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Abstract 1 

Decision-making in the real world presents the challenge of requiring flexible yet 2 

prompt behavior, a balance that has been characterized in terms of a trade-off between a 3 

slower, prospective goal-directed model-based (MB) strategy and a fast, retrospective 4 

habitual model-free (MF) strategy. Theory predicts that flexibility to changes in both reward 5 

values and transition contingencies can determine the relative influence of the two systems in 6 

reinforcement learning, but few studies have manipulated the latter. Therefore, we developed 7 

a novel two-level contingency change task in which transition contingencies between states 8 

change every few trials; MB and MF control predict different responses following these 9 

contingency changes, allowing their relative influence to be inferred. Additionally, we 10 

manipulated the rate of contingency changes in order to determine whether contingency 11 

change volatility would play a role in shifting subjects between a MB or MF strategy. We 12 

found that human subjects employed a hybrid MB/MF strategy on the task, corroborating the 13 

parallel contribution of MB and MF systems in reinforcement learning. Further, subjects did 14 

not remain at one level of MB/MF behaviour but rather displayed a shift towards more MB 15 

behavior over the first two blocks that was not attributable to the rate of contingency changes 16 

but was rather a more general effect of block order. The extent to which each subject used 17 

MB control was also related to reward earned, with a correlation between MB weight and 18 

reward rate. We demonstrate that flexibility to contingency changes can distinguish MB and 19 

MF strategies, with human subjects utilising a hybrid strategy that shifts towards more MB 20 

behavior over blocks, consequently corresponding to a higher payoff.  21 

 22 

Introduction 23 

To make optimal decisions, humans must learn to associate the choices they make 24 

with the outcomes that arise from them. Classical learning theories suggest that this problem 25 
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is addressed by habitual or goal-directed strategies for reinforcement learning [1, 2]. These 26 

strategies differ in that habitual behavior seeks simply to reinforce responses based on 27 

environmental cues, whereas goal-directed behavior considers action-outcome relationships – 28 

that is, contingencies – in the environment. Habitual and goal-directed strategies have been 29 

implemented in model-based (MB) and model-free (MF) reinforcement learning algorithms, 30 

respectively. Both algorithms make decisions by estimating action values and choosing the 31 

actions that maximize reward in the long term [3, 4]. The MF system achieves this 32 

retrospectively, caching past rewards using a reward prediction error signal [5] whereas the 33 

MB system achieves this prospectively, planning using a learned internal model of the state 34 

transitions and rewards in the environment.  35 

Recent studies have emphasized that MB and MF systems work in parallel rather than 36 

in isolation [4, 6-8]. Early studies discerned MB and MF contributions using manipulations 37 

of reward values, such as in reward devaluation paradigms, but did not seek to quantify their 38 

relative contributions [1]. A recent study [6] addressed this by developing the hallmark “two-39 

step” task in which, using reward value changes, each trial was informative of the MB/MF 40 

tradeoff, thereby permitting model-fitting analyses to quantify their relative influence in 41 

decision-making. Human subjects showed a hybrid MB/MF strategy in the task, a result that 42 

has been widely replicated under different manipulations [9, 10] and extended to the non-43 

human animal literature (Groman et al. Soc. Neurosci. Abstracts 2014, 558.19, Miranda et al. 44 

Soc. Neurosci. Abstracts 2014 756.09, Akam et al. Cosyne Abstracts 2015, II-15; Hasz & 45 

Redish, Soc. Neurosci. Abstracts 2016 638.08; [11]). 46 

Theory predicts that flexibility to transition contingency changes can – like flexibility 47 

to reward value changes – determine the relative influence of MB and MF strategies [4, 12]. 48 

The advantage of manipulating transitions, rather than reward values, is apparent when 49 

contrasting the model-based system to a successor representation (SR) [13]. The successor 50 
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representation caches transitions in a model-free fashion, but learns reward values in a model-51 

based fashion; thus, changes to reward values cannot distinguish MB and SR representations. 52 

In contrast, transition changes ensure that consequent choices only can be explained by an 53 

MB system. Two studies have examined the flexibility of MB and MF systems to global 54 

contingency changes [14, 15]. However, quantification of the MB/MF tradeoff was limited as 55 

these studies manipulated contingency and tested flexibility to the change of contingency in 56 

separate phases; at these timescales, it becomes difficult to exclude the effect of adaptation on 57 

MB/MF weights. Therefore, we developed a novel two-level contingency change task 58 

containing multiple, frequent and interleaved transition contingency changes that elicit 59 

different consequent actions by the MB and MF systems. Our design, like the two-step task 60 

[6] and its variants, therefore permits model-fitting analyses to robustly determine the relative 61 

influence of the MB/MF systems. The contingency change task is structured such that actions 62 

following frequent contingency changes are distinctly attributed to either a MB or MF 63 

strategy; this then permits quantification of the degree to which each system is in control.  64 

On top of a hybrid MB/MF strategy, subjects may not remain at one level of MB/MF 65 

control but instead shift their relative weight in accordance with environmental factors. In 66 

general, animals show habit formation with time, a robust effect reported since early reward 67 

devaluation studies [16] in which extensive training stamped in habits, resulting in 68 

insensitivity to reward devaluation; in contrast, limited training retained goal-directed 69 

behavior. Sensitivity to contingency degradation (the omission of a previously-learned 70 

contingency between actions and outcomes) also decreases with overtraining, likewise 71 

reflecting a trend towards habitization with time [17]. In the original two-step task, the 72 

MB/MF trade-off was designed to be stable [6], but will shift under manipulations such as 73 

limited time [8] or cognitive load [18]. However, habits are not guaranteed to form with time; 74 

even after extended training, rats can show residual responding following outcome 75 
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devaluation, indicating that they retained goal-directed behavior despite overtraining [19]. In 76 

another study using the two-step task [20], the level of MB/MF control in fact increased in 77 

favour of more MB control (i.e. towards less habitual behavior) over three days of training. 78 

However, general shifts in MB/MF control should be disentangled from the effects of 79 

environmental volatility, which are known to affect the MB/MF balance [21]. Thus, in this 80 

study, we examined whether the MB/MF relationship is affected by environmental stability, 81 

or whether it shifts more generally over time. 82 

We found that human subjects indeed showed a hybrid strategy in reacting to 83 

contingency changes in our task, with an increased influence of MB control over the first two 84 

blocks. However, relative MB/MF control did not significantly differ across rates of 85 

contingency changes; thus, the increase in MB control may be a more global effect of “anti-86 

habitization” over time. The increased reliance on the MB system was associated with a 87 

higher proportion of highly rewarded actions and consequently a higher reward rate, 88 

indicating that as subjects proceeded through the session, they became more proficient at 89 

exploiting their learned internal model of the task structure to maximize their reward. 90 

 91 

Results 92 

Subjects (N=16) performed a two-level contingency change task which consisted of 93 

600 trials (Fig 1). Each trial began at either the first level (S0) with 50% probability, or the 94 

second level with 50% probability – 25% for each of the two states at this level (S1 or S2). If 95 

a trial started at the first level, a two-alternative choice was possible between two abstract 96 

stimuli. Each first-level action deterministically always led to the same second-level state, i.e. 97 

A1 to S1 and A2 to S2. Critically however, transitions from the second-level states to the 98 

terminal states flipped between two contingencies every 3-14 trials. Each of the two terminal 99 

states was then associated with either high or low reward, with the exact reward values 100 
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drifting across trials (see Methods for details). Thus, flexibility to contingency changes was 101 

essential for maximizing reward.  102 

 103 

 104 

Fig 1. Schematic of the experimental design. (A) Each trial started from either the first-105 

level state (S0), with 50% probability, or one of the two second-level states (S1 or S2), each 106 

with 25% probability. While two choices were available at S0, only a forced choice was 107 

available at the second-level states. The transition structure from the second-level states to 108 

terminal states repeatedly flipped after a random number of trials (every 3- 14), in an 109 

unsignalled fashion. One of the two terminal states (S3 or S4) was associated with a high 110 

reward outcome and the other with a low reward outcome. (B) Timeline of the task for one 111 

example trial. 112 
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 113 

If a contingency change occurred, subjects always experienced the new transition 114 

structure regardless of whether they started at the first or second level, as contingency could 115 

only change between second-level and terminal states. Therefore, provided that an action was 116 

possible at the next trial (i.e. that the next trial started at the first level) the MB system would 117 

plan using the updated causal structure and thus would take the action that led under the new 118 

transition contingencies to the high reward terminal state. However, if a contingency change 119 

trial started from the second level, the MF system would not choose the optimal action on the 120 

next trial, as neither the received reward nor the new contingency would update the cached 121 

values of first-level actions, simply because no first-level action was experienced on those 122 

trials. As a result, the relative contribution of MB and MF systems can be measured by the 123 

degree of behavioral flexibility on first-level trials following contingency change trials 124 

starting from the second level.  125 

To examine the effect of environmental volatility on the contribution of the two 126 

systems, the frequency of contingency changes was varied – from 3-6 trials for 200 trials, to 127 

7-10 trials for the next 200 trials, and then 11-14 trials for the final 200 trials. The order of 128 

fast and medium contingency changes was counterbalanced across two subject groups (n=8 129 

each). Every 40 trials, assignment of the high and low reward states also flipped to prevent 130 

formation of habits over an extended state representation, which could masquerade MF as 131 

MB behavior [22]. 132 

Simulated choices on the task were implemented according to MB and MF 133 

reinforcement learning algorithms (see Methods for details). For each system, we measured a 134 

“stay probability” index which followed the logic of contingency change trials described 135 

above. This index differs from classic stay probabilities [6] as trials starting from the second 136 

level do not have any choices to “stay”. Instead, stay probability in our task was defined as 137 



the probability of choosing the first-level action that results in the same second-level state as 138 

the previous trial. Since first-level to second-level contingencies were fixed, this modified 139 

measure provided stay probabilities on any trial, regardless of whether it started at the first or 140 

second level. Stay probability was measured for four different conditions: whether the reward 141 

received in the previous trial was “high” or “low”, and whether the transition experienced in 142 

the previous trial, relative to the trial before that, was “changed” or remained “fixed”. In all 143 

cases, analyses were restricted to trials starting from the first level, following a contingency 144 

change trial starting at the second level, since only these could distinguish MB and MF 145 

strategies.  146 

Across these conditions, MB and MF systems showed different stay probability 147 

patterns. The MF system, having no experience of the action that led to the new contingency, 148 

was more likely to stay on the action leading to the high reward state, and shift on the action 149 

leading to the low reward state, under “fixed” than “changed” conditions (p < 0.01), 150 

indicating it was not flexible to changes in contingencies (Fig 2A). However, the MB system 151 

could immediately adapt with the correct next action, staying on the action if it would lead to 152 

the high-reward state but shifting if it would lead to the low-reward state, with a main effect 153 

of reward (p < 0.01) regardless of contingency condition (Fig 2B). As expected, for 154 

contingency changes from the first level, MB and MF systems did not differ in stay 155 

probability patterns, as the MF system was able to update its action values accordingly, given 156 

that it directly experienced the action leading to the new contingency (S1 Fig). In addition to 157 

pure MF and pure MB strategies, we simulated a hybrid model that linearly weights MB and 158 

MF action values according to a parameter wMB. The stay probability pattern produced by 159 

this hybrid system reflected a mixture of the effects observed for the pure MF and MB stay 160 

probabilities – that is, showing a main effect of reward (p < 0.01), but also an interaction 161 

between reward and contingency (p < 0.01) (Fig 2C). 162 



  163 

 164 

Fig 2. Stay probability patterns predicted by simulating model-based (A), model-free 165 

(B), and hybrid (C) reinforcement learning algorithms. Stay probability measures the 166 

probability of choosing the first-level action that results in the same second-level state as the 167 

previous trial. This index was measured when the reward received in the previous trial was 168 

“high” or “low”, and when the transition experienced in the previous trial (relative to the trial 169 

before that) had its contingency “changed” or remained “fixed”. Stay probabilities are plotted 170 

for trials following a change trial that started at the second level, as these distinguish model-171 

based and model-free strategies. * p < 0.05, ** p < 0.01 172 

 173 

Subjects showed hallmarks of both MB and MF strategies in reacting to contingency 174 

changes (Fig 3A), showing a main effect of reward, F(1,60) = 24.65, p < 0.01, as well as a 175 

reward/contingency interaction, F(1,60) = 13.60, p < 0.01. Therefore, subjects did not solely 176 

use a MB or MF strategy when reacting to contingency changes, but rather displayed a hybrid 177 

MB/MF strategy.  178 

 179 
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Fig 3. Experimental results. (A) Stay probability pattern from human subjects (N=16) 181 

showed significant effects of both model-based (p<0.01) and model-free (p<0.01) strategies. 182 

* p < 0.05, ** p < 0.01 (B) Probability density function over the model-based weight 183 

parameter, estimated in three different blocks of the first, middle and last 200 trials (out of 184 

600 trials). Overlaid are the individual subjects’ model-based weight parameter estimates for 185 

each block type. Error bars represent standard deviation. 186 

 187 

To characterize the effect of contingency changes over multiple consecutive trials, 188 

lagged logistic regression was performed (S2 Fig). This analysis computes the influence of 189 

reward and contingency conditions (predictors) from past trials (lags) on choice probabilities 190 

[22, 23]. MB and MF systems differed in the extent to which past predictors influenced the 191 

current choice, with the MB system showing more flexibility to recent changes – and less 192 

influence of past predictors – than the MF system; this was evidenced by a smoother 193 

predictive weight over lags for the MF system than the MB system (S2 Fig). As expected, the 194 

pattern of the predictive weights for subjects’ choices and the simulated hybrid model 195 

reflected a mixture of the MF and MB systems’ patterns.  196 

While stay probabilities excluded a purely MB or purely MF strategy, this measure 197 

could not quantify the degree to which subjects used the hybrid strategy; therefore, we used a 198 

hierarchical Bayesian method to fit candidate models of behavior to the subjects’ data, to 199 

determine which model best explained subjects’ choices and to obtain parameter estimates for 200 

the MB/MF weighting used by the subjects. The models tested included a pure MB model, a 201 

pure MF model, a hybrid model with one constant weight wMB across the session, a hybrid 202 

model with three separate wMB weights for the three experimental blocks (which differed in 203 

terms of frequency of contingency changes: fast, medium, or slow), and a hybrid model with 204 

three separate wMB weights for each range of contingency changes rates. The last two 205 



models served to test whether the relative contribution of the two systems depended on 206 

volatility of transition structure, or instead more generally trial order. Model-fitting was 207 

confirmed to be able to recover true parameter values, as median estimated parameter values 208 

from model-fitting (see Methods for details) were well-correlated to known parameter values 209 

from simulations, r ≥ 0.99, p < 0.01. 210 

Model-fitting results supported the existence of a hybrid MB/MF strategy in our task. 211 

Candidate models were compared using two criteria – integrated Bayesian Information 212 

Criterion which controls for number of parameters (iBIC) [24] and exceedance probabilities 213 

[25] (S2 Table). The hybrid model with three wMB weights over blocks outperformed the 214 

other candidate models on both criteria, with the lowest iBIC and a probability of 89.4% that 215 

it was the most common of the four models across subjects. Thus, from here we only discuss 216 

the results of best-fit model, the three-block hybrid model.  217 

The median fitted wMB weights in the three-block hybrid increased across the three 218 

blocks (Fig 3B-D), indicating some extent of “anti-habitization” rather than habit formation. 219 

The increase of wMB from block 1 to block 2, but not the increase from block 2 to block 3, 220 

was significant according to permutation tests, p < 0.01. Stay probability analyses were not 221 

conducted on the three separate blocks, as slower contingency changes meant that the later 222 

blocks had fewer samples of contingency changes for comparison. The increase in wMB 223 

across blocks was not attributable to differences in quality of fit from the model-fitting 224 

procedure, as the log-likelihood of parameter estimates did not differ significantly across 225 

blocks, F(2,45) = 1.42, p > 0.05. Strength of correlations between fitted and simulated wMB 226 

weights were also similar across blocks (block 1: r = 0.99, block 2: r = 1.00, block 3: r = 227 

0.99; p < 0.01 for all blocks). Therefore, the significant increase in wMB from the first to 228 

second block was not caused by differences in quality of model fit.  229 



To confirm that the increase in model-based weight was not due to differences in the 230 

rate of contingency changes, we further analysed the fitted weights from the three-frequency 231 

hybrid model, which had a different wMB assigned to each range of contingency change 232 

rates, i.e. fast (every 3-6 trials), medium (every 7-10 trials) and slow (every 11-14 trials) 233 

contingency change blocks. The estimated wMB weights (S3 Fig) were not significantly 234 

different between fast vs. medium, or medium vs. slow frequency of contingency change 235 

blocks in permutation tests, p > 0.05. Thus, the increase in wMB in our study seemed to be an 236 

effect of block order rather than environmental volatility from differences in contingency 237 

change rates. In summary, subjects became more model-based across the first two blocks but 238 

did not differ in MB influence between different rates of contingency changes; therefore, it 239 

seems that block order, but not contingency change volatility, affects wMB in our task.  240 

As subjects became more model-based, high reward choices and consequently reward 241 

rate also increased. Choice probabilities for the high reward action differed over blocks, 242 

F(2,45) = 5.77, p < 0.01, with post-hoc tests finding a significant increase between the first 243 

and third blocks (p < 0.01) and the second and third blocks (p < 0.05). Additionally, there 244 

was a significant difference in reward rate across blocks, F(2,45) = 3.83, p < 0.05, increasing 245 

between the first and third blocks (p < 0.05). Mean reaction time and number of missed trials 246 

due to timeout did not significantly change across blocks, p < 0.05; therefore, the increase in 247 

high reward choices over blocks was not necessarily because subjects were worse at the task 248 

to begin with. Two analyses were performed to rule out the possibility of practice effects 249 

driving the association between reward rate and model-based weight. Within each block, 250 

there was a significant correlation of each subject’s median wMB and reward rate (block 1: r 251 

= 0.66, p < 0.01, block 2: r = 0.65, p < 0.01, block 3: r = 0.56, p < 0.05), indicating that on an 252 

individual subject basis, the extent of MB control was related to reward earned. Since these 253 

analyses were conducted within blocks, the association with reward rate could not be 254 



accounted for by block order. Additionally, the hybrid model was simulated using a range of 255 

MB weights (0, 0.2, 0.4, 0.6, 0.8 and 1) using the one-weight hybrid model for simplicity. 256 

There was a significant effect of MB weight on reward rate, F(5,90) = 8.5, p < 0.01. In all, 257 

these findings suggest that MB influence in this task truly corresponded to a better “payoff” 258 

in terms of reward gained. 259 

 260 

Discussion 261 

We developed a novel two-level contingency change task in which flexibility to 262 

frequently-changing transition contingencies between states could determine whether subjects 263 

were using a model-based or a model-free strategy. Subjects showed a hybrid strategy when 264 

reacting to contingency changes, corroborating recent evidence of the parallel contribution of 265 

MB and MF systems in reward-guided decision-making. Importantly, this finding confirmed 266 

that changes to transition contingencies can elicit a balance of MB and MF behavior akin to 267 

changes to reward values. Model-fitting analyses indicated that a hybrid model with three 268 

MB weights best explained subjects’ choices, with relative MB control increasing over 269 

blocks. The rate of contingency changes did not significantly shift the MB/MF balance; 270 

rather, MB control increased over the first two blocks of trials. This increase in MB control 271 

was concurrent with an increased proportion of high reward choices and consequently 272 

increased reward rate; individually, each subject’s MB was also correlated with reward 273 

gained in the same block.  274 

In all, these results illustrated that not only do subjects use a mixed MB/MF strategy, 275 

but within this hybrid strategy, the trade-off shifts towards “anti-habitization” across the first 276 

two blocks. This agrees with a previous study [20] that used the two-step task over three 277 

days, reporting that their subjects’ MB weight increased across days. One distinction between 278 

our findings is that in [20], subjects started relatively model-based (i.e. median wMB > 0.5) 279 



whereas in our case, subjects began relatively model-free (i.e. median wMB < 0.5). This 280 

difference in starting MB weight simply may be due to individual differences, which is 281 

evident even within our subject pool. Alternatively, differences could be accounted for by the 282 

relatively short reaction time limit in our task compared to theirs (750ms in ours vs. 2000ms). 283 

A shorter reaction time limit is known to provide a depth-of-planning pressure and favor 284 

more MF control [8]. Hence, our subjects may have started more model-free and only 285 

become more model-based once they mastered prospective planning of the task structure. 286 

This is supported by the lack of significant changes in reaction time across blocks, suggesting 287 

that subjects may have used the full extent of their time and eventually learned more efficient 288 

planning under time pressure, therefore showing increased MB influence over blocks. 289 

These findings of an increase in MB control over blocks, however, goes against 290 

another study [26] using a similar task to the two-step task, that found an exponential decay 291 

in MB weight over the experimental session, or habit formation. This difference in findings is 292 

likely because they used a fixed rather than drifting amount of reward; in stationary 293 

environments such as these, habit formation can occur from overtraining, manifesting in an 294 

increase in MF rather than MB behavior [21]. Thus, these results point to the importance of 295 

maintaining a changing environment, as subjects can otherwise adapt to the change and 296 

become habitized.  297 

Manipulations of the rate of contingency changes did not seem to affect MB/MF 298 

control. While it has been shown that environmental volatility can influence MB/MF levels in 299 

the context of reward value changes [21], in our case, the kind and range of contingency 300 

change volatility did not elicit a significant difference in relative MB/MF control. Further 301 

work is certainly needed to definitively rule out the possibility that environmental volatility in 302 

the form of the rates of contingency changes does not affect MB weight, but in the present 303 



study, we find that subjects did not change their use of MB control with contingency change 304 

volatility, but rather increased MB influence more generally with block order.  305 

In conclusion, in a two-level contingency change task, subjects showed a hybrid 306 

MB/MF strategy, emphasizing their parallel contribution in reacting to changes in transition 307 

contingencies. The inclusion of multiple, frequent changes allowed us to perform model-308 

fitting; by doing so, we found an increase in MB control over the first two blocks, a result not 309 

detectable in model-agnostic analyses alone. Our results build on the literature of a hybrid 310 

MB/MF strategy in reacting to changes in reward values, demonstrating a mixture of 311 

strategies in reacting to multiple, frequent contingency changes that has yet been unexplored. 312 

This novel paradigm therefore provides another avenue for exploring the relationship 313 

between MB and MF control for future studies in neuropsychiatric disorders that may 314 

differentially implicate this balance between changes in transition contingencies and changes 315 

in reward values. 316 

 317 

Methods 318 

Subjects 319 

Sixteen subjects (nine males, mean age 24 years) took part. The study was approved 320 

by the University College London Research Ethics Committee (Project ID 3450/002). All 321 

subjects provided written informed consent. 322 

 323 

Experimental procedure 324 

Subjects performed 600 trials of three blocks (200 each) which differed in frequency 325 

of contingency changes: fast (every 3-6 trials), medium (contingency change every 7-10 326 

trials) or slow (every 11-14 trials). Each subject was assigned to one of two groups (n=8 327 

each), which differed by the order of presentation of fast and medium contingency change 328 



blocks, i.e. half of the subjects had fast, medium, then slow contingency changes, and the 329 

other half started with medium, fast, then slow frequency of contingency changes.  330 

To ensure subjects understood the task structure, they were first trained with practice 331 

stimuli (35 trials) then trained on novel test stimuli without reward (55 trials) before starting 332 

the experimental session. Subjects were informed that contingency changes would occur, but 333 

did not know the frequency of changes nor that those rates would vary across the session.  334 

At the first level, subjects had a two-alternative forced choice between two actions 335 

(pressing ‘S’ for the action available on the left side of the screen, ‘L’ for the right) with the 336 

presentation of stimuli randomized for the left/right side of the screen. To ensure that subjects 337 

recognized second-level states, they had to press ‘D’ if they encountered one of these states, 338 

and ‘K’ for the other. Both responses had a time limit of 750ms, following which the trial 339 

would end with no reward. Missed trials were not repeated.  340 

Payoff at the high-reward terminal state varied with a drift rate of 0.2 and offset of 341 

0.15 to the bound of £1, with payoff at the low-reward terminal state being £1 minus the 342 

reward of the high-reward terminal state. Subjects received a fixed proportion of their total 343 

reward gained, with payoff bounded between £5 and £25. To make the task adequately 344 

difficult and prevent formation of complex state-space representations [22], high- and low-345 

reward assignments switched every 40 trials between the two terminal states. This change 346 

was designed never to co-occur with contingency changes. 347 

 348 

Model 349 

Both model-free and model-based algorithms seek to estimate the values of state-350 

action pairs in order to choose the actions which can maximize expected future rewards. The 351 

state space was modelled as having a first-level state 𝑠!  with two actions 𝑎! and 𝑎!, two 352 

possible second-level states 𝑠! and 𝑠!, and two possible terminal states 𝑠! and 𝑠!. There was 353 



only one action available on second-level and terminal states, as the subject did not have any 354 

choices at these levels.  355 

The model-free algorithm updates values of state-action pairs using temporal 356 

difference Q-learning [3, 27]. The reward 𝑟! is used to compute a reward prediction error 𝛿! 357 

which updates action values for that state 𝑠 and action 𝑎 at time 𝑡, 𝑄!" 𝑠! ,𝑎! .  At the first 358 

level 𝑟! is set to be 0 as there is no reward at this level.  359 

𝛿! = 𝑟! +max!!
[𝑄!"(𝑠!!!,𝑎′)]− 𝑄!"(𝑠! ,𝑎!) 

𝑄!" 𝑠! ,𝑎! =   𝑄!" 𝑠! ,𝑎! + 𝛼!"𝜆𝛿! 

The reward prediction error updates existing action values according to a learning rate 360 

𝛼!" and modified by the eligibility parameter 𝜆. Eligibility governs how much credit past 361 

actions were given for outcomes, with 𝜆 = 0 corresponding to a pure TD algorithm whereby 362 

first-stage actions are updated only by the second-level action values, which in turn is 363 

updated by terminal state rewards. In contrast, 𝜆 = 1 means the algorithm updates first-level 364 

actions only using the final reward from the terminal state reached on that trial. 365 

The model-based algorithm learns both transition probabilities 𝑃! and reward 366 

probabilities 𝑅!. The transition probabilities track the transition contingencies 𝑃! between 367 

states 𝑠 and subsequent states 𝑠′. Upon encountering a contingency change, the model-based 368 

system always updated its knowledge of both transitions. 369 

𝑃! 𝑠!
!
  𝑠! = 1,    if  𝑠! = 𝑠!, 𝑠 = 𝑠!

0,    otherwise                       

𝑃! 𝑠!
!
  𝑠! = 1,    if  𝑠! = 𝑠!, 𝑠 = 𝑠!

0,    otherwise                       

𝑃! 𝑠!
!
  𝑠! = 1− 𝑃! 𝑠!

!
  𝑠!  

𝑃! 𝑠!
!
  𝑠! = 1−   𝑃! 𝑠!

!
  𝑠!  



The reward probabilities 𝑅! use the reward 𝑟! to update its subjective reward 𝑅 for 370 

that state 𝑠 and action 𝑎 at time 𝑡.  371 

𝑅 𝑠! ,𝑎! =   𝑅 𝑠! ,𝑎! +   𝛼!"(𝑅 𝑠! ,𝑎! − 𝑟!) 

These learned transition and reward functions are then used to update the action 372 

values for the model-based system, 𝑄!". 373 

𝑄!" 𝑠! ,𝑎! =     𝑃! 𝑠
!
  𝑠! ∙ 𝑅 𝑠!,𝑎 +   𝑃! 𝑠

!
  𝑠! ∙ 𝑅 𝑠!,𝑎  

Other parameters from the simulated models included learning rates for model-based 374 

and model-free systems,  𝛼!" and 𝛼!", and a stay bias which temporarily increased the action 375 

value for the previously-selected action regardless of outcome, to quantify a perseveration 376 

bias. These additional parameters improved fit even when controlling for model complexity 377 

(S3 Table).  378 

For both systems, values for the non-selected action were updated as well, assuming 379 

that subjects knew that the reward for the selected action and reward for the non-selected 380 

action were negatively related, according to proposals of fictive reward [28]. Action values 381 

were updated for both visited and non-visited states, with the action values of non-visited 382 

states corresponding to 1−   𝑄 𝑠! ,𝑎!   of the visited states. The inclusion of fictive reward 383 

updates resulted in a better fit to the subjects’ choices (S3 Table). 384 

The hybrid model weighted MB and MF action values according to a parameter 385 

𝑤𝑀𝐵, with 𝑤𝑀𝐵 = 1  indicating fully MB control:  386 

𝑄!!"#$% 𝑠! ,𝑎! =   𝑤𝑀𝐵 ∙ 𝑄!" 𝑠! ,𝑎! +   (1− 𝑤𝑀𝐵) ∙ 𝑄!" 𝑠! ,𝑎!  

Action selection was then determined for all models according to a “softmax” rule 387 

which computes action probabilities as proportional to the exponential of the action values. 388 

𝑝 𝑎! = 𝑎! 𝑠! =
exp 𝛽 ∙ 𝑄 𝑠! ,𝑎!

exp 𝛽 ∙ 𝑄 𝑠! ,𝑎! +   exp 𝛽 ∙ 𝑄 𝑠! ,𝑎!
 



The inverse temperature 𝛽 determined the extent to which action selection was 389 

stochastic or deterministic from action values, quantifying an exploration/exploitation trade-390 

off.  391 

 392 

Simulations 393 

To best replicate the subjects’ data of 600 trials for 16 subjects, each simulation was 394 

run for 16 initializations of 600 trials each. All reported simulations used fitted parameters 395 

from the three-block hybrid model for the learning rates 𝛼!" and 𝛼!", inverse temperature 396 

𝛽, eligibility trace 𝜆 and stay bias (S1 Table). wMB values were 1 for pure MB and 0 for pure 397 

MF models. 398 

 399 

Model-fitting 400 

Subjects’ data were fit to the models using mixed effects hierarchical model fitting. 401 

Estimation-maximisation was used which iteratively generates group-level distributions over 402 

individual subject parameter estimates, choosing the parameters that maximizes the 403 

likelihood of the data given those estimates. Parameters were estimated by minimizing the 404 

negative log-likelihood of parameter estimates using fminunc in Matlab (MathWorks).  405 

To ensure the efficacy of wMB parameter estimation for the candidate model, each 406 

block wMB was simulated for 11 different parameter values: 0, 0.1, 0.2, … 1. These resulted 407 

in a total of 33 parameter settings for wMB1, wMB2, wMB3, with 16 iterations per setting. All 408 

other parameters in the simulations were set constant as the median parameter estimates taken 409 

from the hybrid three-block model from model-fitting on the subjects’ data. The same model-410 

fitting procedure was performed on the simulated data and estimated parameter values were 411 

extracted.  412 



The integrated Bayesian information criterion (iBIC) [24] was used to compare the 413 

fits of candidate models to the data, with lower scores indicating better fit; this criterion 414 

penalizes more complex models. Finally, Bayesian model selection [25] was used to examine 415 

the prevalence of each model in the participant population. This quantifies an exceedance 416 

probability, the probability that each model is the most common in the subject pool. 417 

 418 

Permutation tests 419 

Permutation tests were run to evaluate the probability that wMB could differ across 420 

blocks by chance. Subjects’ blocks were randomly permuted such that each “block” 421 

contained a mixture of true first, second and third blocks. Model-fitting was run on each 422 

permutation to extract parameter estimates of wMB for each new “block”. The probabilities 423 

p(wMBblock 2 > wMBblock 1), and p(wMBblock 3 > wMBblock 2) were then evaluated for each 424 

permutation. The occurrences of the random permutations which had a smaller p(wMBblock 2 > 425 

wMBblock 1), and p(wMBblock 3 > wMBblock 2) than the true permutation were then tallied.  426 

Likewise, to evaluate the effect of frequency of contingency changes, permutation 427 

tests were run to compare wMB for fast, medium and slow contingency change blocks. Each 428 

subject was randomly assigned to one of the two groups (which differed in the order of fast 429 

and medium contingency change blocks) then wMB of each frequency block was computed 430 

for each permutation. Both the aforementioned one-tailed permutation test and a two-tailed 431 

Hellinger distance permutation test were used.  432 
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 Supporting Information 513 

 514 

S1 Fig. Stay probability patterns after first level contingency changes predicted by 515 

simulating model-based (A), model-free (B), and hybrid (C) reinforcement learning 516 

algorithms, along with experimental results (D). Stay-probability measures the probability 517 

of choosing the first-level action that results in the same second-level state as the previous 518 

trial, following a trial that started at the first level. For each system, this index was measured 519 

under four different conditions: when the reward received in the previous trial was “high” or 520 

“low”, and when the transition experienced in the previous trial (relative to the trial before 521 

that) “changed” or remained “fixed”. * p < 0.05, ** p < 0.01 522 
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 524 

S2 Fig. Predictive weights from lagged logistic regression after second level (A-D) or 525 

first level (E-H) contingency changes predicted by simulating model-based (A, E), 526 

model-free (B, F), and hybrid (C, G) reinforcement learning algorithms, along with 527 

experimental results (D, H). Lagged logistic regression measures the influence of different 528 

predictors over several trials in the past, in this case, five trials. For each system, this index 529 

was measured under four different conditions: when the reward received in the previous trial 530 

was high (H) or low (L), and when the transition experienced in the previous trial (relative to 531 

the trial before that) “changed” (C) or remained “fixed” (F).  532 

 533 

 534 

S3 Fig. Model-based weights for different frequencies of contingency changes. 535 

Probability density function over the model-based weight parameters estimated from model-536 

fitting, for the blocks of fast (every 3-6 trials), medium (every 7-10 trials) and slow (every 537 
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11-14 trials) frequency of contingency changes. Overlaid are the individual subjects’ 538 

parameter estimates for each block type. Error bars represent standard deviation. 539 

 540 

S1 Table. Median Plus Quartile Group-level Parameter Estimates. Best-fitting parameter 541 

estimates over the subjects from model-fitting. 542 

 𝜷 Stay bias 𝜶𝑴𝑩 𝜶𝑴𝑭 𝝀 wMB (block 1) wMB (block 2) wMB (block 3) 
1st quartile 1.88 0.04 0.55 0.03 0.30 0.10 0.40 0.48 
Median 2.99 0.10 0.70 0.30 0.47 0.23 0.57 0.63 

3rd quartile 4.73 0.22 0.81 0.85 0.65 0.46 0.71 0.76 

 543 

S2 Table. Model Comparison of Candidate Models. Integrated Bayesian Information 544 

Criterion (iBIC) and negative log-likelihood of all candidate models from model-fitting. The 545 

models tested were: pure model-free (“MF”), pure model-based (“MB”), hybrid MB/MF 546 

(“hybrid”), hybrid MB/MF with different weights fitted for each of the three 200-trial blocks 547 

(“three-block hybrid”), and a hybrid model with different weights fitted for each frequency of 548 

contingency changes (“three-frequency hybrid”). The winning model was the three-block 549 

hybrid, highlighted in gray, according to iBIC and Bayesian model selection [25].  550 

Model 
Model-

free 
Model-
based Hybrid 

Three-block 
hybrid 

Three-frequency 
hybrid 

Parameters 4 3 6 8 8 
iBIC 9051 8091 7938 7687 7711 
Negative Log 
Likelihood 4489 4018 3914 3770 3782 

 551 

S3 Table. Model Comparison of Additional Parameters. Integrated Bayesian Information 552 

Criterion (iBIC) and negative log-likelihood of the winning three-block hybrid model with 553 



different weights fitted for each of the three 200-trial blocks and the same model without stay 554 

bias, with 𝜆 = 1, with 𝜆 = 0, with only one learning rate for both MF and MB systems, and 555 

without updating fictive reward. The full model fit better to the data than the same model 556 

without each of the aforementioned parameters, even when controlling for model complexity 557 

in the iBIC.  558 

Model 
Full 

model 
No stay 

bias 𝝀 = 𝟏 𝝀 = 𝟎 
One learning 

rate 
No fictive 
reward 

Parameters 8 7 7 7 7 8 
iBIC 7687 8047 7702 7754 7774 8024 
Negative Log 
Likelihood 3770 3959 3787 3813 3823 3939 

 559 


