFC  function. Because participants  quit switching rules during rule application  in 

both matching  and classification  tasks, but the classification  task often involves continued 

uncertainty and evaluation  of  evidence for  a rule, contrasting  rule application  during matching 

and classification  allows us  to isolate  rule evaluation  mechanisms. Consistent with the evaluation 

account, rlPFC  was  more active in the classification  task compared  to the matching  task. This 

difference was  significant for  the whole brain analysis ( p  = .048)  and a priori ROI  analysis ( p  = 

.01)  in both the main model, and remained  significant when  controlling for  reaction time 

(Supplemental Figure 4).  

In  addition to rlPFC,  there was  greater  activation in superior parietal,  temporal, and 

lateral occipital regions in the classification  task, and inferior parietal  and medial  occipital 

regions in the matching  task (see Figure 9 and Table  1 for  specific regions covered by the 

activated clusters). These brain regions overlap with those found  in the analyses restricted  to the 

classification and matching  phases,  and in the analysis examining  differences between 

classification and matching  during learning  described above.  

 

Table 1 
 
Rule application in the matching and classification tasks 

Cluster Region(s) Cluster 
Size 
(voxels), 
Cluster 

Local Maximum Region t-value MNI  coordinates 
(x,y,z) 
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p-value 

Matching > Classification 

Occipital Cortex 
Superior Parietal Cortex 
Cerebellum  

32910, 
p = .0002 

Lingual Gyrus 18.5 12 -74 -4 

Intracalcarine Cortex 18.5 10 -80 4 

Lingual Gyrus 16.0 -12 -76 -8 

Intracalcarine Cortex 15.7 -8 -82 2 

Classification  > Matching 

Occipital Cortex 
Posterior Parietal Cortex 
Temporal Cortex 

4263, 
p = .014 

 
 

 
 

Lateral Occipital Cortex, 
superior division 

7.01 -42 -68 46 

Supramarginal Gyrus, 
posterior division 

6.73 -48 -50 56 

Superior Temporal Gyrus, 
posterior division 

6.1 -62 -30 -2 

Supramarginal Gyrus, 
posterior division 

5.6 -60 -42 36 

Occipital Cortex 
Posterior Parietal Cortex 
Temporal Cortex 

2931, 
p = .024 

Angular Gyrus 6.47 60 -48 38 

Angular Gyrus 6.12 54 -50 50 

Middle Temporal Gyrus, 
temporooccipital part 

5.8 66 -46 -2 

Lateral Occipital Cortex, 
superior division 

5.51 52 -62 40 

Prefrontal cortex 
Frontal pole 

2037, 
p = .048 

Inferior Frontal Gyrus, pars 
triangularis 

4.88 -50 20 0 

Middle Frontal Gyrus 4.69 -46 12 46 

Frontal Pole 4.32 -40 54 4 

Middle Frontal Gyrus 4.23 -54 22 28 

Note:  Clusters  activated, their sizes, p-values, and peaks  for the rule application in matching > classification and 
classification > matching contrasts. Local maxima labels  are based on the Harvard-Oxford atlas. The coordinates  are 
in standard MNI space. The p-values  are taken from non-parametric tests  produced by Randomise tool in FSL.  
 
3.2.5. Relationship  between  rlPFC activation and  individual differences in rule application 

performance 

As  an additional piece of  evidence for  the evaluative  role of  the rlPFC,  we  also examined 

how  individual differences in rule solving performance  related to rlPFC  activation  in the 
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application versus  baseline contrast for  classification.  We focused specifically  on the application 

phase in classification  because it was  in this phase that our  optimal  observer framework 

suggested continued  evaluation demands, but how  much continued  evaluation demands there 

were could plausibly be related  to how  adept individual  participants were at solving rules. For 

this analysis, we  extracted  parameter estimates from the same rlPFC  ROI  as  described above for 

the matching  task and tested whether they were correlated  with individual  differences in numbers 

of  rules solved. We found  that rlPFC  activation  was  negatively correlated with number of  rules 

solved, r  = -0.34,  t (23)  = -2.07,  p  = .05 (Figure 10).  Given participants  with stronger 

performance should, on average,  behave more optimally,  and arrive at the rule application  phase 

with less uncertainty  and need for  continued  rule evaluation,  this result augments our  primary 

findings and suggests  that individual  differences in rule evaluation  abilities may drive differences 

in rlPFC  activation  between subjects. Specifically,  the worse  participants  are at narrowing down 

rules, the more uncertainty  they have when  arriving at the rule application  phase, and the more 

they continue  to rely on rule evaluation  mechanisms in the rlPFC. 
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Figure 10. Parameter estimates versus  number of  rules solved in the classification  task. 

Parameter estimates are taken from an rlPFC  ROI,  where an 8 mm sphere was  drawn  around the 

highest peak found  in the rule application  > baseline  contrast for  classification  task (MNI 

coordinates: x = -36,  y = 56, z = 4 mm).  

4. Discussion 

The goal of  the current study was  to compare  rule evaluation  and switching accounts of 

rlPFC  function in rule-based category  learning. The rlPFC  has  been established  as  a critical  brain 

region for  many higher-order cognitive  capacities, yet so  far theories of  category  learning have 

not fully established  a role for  the rlPFC . Based on the broader literature,  we  developed two 

contrasting accounts suggesting that the rlPFC  is involved in rule switching or  in the evaluation 

of  evidence for  a rule. We tested these contrasting  accounts by comparing  rlPFC  activation 

during rule-based categorization  tasks requiring either  matching or  classification learning. 
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Although often treated  as  the same, these two tasks place  different demands on rule evaluation 

mechanisms. In  matching tasks, a rule can be known  with certainty  after the participant  answers 

a single question correctly  and can be eliminated  with certainty  with every incorrect  answer. 

Therefore participants will tend to evaluate  evidence for  a rule on the same trials in which they 

switch between rules. This is not the case in classification  tasks, where eliminating  a rule can be 

accomplished in a single trial,  but it may be necessary to evaluate  evidence over several correct 

trials before a rule can be established  with full certainty.  Given this asymmetry  in switching and 

evaluation between matching  and classification  tasks, we  were able to isolate  evaluation 

mechanisms by comparing activation on trials in which participants  were applying a rule in 

matching and classification  tasks. Consistent with the hypothesis that the rlPFC  is involved in 

evaluation of  evidence for  a rule, we  found  that the rlPFC  remained  active during rule 

application in classification  learning, but was  not active  during rule application  in matching.  

The current results are consistent with other recent  studies revealing  rlPFC  involvement 

in category  learning. Seger and Cincotta  (2006)  and Liu et al. (2015)  found  the rlPFC  was  more 

active during rule learning  compared to rule application  in classification-like  tasks, and 

suggested the rlPFC  is a part of  a “cognitive”  cortico-striatal loop involved in rule-based 

categorization. The current findings are consistent with this hypothesis but go further in 

suggesting that there may be critical  differences between rule-based learning  tasks in terms of  the 

demands they place  on these rule evaluation  mechanisms. This is an important  finding as  results 

from matching  and classification  tasks have often been used  interchangeably  in the literature  on 

the neural basis of  categorization  (e.g., Ashby  & Maddox,  2005).  Our  findings suggest that some 

fundamental contrasts (e.g., rule application  vs.  learning) can differ markedly  between the types 
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of  rule-based task employed. 

4.1. Relationship  to  multiple learning systems  research 

By revealing  critical differences between types of  rule-based tasks, our  results fit well 

within the recent  multiple systems literature  that focuses  on between-task  differences in how 

neural learning  systems are recruited  (Ell et al., 2006; Nomura et al., 2007; Ashby  & Ell,  2001; 

Ziethamova et al., 2008; Schnyer et al., 2009; for  reviews, see Ashby  & Maddox,  2005 and Seger 

& Miller, 2010).  However,  it is important  to note that we  are not suggesting that matching  and 

classification involve wholly separate  systems, only that they differentially  load on these 

systems, leading  to system-level  differences in BOLD  activation. Future research attempting  to 

build a comprehensive  account of  the neural basis of  categorization  will need to take more care 

in considering commonalities  and differences  between types of  rule-based tasks. Consideration 

of  the demands of  particular  rule-based tasks may also be critical  for  neuropsychological 

assessment where matching  tasks, like the Wisconsin Card Sorting Test, are currently  popular 

but may not be as  diagnostic  of  frontal rule evaluation  processes  as  classification learning. 

One  possible multiple  learning systems extension of  the current work  is to examine 

differences between the current A/B classification  rules (participants  choose between category  A 

or  B) and rules requiring participants  to choose whether stimuli  are members or  not members of 

the category  (A/not-A) . A/not-A  rules are mathematically  identical to A/B rules (only the labels 

change), but surprisingly, previous multiple  learning systems research has  found  that these two 

types of  tasks may tap different  categorization processes  and neural systems (Casale & Ashby, 

2008; Zeithamova  et al., 2008).  Whereas A/B rules seem to recruit  brain systems consistent with 

the episodic memory retrieval,  A/non-A  may rely more on perceptual  memory systems. How 
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A/B vs  A/non-A  rule types may impact  rule evaluation  mechanisms in the rlPFC  is an open 

question. One  possibility  is that A/not-A  learning  may rely less on explicit  rule evaluation 

mechanisms due to more nonverbal perceptual  or  procedural strategy use  and thus may not 

recruit rlPFC  to the same extent  as  the A/B tasks we  use  here.  

4.2. Relationship  to  animal learning research 

The present results may also inspire future research on rlPFC  function in animal  models. 

Recent work  on rlPFC  function in animal  models has  demonstrated  a critical  role for  the rlPFC  in 

rapid, one-shot learning  of  rules, but not in application  of  well-learned rules ( Boschin et al., 

2015).  Our  matching results are consistent with this role of  rapid, one-shot rule learning  in that 

the rlPFC  was  engaged up until  participants learned the rule, but then activation  dropped to 

baseline during even early application.  However,  the classification  results suggest that the rlPFC 

may be engaged even as  participants  begin to apply the rule, if they need to evaluate  additional 

evidence for  the correct  rule (e.g., rule out remaining  alternatives). Putting these results together 

suggests  that rlPFC  can allow one-shot learning,  but whether it is engaged for  longer-term  rule 

acquisition depends on the demands of  the task. Future work  with animal  models on  the rlPFC 

function would benefit  from examining  tasks, like our  classification  task, where evidence  for  a 

rule must be accumulated  and integrated  across  trials. 

Comparing our  study to Boschin et al.’s (2015)  results from rule-learning  in macaques, 

one limitation  is that we  did not have any extended  application trials in which participants  were 

applying very well-learned  rules for  which they had already  achieved automaticity. Thus it is not 

possible, within the current data, to establish whether the rlPFC  would remain  more engaged for 

classification learning relative to matching,  or  if eventually  rlPFC  involvement would decrease. 
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Given the rapid shift in rlPFC  involvement  during matching,  where it was  active  during learning 

but declined  in activation  as  soon  as  participants began applying the rule, it is likely  that rlPFC 

activation would also decline  rather rapidly in classification  once the rule was  known  with 

certainty. This very brief role for  the rlPFC  would be consistent with Boschin’s findings from 

rule learning  in macaques  as  well as  other recent  studies examining  rlPFC  involvement in 

category learning. For  example, we  recently found,  in a relational  category learning task (Davis 

et al., 2017),  that rlPFC  activation  was  high early in learning,  but in later  test phases  was 

re-engaged only when  participants  needed to generalize  the rule to novel relational  examples, 

and not when  applying the rule to well-learned  examples. In  the future, it will be important  to 

test whether the rlPFC  exhibits  similar trajectories in basic rule-based classification  tasks. 

4.3. Toward  a general theory of  rlPFC function 

Outside of  the immediate  importance of  this work  for  research on rule-based category 

learning, the present study adds  to a growing  literature  on rlPFC  function in higher-level 

cognition. Just  as  it has  in category  learning, ascribing a single cognitive  function to rlPFC  has 

been difficult  due to its activation  in a wide range of  tasks (Duncan & Owen,  2000; Gilbert et al., 

2006).  For  example, the rlPFC  has  been found  to not only be involved in switching (Konishi et 

al., 1998, 2002; Monchi et al., 2001; Strange et al., 2001)  and abstract  rule evaluation  (Christoff 

et al., 2001; Kroger  et al., 2002; Vendetti  & Bunge, 2014; Wendelken  et al., 2012; Bunge et al., 

2009; Davis  et al., 2017; Nee et al., 2014),  but also in reinforcement  learning (Daw,  et al., 2006) 

and metacognition  (Fleming et al., 2012; 2014).  Perhaps  the best candidate  for  uniting across 

these disparate  areas of  cognition  comes from the hierarchical  control literature,  which suggests 

that the rlPFC  sits atop a rostro-caudal  gradient of  rule abstraction  ( Badre, & D'Esposito , 2007; 
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2009, Badre et al., 2010).  

In  much of  the previous research on hierarchical  control theory, participants  are given the 

rules to guide their behavior (e.g., Badre & D’Esposito, 2007)or  they learn them in single trials 

(e.g., in Raven’s-like  tasks).  In  these cases, the minimum  abstractness or  rule complexity  needed 

to follow or  solve the rule is related  to which part of  the PFC  is engaged, with the most abstract 

rules being processed in rlPFC.  Under  hierarchical  control theory, it is somewhat surprising that 

rules like those used  in our  tasks, or  metacognitive  evaluations of  purely perceptual  processes 

(Fleming et al., 2012; 2014),  would require the use  of  the rlPFC.  One  possibility  to reconcile 

these differences  within hierarchical  control theory is that the rlPFC  is involved whenever 

participants  use  rules that involve a structured predicate-argument  representation ( Ramnani & 

Owen,  2004; Vendetti & Bunge, 2014),  even when  these may not be strictly  necessary in the 

task. In  the present task, participants  may use  such  representations  to guide their initial  rule 

learning and evaluation,  but then move back along the control hierarchy  to more perceptually 

based representations  after the rules are fully learned  and established.  Under  this hypothesis, the 

rlPFC  may be necessary to learn certain  abstract rules, but may be engaged for  learning  any rule 

depending on how  participants  approach it in a given context.  Rules based on abstract  relations 

may always depend on rlPFC,  whereas rules based on very elementary  perceptual features, like 

the Gabor  patches used  in Davis  et al. (2017)  may seldom recruit  rlPFC.  Between these two 

extremes may be rules like those in the present task, which can be solved using symbolic 

representations or  perceptual representations (or  a combination  of  both). Whether  participants 

use  a symbolic or  more perceptual  strategy may depend on how  easily relevant  differences 

between stimuli  are encodable  symbolically (e.g., using language;  Davis  et al., 2009).  Although 
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this explanation  for  integrating the present results with hierarchical  control theory is plausible 

given the broader literature  on rlPFC  function ( Ramnani  & Owen,  2004; Vendetti  & Bunge, 

2014),  it remains to be seen whether it can account  for  rlPFC’s  role in other primarily  evaluative 

domains such  as  in metacognitive  judgments of  perception  (Fleming et al., 2012; 2014). 

4.4. Limitations and  Future Extensions 

Relative to some tests of  rlPFC  function, our  study had several limitations  in terms of 

differences in the display and number of  options available  during the matching  and classification 

tasks. The matching  task had four  options available  (match to the beetle  with the same legs, 

mandibles,  antennae, or  tail) on every trial,  whereas the classification  task had only two options 

(choose category  A  or  B). Likewise, the matching  task had more visual clutter  on the screen, 

with four  target  beetles, whereas the classification  task presented only a single beetle  at a time. 

Although we  observed various brain regions associated  with visual, motor, and feedback 

differences between the tasks, the main region of  interest,  the rlPFC,  was  found  to track 

predictions from the stimulus evaluation  hypothesis both within and between tasks. For  example, 

consistent with the prediction  that the rlPFC  would not be engaged in the matching  task once the 

rule was  known  with certainty,  rlPFC  was  engaged during learning  but not during rule 

application in the matching  task. Relatedly,  consistent with the idea that rule evaluation  would 

persist into the rule application  phase in classification,  the rlPFC  was  engaged relative  to 

baseline during both learning  and application  in the classification  task. Because demands were 

equivalent  within task, this pattern  where the difference  between rule-learning  and application 

was  greater in matching  than classification  cannot be driven solely by button or  stimulus display 

differences. Finally, although theory does  not suggest rlPFC  should be sensitive to differences  in 
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stimulus display or  response  options, if the rlPFC  were sensitive solely to task complexity,  the 

fact that the matching  task is more complex  in both respects should work  against our  hypothesis 

that it would be more engaged during classification. 

Although the matching  task was  the more complex  task in terms of  response  demands 

and visual complexity,  it is possible that other factors like general  cognitive difficulty differed 

between our  tasks. Indeed, we  expected  the classification  task to require more rule evaluation 

demands, and it is possible that activation  in some regions reflected  increases in general  task 

difficulty caused by these higher demands, as  opposed  to reflecting  the rule evaluation 

mechanisms themselves. For  this reason, we  ran additional  analyses for  all of  our  main contrasts 

to control for  reaction  time, a practice  that is used  in many fMRI  studies to control for  potential 

differences in general  cognitive difficulty and/or time-on-task  (Brown  & Braver, 2005; 

Grindband et al., 2006; Todd et al., 2013; Davis  & Poldrack, 2014; Davis  et al., 2014. All of  our 

rlPFC  results remained  significant, suggesting that general  cognitive difficulty is likely  not a 

reason for  our  observed differences  in rlPFC  between matching  and classification.  These results 

are consistent with findings from the literature  on reaction time modeling and perceptual 

decision making, which do not typically  find correlations  between measures of  difficulty  and the 

rlPFC  region that we  focused on here (Yarkoni et al., 2009; White  et al., 2012; Keuken et al., 

2014).  For  example, in perceptual  decision making, measures of  decision making difficulty  do 

not typically  track activation  in the rlPFC  (Heekeren et al., 2008; White  et al., 2012).  Thus taken 

together, our  results are likely  to reflect  differences in rule evaluation  as  opposed  to general 

difficulty processing per se.  Nonetheless, future studies will want to continue  to identify  cases 

where evaluative  demands are prima facie  fully separated  from task difficulty.  One  domain in 
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which it may be possible to more cleanly  separate task difficulty  demands from evaluation 

demands is metacognition,  where the rlPFC  is often found  to negatively  correlate with 

post-decisional confidence (Fleming et al., 2012).  Because post decisional  confidence ratings are 

separate from the decisions themselves,  they are likely  to reflect  more pure evaluation  signals. 

Although differences  in task difficulty  per se  are unlikely  to explain  our  results, there are 

a number of  other factors that may differ between the tasks and should be noted for  future 

research aimed  at replicating  or  extending the current findings. First, from an optimal  observer 

perspective (Figure 1),  the classification  task may encourage  holding more rules in working 

memory during the application  phase of  the classification  task compared  to the matching  task. 

Indeed, this optimal  observer analysis informed our  prediction  that there would  be more 

remaining uncertainty in the application  phase in classification.  However,  given previous 

research on how  actual  participants solve rules in classification  tasks that we  discuss  above 

( Shepard et al., 1961; Nosofsky,  Palmeri,  and McKinley, 1993; Wilson & Niv, 2011; Niv et al., 

2015),  we  do not expect  participants are explicitly  rehearsing more than one rule at a time  in 

either task. Beyond possible working  memory differences,  however, there remain  other 

differences between the tasks in the total  number of  trials per rule, the amount of  correct  or 

incorrect feedback associated with a rule, and the number of  rules completed  in each section of 

the experiment.  Although many of  these aspects are not expected  to affect  rlPFC  activation given 

current theory, future research would benefit  from attempting  to exert greater  control over these 

differences. 

Finally, the current study found  evidence  consistent with the predictions  from the 

evaluation  account; The rlPFC’s  activation  persisted beyond when  participants  would have been 
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switching rules, suggesting that the rlPFC  supports  rule evaluation  mechanisms. However,  it is 

important to note that these results do not fully establish that the rlPFC  is not involved in 

switching at all. As  we  discussed  above, switching is almost always confounded with evaluation 

demands. On  trials when  participants  switch rules, they also evaluate  the new  rule. Thus, while 

we  have provided evidence  that the rlPFC  is involved in more prolonged rule learning  functions, 

it is not the case that we  can fully rule out the possibility  that it also participates  directly in 

switching functions beyond its role in evaluation.  Fully ruling out switching from 

uncertainty-related processes  like rule evaluation  is a major challenge  for  future research that 

may be difficult  to overcome  even using pre-defined,  well-learned rules. Switching naturally 

creates event boundaries in a task, which tend to be associated  with higher uncertainty  and 

behavioral variability (e.g., Barcelo  et al. 2006; Reynolds et al. 2007).  Therefore,  it will be 

important to carefully  consider how  to create  switching situations  in the future that are not 

accompanied by higher evaluative  demands and uncertainty. 

4.5. Conclusion 

In  conclusion, the present study examines  the role of  the rlPFC  in category  learning and 

differentiates between two accounts of  rlPFC  function that have been discussed  in this literature: 

rule switching and rule evaluation.  To test these accounts, we  compared  activation during 

different phases  of  two types of  rule-based tasks, matching  and categorization,  that differ in their 

demands on rule evaluation . Consistent with the evaluation  hypothesis, the rlPFC  was  active  for 

tasks requiring more evaluation  demands, even when  participants  were not switching between 

rules. These results are critical  because they help to establish a role for  the rlPFC  in category 

learning literature and because they highlight  novel differences  in the systems engaged for  two 
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rule-based tasks that have been used  interchangeably  in much of  the neurobiological  literature on 

category learning thus far. Future research can build on these results by investigating  how 

different types of  rule-based representations  and task demands impact  involvement of  rlPFC  in 

rule-based category  learning. 
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