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Abstract 21 

Background 22 

Public health microbiology laboratories (PHL) are at the cusp of 23 

unprecedented improvements in pathogen identification, antibiotic resistance 24 

detection, and outbreak investigation by using whole genome sequencing 25 

(WGS).  However, considerable challenges remain due to the lack of 26 

common standards.   27 

Objectives 28 

1) Establish the performance specifications of WGS applications used in PHL 29 

to conform with CLIA (Clinical Laboratory Improvements Act) guidelines for 30 

laboratory developed tests (LDT), 2) Develop quality assurance (QA) and 31 

quality control (QC) measures, 3) Establish reporting language for end users 32 

with or without WGS expertise, 4) Create a validation set of microorganisms 33 

to be used for future validations of WGS platforms and multi-laboratory 34 

comparisons and, 5) Create modular templates for the validation of different 35 

sequencing platforms. 36 

Methods 37 

MiSeq Sequencer and Illumina chemistry (Illumina, Inc.) were used to 38 

generate genomes for 34 bacterial isolates with genome sizes from 1.8 to 39 

4.7 Mb and wide range of GC content (32.1%-66.1%).  A customized CLCbio 40 

Genomics Workbench - shell script bioinformatics pipeline was used for the 41 

data analysis.  42 
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Results  43 

We developed a validation panel comprising ten Enterobacteriaceae isolates, 44 

five gram-positive cocci, five gram-negative non-fermenting species, nine 45 

Mycobacterium tuberculosis, and five miscellaneous bacteria; the set 46 

represented typical workflow in the PHL.  The accuracy of MiSeq platform for 47 

individual base calling was >99.9% with similar results shown for 48 

reproducibility/repeatability of genome-wide base calling.  The accuracy of 49 

phylogenetic analysis was 100%.  The specificity and sensitivity inferred 50 

from MLST and genotyping tests were 100%.  A test report format was 51 

developed for the end users with and without WGS knowledge.   52 

Conclusion 53 

WGS was validated for routine use in PHL according to CLIA guidelines for 54 

LDTs.  The validation panel, sequencing analytics, and raw sequences will be 55 

available for future multi-laboratory comparisons of WGS in PHL.  56 

Additionally, the WGS performance specifications and modular validation 57 

template are likely to be adaptable for the validation of other platforms and 58 

reagents kits.   59 

  60 
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Introduction 61 

Clinical and public health microbiology laboratories are undergoing 62 

transformative changes with the adoption of whole genome sequencing 63 

(WGS) [1, 2].  For several years, leading laboratories have published proof-64 

of-concept studies on WGS-enabled advances in the identification of 65 

pathogens, antibiotic resistance detection, and disease outbreak 66 

investigations [3-6].  The technologies also referred to as next generation 67 

sequencing (NGS) have yielded more detailed information about the 68 

microbial features than was possible using a combination of other laboratory 69 

approaches.  Further developments of WGS platforms had allowed 70 

remarkable in-depth inquiry of pathogenic genomes for the discovery of 71 

genetic variants and genome rearrangements that could have been missed 72 

using other DNA methods [3, 7, 8].  The enhanced investigations of disease 73 

outbreaks have led to new understanding of transmission routes of infectious 74 

agents [9-11].  WGS-enabled metagenomics and microbiome discoveries 75 

have revealed a new appreciation for the role of microbes in health and 76 

disease [12-15].  The innovations are continuing at such an unprecedented 77 

pace that WGS is expected to become an alternative to culture-dependent 78 

approaches in the clinical and public microbiology laboratories [16-18]. 79 

 80 

Notwithstanding its promises, several challenges remain for the 81 

adoption of WGS in microbiology laboratories [19-22].  The accelerated 82 
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obsolescence of the sequencing platforms presents several obstacles in 83 

bridging the gap between research and routine diagnostics including 84 

standardizations efforts [23].  The downstream bioinformatics pipelines are 85 

also unique challenges for the microbiology laboratory both in terms of 86 

infrastructure and skilled operators [24-27].  Overall, WGS ‘wet bench-dry 87 

bench' workflow represents an integrated process, which is not easily 88 

amenable to the traditional quality metrics used by the microbiology 89 

laboratories [27-29]. The capital investments and recurring costs of WGS for 90 

clinical laboratories although rapidly declining still remain relatively high to 91 

allow multi-laboratory comparisons for the standardization of the analytical 92 

parameters. Finally, the regulatory agencies have not yet proposed WGS 93 

standard guidelines for the clinical microbiology [30], and external 94 

proficiency testing programs are still in development for the clinical and 95 

public health microbiology laboratories [31, 32].  96 

 97 

 There are other notable recent developments towards standardization 98 

and validation of next generation sequencing in clinical laboratories.  The US 99 

Centers for Disease Control and Prevention (CDC) sponsored the Next-100 

generation Sequencing: Standardization of Clinical Testing (Nex-StoCT) 101 

workgroup to propose quality laboratory practices for the detection of DNA 102 

sequence variations associated with heritable human disorders [33, 34]. The 103 

workgroup developed principles and guidelines for test validation, quality 104 
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control, proficiency testing, and reference materials.  Although not focused 105 

on infectious diseases, these guidelines provide a valuable roadmap for the 106 

implementation of WGS in clinical microbiology and public health 107 

laboratories. The College of American Pathologists' (CAP) published eighteen 108 

requirements in an accreditation checklist for the next generation 109 

sequencing analytic (‘wet bench') and bioinformatics (‘dry bench') processes 110 

as part of its' molecular pathology checklist [30]. These ‘foundational' 111 

accreditation requirements were designed to be broadly applicable to the 112 

testing of inheritable disorders, molecular oncology, and infectious diseases. 113 

Along the same lines, the feasibility of in silico proficiency testing has been 114 

demonstrated for NGS [35].  Clinical and Laboratory Standards Institute 115 

(CLSI) has updated its’ “Nucleic acid sequencing methods in diagnostic 116 

laboratory medicine” guidelines with considerations specific to the 117 

application of next generation sequencing in microbiology [36]. Thus, a 118 

broad technical framework is now available to design WGS validation 119 

protocols that will be most relevant for the clinical and public health 120 

laboratories. Our aims for the current study were to establish performance 121 

metrics for the workflow typical in the microbiological public health 122 

laboratories, design modular templates for the validation of different 123 

platforms and chemistries, finalize user-friendly report format, and identify a 124 

set of bacterial pathogens that could be used for WGS validation and 125 

performance assessments.  126 
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Methods 127 

Bacterial isolates and sequences 128 

A set of 34 bacterial isolates representing typical workflow in the PHL, 129 

was used for validation and quality control of WGS.  These included ten 130 

Enterobacteriaceae isolates, five gram-positive cocci bacterial pathogens, 131 

five gram-negative non-fermenting bacterial pathogens, nine Mycobacterium 132 

tuberculosis isolates and five miscellaneous bacterial pathogens (Table 1). 133 

This Whole Genome Shotgun project has been deposited at GenBank under 134 

the accession MTFS00000000-MTGZ00000000. The version described in this 135 

paper is version MTFS01000000-MTGZ01000000. Raw and assembled 136 

sequences are available for download (see Supplementary Table 1 for the 137 

accession numbers).  138 

Reference whole genomes 139 

The genome sequences of ATCC strains, isolates characterized by CDC, 140 

and other representative isolates were downloaded from NCBI database 141 

(http://www.ncbi.nlm.nih.gov/genome/) to be used as reference per the 142 

recommendations in the  CLSI guidelines [36], (Table 1).  143 

WGS wet bench workflow 144 

The whole genome sequencing was performed on Illumina MiSeq 145 

sequencer (Figure 1).  The Nextera XT library preparation procedure and 146 

2x300 cycle MiSeq sequencing kits were used (Illumina Inc., San Diego, CA, 147 

USA).  Illumina Nextera XT indexes were used for barcoding.  Bacterial DNA 148 
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was extracted using Wizard Genomic DNA Kit (Promega, Madison, WI, USA).  149 

The bacterial DNA concentrations were measured using Qubit fluorometric 150 

quantitation with Qubit dsDNA BR Assay Kit (Thermo Fisher Scientific, 151 

Waltham, MA, USA).  The DNA purity was estimated using NanoDrop 2000 152 

UV-Vis Spectrophotometer (NanoDrop Products, Wilmington, DE, USA).  The 153 

Mastercycler nexus was used for tagmentation incubation and PCR 154 

(Eppendorf North America, Hauppauge, NY, USA).  The library concentration 155 

was measured using Qubit HS kit.  DNA library size distribution was 156 

estimated using 2100 BioAnalyzer Instrument and High Sensitivity DNA 157 

analysis kit (Agilent Technologies, Santa Clara, CA, USA). Ampure beads 158 

were used for size selection. Manual normalization of libraries was 159 

performed.  The PhiX Control V3 sequencing control was used in every 160 

sequencing run (Illumina, Inc. San Diego, CA, USA). Genomes were 161 

generated with the depth coverage in the range of 15.71x-216.4x (average 162 

79.72x, median 71.55x).   163 

Bioinformatics pipeline  164 

Paired-end reads were quality trimmed with the threshold of Q30, and 165 

then used for mapping to the reference and de novo assembly on CLCbio 166 

Genomic Workbench 8.0.2 (Qiagen, Aarhus, Denmark).  The BAM files 167 

generated after mapping to the reference genome were taken through series 168 

of software suites to generate the phylogenetic tree.  A customized shell 169 

script was created to automate the subsequent steps after mapping that 170 
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included: 1) SNP calling in coding and non-coding genome areas using 171 

SAMtools mpileup (v.1.2; [37]); 2) Converting into VCF matrix using bcftools 172 

(v0.1.19; http://samtools.github.io/bcftools/); 3) Variants parsing using 173 

vcftools (v.0.1.12b; [38]) to include only high-quality SNPs (hqSNPs) with 174 

coverage ≥30x, minimum quality > 200; with InDels and the heterozygote 175 

calls excluded. 4) Converting SNP matrix into FASTA alignment file for the 176 

export back to the CLCbio GW 8.0.2 for the generation of the phylogenetic 177 

tree. 178 

hqSNP-based genotyping - The Maximum Likelihood phylogenetic trees were 179 

generated based on high-quality single nucleotide polymorphisms (hqSNPs) 180 

under the Jukes-Cantor nucleotide substitution model; with bootstrapping.  181 

16S rRNA gene-based identification - Genomes were annotated with prokka 182 

v1.1 tool [39] and species identification was performed by comparing 16S 183 

rRNA gene sequences against the Ribosomal Database Project (RDP) 184 

database [40]. 185 

In silico MLST - In silico multi-locus sequence typing (MLST) was performed 186 

using the Center for Genomic Epidemiology (CGE) online tool [41].  187 
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ABR genes detection was performed using the CGE ResFinder online 188 

resource [42]. ATCC reference strains designated for use as antibiotic 189 

susceptibility controls were analyzed for the presence of antibiotic resistance 190 

genes. Negative controls were chosen among strains which were described 191 

by the CLSI M100-S25 document [43] as susceptible, with no known 192 

antibiotic resistance genes. Positive controls were chosen among strains, 193 

which according to the CLSI M100-S25 resistance determinants. 194 

 195 

Validation Plan  196 

Thirty-four bacterial isolates were sequenced in triplicate.  For between-run 197 

reproducibility assessments, all replicates were generated starting from fresh 198 

cultures except for M. tuberculosis where DNA samples were used.  Between 199 

run replicates were processed on separate days by different operators.  For 200 

within run replicates, one DNA extract was used, but independent library 201 

preparations were done, with final samples being included in one sequencing 202 

run. 203 
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Results 204 

A number of CLIA-required quality parameters were adopted with some 205 

modification for validation on WGS (Table 2).  The modular validation 206 

template and a summary of performed here WGS validation for 34 bacterial 207 

isolates are presented in figure 2.   208 

Accuracy of WGS 209 

The accuracy of WGS was divided into three components: platform 210 

accuracy, assay accuracy, and bioinformatics pipeline accuracy. 211 

Platform accuracy - Platform accuracy was assessed as the accuracy of 212 

identification of individual base pairs in the bacterial genome. The accuracy 213 

of the platform was established by determining the proximity of agreement 214 

between base calling made by MiSeq sequencer (measured value) and NCBI 215 

reference sequence (the true value). We determined MiSeq Illumina platform 216 

accuracy by mapping generated reads to the corresponding reference 217 

sequence and identifying Single Nucleotide Polymorphisms (SNPs).  Few 218 

validation samples differed from reference genome by several SNPs. 219 

However, 99% (324 out of 327) of those SNPs were reproducible among all 220 

five replicates we have sequenced for each sample. Since sequencing errors 221 

are random between different library preparations and it is unlikely that the 222 

same erroneous SNP will occur in all 5 replicates, we can conclude that those 223 

discrepancies were not caused by sequencing errors, but most likely were a 224 

result of accumulation of mutations in the reference strains or previous 225 
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sequencing mistakes in the reference sequence.  In both cases, whether we 226 

take into the account all SNPs detected between validation and reference 227 

sequence, or only those SNPs which don't appear in all of the replicates (true 228 

sequencing errors), we observed > 99.999% agreement of generated whole 229 

genome sequences with the reference sequences for each tested sample. 230 

Assay accuracy - Assay accuracy was determined by an agreement of 231 

the assay result for the validation samples with the assay result for 232 

reference sequences of the same strains. Four applications of WGS were 233 

used to validate the accuracy of the assay: in silico Multilocus Sequence 234 

Typing (MLST) assay, 16S rRNA gene species identification (ID) assay, an 235 

assay for detection of antibiotic resistance (ABR) genes, and genotyping 236 

assay using high-quality Single Nucleotide Polymorphisms (hqSNPs).  237 

The definition of the correct result for MLST corresponds to a correct 238 

identification of each of the MLST alleles in the validation sequence. For all 239 

validation samples each of the sequences of the seven housekeeping genes 240 

used in the typing scheme (or 6 genes- for Aeromonas hydrophilia) were 241 

identified correctly, resulting in 100% allele identification accuracy.   242 

For ABR genes detection the comparison of validation sequences was 243 

performed against each entry in the ResFinder database, which at the 244 

moment of validation contained sequences of 1719 antibiotic resistance 245 

genes, resulting in a total of 1719 tests performed for each validation 246 

sample.  In negative control samples, all 1719 tests gave negative results. 247 
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In positive controls, 1 out of 1719 tests gave a positive result, and the rest 248 

must remain negative, as expected. Thus, the accuracy of the assay for ABR 249 

genes detection was 100%.   250 

For 16S rRNA ID assay, variations only in one gene were detected, so 251 

the species ID results as a whole (e.g. "Escherichia coli") was considered as 252 

a single test.  The identity of 16S rRNA sequence extracted from validation 253 

sample showed 100% match with 16S rRNA sequence extracted from the 254 

reference sequence.  255 

To assess the accuracy of the genotyping test, phylogenetic trees were 256 

built using reference sequences and validation sequences, and resulting 257 

trees were compared. For better comparison, we used at least five strains of 258 

the same species in the phylogenetic tree.  The accuracy of the genotyping 259 

test was determined using two approaches: 1) Topological similarity 260 

between reference tree and validation tree using Compare2Trees software, 261 

and 2) Comparison of clustering pattern of validation tree and reference 262 

tree.  The phylogenetic trees were generated for five bacterial isolates. All 263 

five validation trees had matching clustering patterns and 100% of 264 

topological similarity with corresponding reference trees (Supplementary 265 

Table 2).    266 

Bioinformatics pipeline accuracy - Accuracy of the bioinformatics 267 

pipeline used for hqSNP genotyping was assessed by performing 268 
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phylogenetic analysis on raw WGS reads of bacterial isolates from well-269 

characterized outbreaks and comparing validation results to the previously 270 

published phylogenetic results (Table 3). Two studies, presenting a 271 

phylogenetic analysis of outbreaks, caused by the gram-positive pathogen in 272 

one study [44] and gram-negative in another study [45] (at least six 273 

isolates/study), were used for validation of the bioinformatics pipeline 274 

(Figure 3).  The clustering of validation tree completely replicated clustering 275 

of Study 1 [44] tree (Figure 3A-C), e.g. isolates 4 and 5 were identical and 276 

clustered together according to the Study 1, and the same results were 277 

shown in validation tree, with isolates 4 and 5 sharing the same node.  All 278 

conclusions in regards to the genetic relatedness of the isolates that can be 279 

drawn from Study 1 tree can also be made from analysis of validation tree 1.  280 

The group of related isolates from Study 1 was compared with 281 

epidemiologically unrelated isolates suggested by the same study (no tree 282 

available from publication). The phylogenetic analysis using the PHL 283 

bioinformatics pipeline showed that epidemiologically unrelated isolates did 284 

not cluster with the group of outbreak isolates and appeared to be 285 

genetically distant (Figure 3D). Thus, the resulting phylogenetic tree 286 

produced by our bioinformatics pipeline showed complete concordance with 287 

the epidemiological data.  288 

From the Study 2 [45], we have selected nine isolates, which were 289 

representative of 4 independent outbreaks and two isolates were 290 
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epidemiologically unrelated controls (Figure 3E-G). The clustering of 291 

validation tree was identical to the clustering of Study 2 tree. For example, 292 

isolates 6 and 7 were a part of the same outbreak, while isolate 8 is an 293 

epidemiologically unrelated control used in the study. By epidemiological 294 

data and Study 2 tree, the validation tree showed that isolates 6 and seven 295 

do cluster together, but not with isolate 8. All observations about the genetic 296 

relatedness of the isolates drawn from Study 2 tree could be replicated from 297 

the analysis of validation tree 2.  In summary, based on analysis of 298 

simulated data from both studies accuracy of the pipeline for phylogenetic 299 

analysis was 100%. 300 

 301 

WGS repeatability and reproducibility.  302 

Repeatability (precision within run) was established by sequencing the 303 

same samples multiple times under the same conditions and evaluating the 304 

concordance of the assay results and performance. Reproducibility (precision 305 

between runs) was assessed as the consistency of the assay results and 306 

performance characteristics for the same sample sequenced on different 307 

occasions.  Thirty-four validation samples each were sequenced three times 308 

in the same sequencing run (for repeatability) and in 3 times in different 309 

runs (for reproducibility).  Between run replicates were processed on 310 

different days, altering two operators, as recommended CLSI MM11A 311 
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document [46]. For within run replicates, one DNA extract was used, but 312 

independent library preparations were done, with final samples being 313 

included in one sequencing run.  Therefore, for each sample, the number of 314 

intra-assay replicates and inter-assay replicates were three each, and the 315 

total numbers of repeated results were five.  All quality parameters [depth of 316 

coverage, uniformity of coverage, and accuracy of base calling (Q score)] 317 

remained relatively constant within and between runs.   318 

Two methods of evaluating precision were used: evaluation of absolute 319 

inter- and intra-assay precision per replicate and evaluation of precision 320 

relative to the genome size. One out of 3 within-run replicates of isolate C50 321 

Pseudomonas aeruginosa ATCC 27853 had a 1 SNP difference from other 322 

within-run replicates (see Supplementary Table 3). All validation samples 323 

except C50 yielded identical whole genome sequences for all three within-324 

run replicates.  The inter-assay precision was 99.02% as per replicate.  325 

Three validation samples had one of the between-run replicates each 326 

differing from other between-run replicates. Sample C47 Staphylococcus 327 

epidermidis ATCC 12228 had one between-run replicate with 2 SNPs 328 

difference from other replicates. Samples C49 Streptococcus pneumoniae 329 

ATCC 6305 and C55 Escherichia coli ATCC 25922 each had one of the 330 

between-run replicates differing from other replicated sequences by 1 SNP. 331 

Intra-assay precision per replicate was 97.05%. If precision per base pair is 332 
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estimated (in relation to the covered genome size), both inter- and intra-333 

assay precision were > 99.9999%. 334 

 We also estimated reproducibility and repeatability for MLST and 16S 335 

rRNA ID assays. For MLST total number of alleles analyzed for either within- 336 

or between-run replicates was 441. Each single allele in all validation 337 

samples was identified consistently among within- and between-run 338 

replicates. Within- and between-run replicates had repeatable/reproducible 339 

sequences of 16S rRNA gene and resulted in repeatable/reproducible species 340 

identification. Within and between run precisions of allele detection and 341 

species identification for corresponding assays were 100%.  342 

 343 

WGS Sensitivity and Specificity 344 

Analytical sensitivity and specificity of WGS were estimated for 345 

genotyping and MLST.  346 

Genotyping sensitivity and specificity - to estimate analytical sensitivity 347 

and specificity of WGS-based genotyping, the hqSNPs phylogenetic trees 348 

generated from the validation sequences were compared to the trees 349 

generated from the reference sequences for the same strain.  All generated 350 

validation trees repeated clustering and had 100% of topological similarity 351 

with corresponding reference trees, indicating absence false negative or 352 

false-positive results in the genotyping test.  Both analytical sensitivity and 353 

analytical specificity of the hqSNP-based genotyping assay were 100%. 354 
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MLST sensitivity and specificity - As described above, using organism-355 

specific MLST databases sequence type of validation sequences and their 356 

reference sequences was determined. For MLST number of the true positive 357 

results corresponds to the number of alleles correctly identified in the 358 

validation samples. For the true negative results, we performed a 359 

comparison of validation sequences against MLST databases for unmatched 360 

species, e.g. search of alleles for C1 Escherichia coli validation sample 361 

against MLST database for Salmonella enterica.  In the latter case, the MLST 362 

assay is not supposed to be able to identify any alleles.   All alleles in 363 

positive validation samples were identified correctly. None of the alleles in 364 

negative controls were identified. Both analytical sensitivity and analytical 365 

specificity of in silico MLST test were 100%.  366 

 367 

WGS reportable range 368 

The following information about the sequenced genome was collected 369 

for the reportable range: genome-wide hq SNPs, housekeeping genes used 370 

in MLST schemes, 16S rRNA gene, and antibiotic resistance genes included 371 

into ResFinder database.   372 

Reporting language was developed to assist interpretation of the results 373 

by an end user with or without specific WGS knowledge- the template and 374 

examples are provided in the Supplementary Document 1.  375 

 376 
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Quality assurance and quality control of WGS 377 

The quality assurance (QA) and quality control (QC) measures were 378 

developed as the results of valuation to ensure high quality and consistency 379 

of further routine testing using MiSeq Illumina platform. QC must be 380 

performed during both pre-analytical (DNA isolation, library preparation), 381 

analytical (quality metrics of sequencing run) and post-analytical (data 382 

analysis) steps of the WGS. On the stage of data analysis, QC includes three 383 

steps: raw read QC, mapping quality QC (or/and de novo assembly QC), 384 

variant calling QC. PHL should use the WGS validation to establish the 385 

thresholds of quality parameters, which can be used in following routine 386 

testing to filter out poor quality samples and data and this way minimize the 387 

chance of false results. We suggest spiked-in positive and negative controls 388 

for routine testing as well as more comprehensive monthly positive and 389 

negative controls. Since traditional CLIA rules require the positive and 390 

negative control to pass through all the pre-analytical steps, including DNA 391 

isolation, laboratory may choose to follow this guidance and perform DNA 392 

isolation and sequencing of positive and negative control in each run, or 393 

alternatively, implement Individualized Quality Control Plan (IQCP) [as per 394 

42CFR493.1250] and use more economical spiked-in control instead. Type 395 

and complexity of positive and negative controls should be determined by 396 

each laboratory individually based on specifics of their workflow (most 397 

probable source of contamination), type of microorganisms and assays which 398 
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are most commonly used. Regular and monthly QC practices are 399 

summarized in Supplementary Figure 1. The complete QA&QC manual 400 

established for WGS applications used in microbiological PHL can be found in 401 

Supplementary Document 1. 402 

Validation Summary 403 

WGS assay was shown to have >99.9% accuracy, >99.9% 404 

reproducibility/repeatability, and 100% specificity and sensitivity, which 405 

meets CLIA requirements for laboratory-developed tests (LDTs). 406 

  407 
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Discussion 408 

This study established the workflow and reference materials for the 409 

validation of WGS for routine use in PHL according to CLIA guidelines for 410 

LDTs. The validation panel, sequencing analytics, and raw sequences 411 

generated during this study could serve as a resource for the future multi-412 

laboratory comparisons of WGS. Additionally, the WGS performance 413 

specifications and modular validation template developed in the study could 414 

be easily adapted for the validation of other platforms and reagents kits. 415 

These results strengthen the concept of unified laboratory standards for 416 

WGS enunciated by some professional organizations, including the Global 417 

Microbial Identifier (GMI) initiative [30, 31, 33, 47]. A few other groups have 418 

also highlighted the challenges and solutions for the implementation of WGS 419 

in clinical and public health microbiology laboratories [21, 48]. 420 

Using a combination of reference strains and corresponding publicly 421 

available genomes, we devised a framework of ‘best practices' for the quality 422 

management of the integrated ‘wet lab' and ‘dry lab' WGS workflow 423 

(‘pipeline'). The importance of reference materials for validation and QC of 424 

wet- and dry-lab WGS processes has been noted earlier [28, 31, 33] . Unlike 425 

in human genomics [49], there is no well-established source of reference 426 

materials for WGS validation in microbiological PHL. The main challenge of 427 

creating customized validation set is the lack of reference materials, in other 428 

words, strains that can be easily acquired by the PHLs and which have high-429 
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quality well-characterized reference genomes available. While using 430 

complete genomic sequences of ATCC strains from NCBI is an option, it is far 431 

from being perfect. The genome sequences available from public databases 432 

are generated by using different methods, chemistries, platforms, which 433 

may yield different error rates, therefore deposited sequences are not 434 

guaranteed to be free of such errors. With the perpetual development of new 435 

sequencing technologies and improvements in the quality of sequences, it is 436 

not unlikely that the genomes sequenced with old methods may appear less 437 

accurate than the validation sequences generated by the laboratory during 438 

validation. In addition to this, there is a possibility of mutations 439 

accumulation in the control strains, e.g. ATCC cultures, which are 440 

propagated by the different laboratories. In this sense, there is no gold 441 

standard available for use as a reference material for bacterial WGS 442 

validation. Nevertheless, NCBI, ENA, and similar public genome depositories 443 

remain to be the best resource for the genomic sequences of control strains, 444 

which can be used for validation. In future, it would be optimal to have a 445 

network/agency/bank which could distribute panels of thoroughly sequenced 446 

isolates, with curated and updated genomic sequences available online for 447 

WGS validation. In the absence of such resource, we developed a validation 448 

set of microorganisms, which can be used for future validations of WGS 449 

platforms. Bacterial genomes vary differently in size, GC content, abundance 450 

of repetitive regions, and other properties, which affect the WGS results. We 451 
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created a validation set which reflects the diversity of the microorganisms 452 

with various genome sizes and GC-content, which are routinely sequenced 453 

by the PHL. Different species of gram-positive and gram-negative 454 

microorganisms and M. tuberculosis were included to account for the 455 

differences in DNA isolation procedures as well.   456 

Samples were validated based on four core elements also reflected in 457 

the assay report: 16S rRNA-based species identity, in silico MLST, hqSNP 458 

phylogenetic analysis, and the presence of AR determinants. Overall, we 459 

achieved high accuracy, precision, sensitivity and specificity for all test 460 

analytes ranging from 99-100%, which well exceeds 90% threshold for 461 

these performance parameters for LDT as per CLIA. These findings are in 462 

agreement with recent reports of 93%-100% accuracy in WGS identification, 463 

subtyping, and antimicrobial resistance genes detection in a number of 464 

pathogens [50-53]. 465 

The successful CLIA integration of the WGS would also obligate a 466 

laboratory to implement a continuous performance measurement plan via an 467 

internal or external proficiency testing (PT) program. Such PT programs are 468 

under active development with the Global Microbial Identifier (GMI) network, 469 

the Genetic Testing Reference Materials Coordination Program (Get-RM), the 470 

Genome in a Bottle (GIAB) Consortium, and the CDC PulseNet NextGen 471 

being the most prominent [31, 49]. More generic standards have been 472 

proposed by the College of American Pathologists' (CAP) molecular 473 
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pathology checklist (MOL)[30]. The proposed quality standards include both 474 

live cultures as well as ‘sequence only' formats for a comprehensive 475 

assessment of the WGS pipeline. Our validation set of isolates is amenable 476 

to both internal and external quality assurance testing. In preliminary 477 

internal PT, we were able to successfully assess the entire workflow and 478 

personnel performance (details not shown).  479 

Microbial WGS remains a dynamic technology, and therefore, any 480 

validated pipeline is unlikely to remain static. For this reason, 481 

implementation of modular validation template becomes crucial for the 482 

seamless and timely introduction of changes to the 'pipeline,' e.g. we had to 483 

carry-out several amendments to the protocol since its implementation in 484 

the laboratory. These included a new processing algorithm for highly-485 

contagious pathogens and some adjustments to the data analysis algorithm. 486 

The changes were accomplished via minor modifications in the ‘pipeline' with 487 

corroborative testing using developed by us modular validation template. We 488 

also performed a two-sequencer comparison to allow for processing of 489 

increased volume of samples (see the protocol for the correlation study in 490 

Supplementary Document 1). 491 

The WGS report format continues to pose challenges. Reporting 492 

language was designed to be able to convey the WGS-based assay results to 493 

the end user with or without the extensive knowledge of WGS to avoid 494 

erroneous interpretation of the results by the final user and provide 495 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 8, 2017. ; https://doi.org/10.1101/107003doi: bioRxiv preprint 

https://doi.org/10.1101/107003
http://creativecommons.org/licenses/by/4.0/


25 
 

actionable data. Disclaimers are particularly important to guide the potential 496 

use of the data in clinical settings, e.g. a disclaimer that detection of 497 

antibiotic resistance genes by WGS do not guarantee resistance of the strain 498 

in vivo and that phenotypic susceptibility test is required to confirm 499 

antimicrobial resistance. 500 

The study possesses certain limitations. Firstly, only a limited number 501 

of WGS-based assays were included into the validation study based on the 502 

most common PHL applications. Other types of WGS assays/analytics would 503 

have to be validated in a similar manner to determine the performance 504 

specifications, which are required to generate accurate and reproducible 505 

results, e.g. a threshold for the base calling accuracy of the platform, or a 506 

depth of coverage of specific genes. Secondly, not all validation set samples 507 

had available NCBI database entries to provide comparison sets. Thirdly, the 508 

absence of any eukaryotic pathogens in the current validation is another 509 

shortcoming and therefore, additional validation studies would be needed to 510 

implement a pipeline for the pathogenic fungi and parasites.  511 

As the clinical and public microbiology community implements high-512 

quality WGS, it would be opportune to consider the available models for the 513 

delivery of these services [54]. Since their inception, most WGS activities 514 

have taken place in the reference facilities with rather large supporting 515 

infrastructure. Although inevitable in the early stages, the centralization of 516 

services presents several challenges on the turnaround time and access to 517 
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the specific expertise on the local population structure of a given pathogen, 518 

which are crucial for the management of infectious diseases at the local and 519 

regional levels. WGS services could now be delivered locally, more easily 520 

with the affordable sequencers, standardized reagents, and well-defined 521 

quality metrics. The local delivery model would also be more responsive to 522 

the needs of the target client and enhance the adoption of WGS across the 523 

healthcare systems. Another alternative is a hybrid model with 524 

complimentary central and local services to balance the need for speed with 525 

the advanced expertise and resources [54]. Two prominent examples of the 526 

hybrid models in the United States are the Food and Drug Administration 527 

(FDA) GenomeTrakr network for the tracking of food-borne pathogens, and 528 

the CDC Advanced Molecular Detection (AMD) initiative for the improved 529 

surveillance of infectious diseases [55, 56]. The AMD and GenomeTrakr 530 

frameworks rely on a participatory model with enhanced analysis, curation 531 

and data storage at a central site. However, these resource-intensive 532 

networks focus on few selected pathogens at present. Notably, there still 533 

remain significant challenges for the implementation of the comprehensive 534 

WGS services at the local level [48, 57]. It is hoped that the quality 535 

framework proposed in the present study would advance the localization of 536 

comprehensive WGS services in clinical and public health laboratories. 537 

In summary, the salient achievements of this study included: 1) 538 

establishment of the performance specifications for WGS in the application to 539 
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public health microbiology in accordance with CLIA guidelines for the LDTs, 540 

2) the development of quality assurance (QA) and quality control (QC) 541 

measurements for WGS, 3) formatting of laboratory reports for end users 542 

with or without WGS expertise, 4) a set of pathogenic bacteria for further 543 

validations of WGS and multi-laboratory comparisons and, 5) development 544 

of an integrated workflow for the ‘wet bench' and ‘dry bench' parts of WGS. 545 
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FIGURE LEGENDS 723 

 724 
Figure 1. WGS wet and dry bench workflow 725 
 726 

Figure 2. The summary of the WGS validation. 727 

Figure 3. Bioinformatics pipeline validation with two groups of 728 

outbreak isolates. A. "Study 1 tree", a phylogenetic tree of outbreak 729 

isolates, which was published in the study 1. The isolates from the study 730 

which were picked for validation have arrows pointing at them and numbers 731 

assigned for purposes of validation (1-7). B. A tree representing 732 

phylogenetic connections between chosen isolates from original study tree.  733 

C. "Validation tree 1", a phylogenetic tree generated using the PHL 734 

bioinformatics pipeline. The same isolates in the original tree and validation 735 

tree are marked with the same numbers. D. Comparison of the group of 736 

related isolates (1-7) from Study 1 with epidemiologically unrelated isolates 737 

from the same study using the PHL bioinformatics pipeline. E. "Study two 738 

tree", a phylogenetic tree combining epidemiologically related and 739 

nonrelated isolates published in the study 2. The isolates from the study two 740 

which were picked for validation marked with green node circles and had 741 

numbers 1-11 assigned for purposes of validation. F. A tree representing 742 

phylogenetic connections between chosen isolates from original study tree. 743 

G. "Validation tree 2", a phylogenetic tree generated using the PHL 744 

bioinformatics pipeline. The same isolates in the tree from Study 2 and the 745 

validation tree are marked with the same numbers. 746 
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Supplementary Figure 1. WGS quality control scheme. 747 

 748 

749 
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Sample is a pure bac culture 
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• notification from client present, proper paperwork is filled; 
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documentation; •tube is sealed and has material in it; • if DNA submitted- 
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Import mapped reads generated by CLCbio in bam format 
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Tertiary data analysis using CLCbio Genomic 
Workbench and online tools: 
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Figure 1. WGS wet and dry bench workflow 
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WHOLE GENOME SEQUENCING VALIDATION IN 
PUBLIC HEALTH MICROBIOLOGY LAB SETTINGS 

MiSeq Illumina 
platform 
accuracy 

Test 
accuracy 

MLST 

16S rRNA 
gene ID 

Genotyping 

Antibiotic resistance 
genes detection 

Bioinformatics 
pipeline 
accuracy 

Inter- and Intra-
assay agreement 

MLST 
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per replicate= 
per base pair= 

Analytical 
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specificity 
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Genotyping 

99.999% 100% 

100% 

100% 

100% 

100% 

99.02% / 97.05% 
99.9999997% / 99.999998% 

100% 

100% 

100% 

100% 

10- Enterobacteriaceae 
5- Gram-positive cocci isolates 
5- Gram-negative non-fermenting bacterial isolates 
9- Mycobacterium tuberculosis 
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34 bacterial isolates 
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Validation Set 

within run / between run: 

Accuracy 

Figure 2. The summary of the WGS validation. 
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Figure 3. Bioinformatics pipeline validation with two groups of outbreak isolates.  
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Table 1. List of strains used for validation and corresponding reference materials 750 

Reference materials- NCBI strains 

MDL ID Species 
Reference 

NCBI Strain NCBI Acc# 
C1 Escherichia coli O157:H7 CDC EDL 933 O157:H7 CDC EDL 933 NZ_CP008957.1 
C3 Escherichia coli ATCC 8739 ATCC 8739 NC_010468.1 

C55 Escherichia coli ATCC 25922 ATCC 25922 NZ_CP009072.1 
C4 Enterobacter cloacae ATCC 13047 ATCC 13047 NC_014121 

C6 Salmonella enterica ser Typhimurium ATCC 
14028 14028S NC_016856 

C5 Staphylococcus aureus ATCC 25923 ATCC 25923 NZ_CP009361 
C46 Enterococcus faecalis ATCC 29212 ATCC 29212 NZ_CP008816 
C47 Staphylococcus epidermidis ATCC 12228 ATCC 12228 NC_004461 
C48 Staphylococcus saprophyticus ATCC 15305 ATCC 15305 NC_007350 
C49 Streptococcus pneumoniae ATCC 6305 ATCC 700669 FM211187 
C50 Pseudomonas aeruginosa ATCC 27853 FRD1 NZ_CP010555 
C51 Stenotrophomonas maltophilia ATCC 13637 ATCC 13637 NZ_CP008838 
C52 Legionella pneumophila SG-12 ATCC 43290 ATCC 43290 NC_016811 
C53 Moraxella catarrhalis 87A-3084 ATCC 25240 NZ_CP008804 
C54 Acinetobacter baumannii ATCC 17945 AB07 NZ_CP006963 

C103 Bacteroides fragilis ATCC 25285 638R NC_016776 
C104 Haemophilus influenzae ATCC 10211 KR494 NC_022356 

C2 Aeromonas hydrophilia ATCC 7966 ATCC 7966 NC_008570 
C105 Corynebacterium jeikeium ATCC 43734 ATCC 43734 GG700813:GG700833 
C106 Neisseria gonorrhoeae ATCC 49226 MS11 NC_022240 
C56 Mycobacterium tuberculosis H37Rv NC_000962.3 
C57 Mycobacterium tuberculosis H37Rv NC_000962.3 
C58 Mycobacterium tuberculosis H37Rv NC_000962.3 
C59 Mycobacterium tuberculosis H37Rv NC_000962.3 
C61 Mycobacterium tuberculosis H37Rv NC_000962.3 
C65 Mycobacterium tuberculosis H37Rv NC_000962.3 
C67 Mycobacterium tuberculosis H37Rv NC_000962.3 
C68 Mycobacterium tuberculosis H37Rv NC_000962.3 
C69 Mycobacterium tuberculosis H37Rv NC_000962.3 

Reference materials- strains sequenced at CDC 

MDL ID Species 
Reference raw reads generated 

by CDC Reference used for mapping 

CDC Strain  Accession # NCBI Strain NCBI Acc# 
C72 Escherichia coli O121:H19 2014C-3857 SRR1610033 2011C-3493 NC_018658 

C73 Salmonella enterica ser Enteritidis CDC_2010K-
1543 SRR518749 P125109 NC_011294.1 

C74 Salmonella enterica ser Infantis 2014K-0434 SRR1616809 1326/28 NZ_LN649235 
C75 Salmonella enterica ser Adelaide 2014K-0941 SRR1686419 P125109 NC_011294.1 
C76 Salmonella enterica ser Worthington 2012K-1219 SRR1614868 P125109 NC_011294.1 

C77* Salmonella enterica ser Saintpaul 2014K-0875 SRR1640105 14028S NC_016856 
Footnotes: Green color designates cases when the genome of the strain sequenced by the PHL is available from 751 
the NCBI database. Yellow color designates cases when the genome of the strain sequenced by the PHL is NOT 752 
available from the NCBI database and an alternative reference genome was used for mapping.  753 
*P.S.: Sample C77 was sequenced by PHL only for genotyping test accuracy validation. No replicates were done.  754 
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Table 2. Performance characteristics, definitions, and formulas used in validation. Summary of the validation for different assays.   
      Assay used for validation of the parameter  

Definition of the performance characteristic for 
WGS applications Formula used for calculation  hqSNP based genotyping MLST 16S 

Antibiotic 
resistance 

genes 
detection 

Assay-specific 
definitions 
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en
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 tr
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va
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e)

. 

ac
cu

ra
cy

 o
f p

la
tf

or
m

 Accuracy of base calling 
against reference sequence. 
The accuracy of the platform 

was established by 
determining the proximity of 

agreement between base 
calling made by MiSeq 

sequencer (measured value) 
and NCBI reference sequence 

(the true value).  
 
 

  99.999378% Accuracy of the 
platform 

ac
cu

ra
cy

 o
f a

ss
ay

 

Test accuracy is determined 
by agreement of the test 

result of validation samples 
sequenced by PHL with the 

test result for reference 
sequences of the same 

strains.  

 
 

 

congruence of phylogenetic 
trees built using reference 
sequences and validation 

sequences 

Detection 
and correct 

identification 
of each of 
the MLST 

alleles 

ID of 16S rRNA 
sequence of the 

validation sample 
matches the ID of 

16S rRNA 
sequence of the 

reference 
sequence 

Presence of 
ABR genes 

characteristic 
for reference 

strain, absence 
of any other 
ABR genes 

Definition of 
correct results 

 Individual sample clustering Allele 16S rRNA ID result 
Antibiotic 
resistance 

gene 
Single test unit 

 100% 100% 100% 100% Accuracy of the 
assay 

ac
cu

ra
cy

 o
f 

bi
oi

nf
or

m
at

i
cs

 p
ip

el
in

e 

Clustering suggested by 
previous investigators must 

match clustering achieved by 
the analysis using PHL 

validation bioinformatics 
pipeline. 

   100% - - - 
Accuracy of the 
bioinformatics 

pipeline 
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at
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(p

re
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n 

w
ith

in
 

ru
n)

  

was established by 
sequencing the same samples 

multiple times under the 
same conditions and 

evaluating the concordance 
of the test results and 

performance.   
  

 

 inter- assay precision of single nucleotide variant detection.  Definition of 
correct results 

SNP 
(precision 

per replicate)  
SNP (precision 
per base pair) Allele 16S rRNA ID - Single test unit 

99.02% 99.9999997%  100% 100% - Repeatability 

 R
ep

ro
du

ci
bi

lit
y 

(p
re

ci
sio

n 
be

tw
ee

n 
ru

ns
)  

was assessed as the 
consistency of the test results 

and performance 
characteristics for the same 

sample sequenced under 
different conditions, such as 
between different runs and 

different sample 
preparations.   

 

 

 intra- assay precision of single nucleotide variant detection.  Definition of 
correct results 

SNP 
(precision 

per replicate)  
SNP (precision 
per base pair) Allele 16S rRNA ID - Single test unit 

97.05% 99.999998% 100% 100% - Reproducibility 

 

% agreement = 
# of outbreak isolates clustered correctly in validation tree 

Total # of outbreak isolates clustered together in the study tree
    

x 100% 

% agreement with reference =    

(Covered genome length)−(Total # of SNP differing fromreference) 
Covered genome length 

   

 x 100% 

Accuracy =
# of correct results 

total # of results 
x 100% 

Intra − assay precision (Reproducibility) =   

# between−run replicates in agreement 
Total # of tests performed for between−run replicates 

x 100% 

Inter − assay precision (Repeatability) =   

  # within−run replicates in agreement 
Total # of tests performed for within−run replicates 

  x 100% 
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Continued 
      Assay used for validation of the parameter  

Definition of the performance characteristic for 
WGS applications Formula used for calculation  hqSNP based genotyping MLST 16S 

Antibiotic 
resistance 

genes 
detection 

Assay-specific 
definitions 

An
al
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ic

al
 se

ns
iti

vi
ty

 (L
im

it 
of

 
de

te
ct

io
n)

 

The likelihood that a WGS assay will detect a 
sequence variation when present within the 

analyzed genomic region (this value reflects a 
false negative rate of the test).  

 

 

Clustering of related 
samples (#of validation 
samples with clustering 

results matching reference ) 

Number of 
correctly 
identified 

alleles  
- - 

Definition of 
true positive 

results 

Number of validation 
samples which clustered 
together with samples, 

genetically distant 
according to the reference 

tree 

Number of 
unidentified or 
misidentified 

alleles 
validation 
samples 

- - 
Definition of 

false negative 
results 

Individual sample clustering Allele - - Single test unit 

100% 100% - - Analytical 
sensitivity 

An
al

yt
ic

al
 sp

ec
ifi

ci
ty

 

The probability that a WGS assay will not 
detect sequence variation(s) when none are 
present within the analyzed genomic region 

(this value reflects a test’s false positive rate).  

 
 
 

 

 

No clustering between 
unrelated samples (#of 
validation samples with 

clustering results matching 
reference ) 

Number of 
unidentified 

alleles in 
negative 
control 
samples  

- - 
Definition of 
true negative 

results 

Number of validation 
samples which failed to 
clustered together with 

samples, genetically similar 
according to the reference 

tree 

Number of 
identified 
alleles in 
negative 
control 
samples  

- - 
Definition of 
false positive 

results 

Individual sample clustering Allele - - Single test unit 

100% 100% - - Analytical 
specificity 

Re
po

rt
ab

le
 

ra
ng

e 
 

The region of the genome in which sequence 
of an acceptable quality can be derived by the 

laboratory test. 

N/A 
  

 

 
Genome-wide hq SNPs  

Housekeeping 
genes used in 
corresponding 
MLST schemes 

16S rRNA 
gene  

Antibiotic 
resistance 
genes in 
included 

ResFinder 
database 

 

Footnotes: See details in Supplementary Document 1. 
Abbreviations: TP- True positive results, TN- True negative results, FP- False positive, FN- False negative  

Analytical specificity =    TN
TN + FP

  x 100% 

Analytical sensitivity =    TP
TP + FN

  x 100% 
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Table 3. Summary of the studies used for validation of bioinformatics 
pipeline 

Study 
Study 1.  

SR Harris et al. Lancet Infect Dis 2013; 
13: 130–36 [44] 

Study 2. 
P Leekitcharoenphon et al. PLoS ONE 

2014; 9(2): e87991 [45]  

Microorganism Methicillin-resistant Staphylococcus 
aureus 

Salmonella enterica serovar 
Typhimurium 

Source of isolates Human Human 

Number of isolates analyzed 7 outbreak isolates (1 outbreak cluster) + 
2 epidemiologically unrelated isolates 

9 outbreak isolates (4 outbreak clusters) 
+ 2 epidemiologically unrelated isolates 

Type of outbreak Hospital-associated outbreak Foodborne outbreaks 

ID of the samples in the study 
which were used for 
validation 

P1, P2, P3, P4, P16, P21, P25, Identified 
by Infectious Control Investigation non-
outbreak ST1, MRSA identified by 
searching microbiology database non-
outbreak ST772 

0803T57157, 0808S61603, 
0808F31478, 0903R11327, 
0811R10987, 0804R9234, 
0810R10649, 0901M16079, 
0110T17035, 1005R12913, 
1006R12965 

Accession ## of corresponding 
samples 

ERR070045, ERR070042, ERR070043, 
ERR070044, ERR124429, ERR124433, 
ERR128708, ERR070041, ERR072248 

ERR277220, ERR277226, ERR277223, 
ERR277222, ERR277224, ERR277221, 
ERR277227, ERR277228, ERR277203, 
ERR277233, ERR277234 

# of clusters in study tree 1 4 
# of clusters in validation tree 1 4 
# of outbreak isolates in each 
cluster in the study tree Cluster 1=  7 Cluster 1= 2, Cluster 2= 3, Cluster 3= 2, 

Cluster 4= 2 
# of outbreak isolates in each 
cluster in validation tree Cluster 1= 7 Cluster 1= 2, Cluster 2= 3, Cluster 3= 2, 

Cluster 4= 2 
# of epidemiologically 
unrelated isolates in the set 2 2 

# of epidemiologically 
unrelated isolates clustered 
with outbreak isolates 

0 0 

% agreement= (# of outbreak 
isolates clustered correctly in 
validation tree)x100%/ (Total 
# of outbreak isolates 
clustered together in the study 
tree) 

 (7x100/7) = 100% (9x100/9) = 100% 
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[DNA extraction 
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Library preparation 
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Mapping QC: 
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• Percentage of genome 
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• Min contig coverage  
• Min contig length  

Variant calling QC: 
•Min SNP coverage     
•Min SNP quality    
•No heterozygotes 

16S  rRNA ID  [match submitter ID if available] 
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Negative index 
combination 
control  
Number of 
reads after trim 
 
 

•N50 for de novo 
assembled 
reads 
•The highest 
coverage of de 
novo assembled 
contigs  

Negative control for 
phylogenetic analysis  
Epidemiologically 
unrelated control 
strain of bacteria 

No-template control 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Number of reads 
after trim 
 
 
 
 
 
 
 
•N50 for de novo 
assembled reads  
•The highest 
coverage of de novo 
assembled contigs  

DNA template QC 

Library QC 

Run QC 

Raw Data QC 

Analysis QC 

• Percent of bases with quality score >Q30  
• Cluster density 

• Cluster passing filter  

• DNA concentration 
• DNA purity 

• Library size distribution 
• Library concentration 

•Average depth of the genome coverage 
•Accuracy of base calling: Read length with 
quality score ≥Q30 

DNA isolation 
  

WGS QUALITY CONTROL SCHEME 

Raw reads import 
Trimming 
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