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Abstract 

Cytosine methylation (5mC) is vital for cellular function, and yet 5mC sites are also 

commonly mutated in the genome. In this study, we analyse the genomes of over 900 cancer 

samples, together with tissue type-specific methylation and replication timing data. We 

describe a strong mutation-methylation association in colorectal cancers with microsatellite 

instability (MSI) or with Polymerase epsilon (POLE) exonuclease domain mutation. We 

describe a potential role for mismatch repair in the correction of mismatches resulting from 

deamination of 5mC, and propose a mutator phenotype to exist in POLE-mutant cancers 

specifically at 5mC sites. We also associate POLE-mutant hotspot coding mutations in APC 

and TP53 with CpG methylation. Analysing mutations across additional cancer types, we 

identify nucleotide excision repair- and AID/APOBEC-induced processes to underlie 

differential mutation-methylation associations in certain cancer subtypes. This study reveals 

differential associations vital for accurately mapping regional variation in mutation density 

and pinpointing driver mutations in cancer. 
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Introduction 

Cancer develops as somatic mutations accumulate in cells, with certain driver 

mutations conferring a growth advantage to a sub-population (Nowell, 1976). In some 

cancers, mutations develop primarily from exposure to exogenous mutagens such as 

ultraviolet (UV) light or cigarette smoke, while in other cancer types, most mutations 

accumulate after a cell develops defective replication or repair mechanisms (Vogelstein et al., 

2013). Mutation rates vary throughout the cancer genome due to factors such as trinucleotide 

composition (Alexandrov et al., 2013), transcription factor binding (Perera et al., 2016; 

Sabarinathan et al., 2016), replication timing, chromatin organisation (Schuster-Bockler and 

Lehner, 2012) and mismatch repair (MMR) efficiency (Supek and Lehner, 2015). However, 

the origin of many mutations within cancer cells still remains unknown (Alexandrov et al., 

2013).  

DNA methylation is an epigenetic mark most commonly occurring in the genome at 

sites of CpG dinucleotides (Riggs and Jones, 1983). Methylation involves the covalent 

attachment of a methyl group to the fifth atom of the carbon ring of a cytosine, forming 

molecules known as 5-methylcytosine (5mC) (Brero et al., 2006). Methylation has important 

functions within a cell, influencing development (Smith and Meissner, 2013), gene 

expression and silencing (Doerfler, 2006), as well as being implicated in carcinogenesis 

(Jones and Baylin, 2002).  

Despite its crucial role in cellular function however, CpG methylation can also be 

somewhat mutagenic, with methylated cytosines being approximately fivefold more likely to 

undergo spontaneous deamination (loss of an amine group) than unmethylated cytosines 

(Ehrlich et al., 1986). 5mC deamination yields thymine, leading to a GT mismatch in DNA 

which can be recognised by thymine DNA glycosylases and repaired through the base 
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excision repair (BER) pathway (Jacobs and Schär, 2012; Walsh and Xu, 2006). However, if a 

cell replicates before the mismatch can be repaired, a C>T mutation will become encoded 

into its genome. A mutation signature from cytosine deamination at CpG sites (signatures 1A 

and 1B from Alexandrov et al. (2013)) has been identified in many cancer types, and is 

strongly correlated with age of diagnosis, as age allows more time for deamination events to 

occur and their effects to accumulate (Alexandrov et al., 2015). Methylated CpG 

dinucleotides (mCpGs) have additionally been found to be more highly mutated in non-

cancer tissues, with mutation rates also correlating with increasing age (Rahbari et al., 2016). 

The commonly accepted dogma regarding mutations at mCpGs is that mutations 

accumulate solely due to random spontaneous deamination of 5mC. However, other 

processes have also been associated with 5mC mutation or deamination, including exposure 

to UV light or to cigarette smoke (Pfeifer, 2006). In addition, understanding the repair of GT 

mismatches is crucial in determining how mutations at sites of 5mC accumulate within the 

genome (Wiebauer et al., 1993). In this study, we analyse the association between 

methylation and mutation in 63 whole-genome sequenced (WGS) colorectal cancers, together 

with an additional 847 whole-genomes across 11 cancer types. We describe the association in 

detail within colorectal cancer subtypes, positing a potential role for MMR in the repair of 

deaminated 5mCs, and implicate Polymerase epsilon (POLE) exonuclease domain mutation 

(POLE-mutant) in increased mutagenesis at 5mC sites. We further define the influence of 

methylation and replication timing in driving the differential patterns of mutation 

accumulation and repair across the genomes of the additional cancer types and subtypes 

analysed, revealing associations of methylated CpG mutagenesis with nucleotide excision 

repair (NER) and deaminase enzyme activity.   
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Results and Discussion 

Methylation and mutation associations in colorectal cancer 

Recent studies investigating the accumulation of somatic mutations in cancer have 

shown that mutations in many cancer types increase at promoters due to inhibition of 

nucleotide excision repair (NER) at transcription factor bindings sites (Perera et al., 2016; 

Sabarinathan et al., 2016). Colon cancers were found to exhibit the lowest relative rate of 

mutations at promoters, attributable to the reduced importance of NER in the repair of 

mutations accumulating in such tissue (Perera et al., 2016). In this study, we investigate the 

reduction of promoter mutations in colorectal cancer further. To do so, we first constructed 

mutation profiles around transcription start sites (TSSs) using 63 WGS colorectal cancer 

samples from The Cancer Genome Atlas (TCGA), observing a decrease in mutation load in 

the region immediately surrounding the TSS (Fig 1a). To understand the effect across 

colorectal cancer subtypes, we separated our samples into those which were microsatellite 

stable (MSS), had microsatellite instability (MSI) or were POLE-mutant, finding each of the 

subtypes to exhibit reduced mutation loads at the TSS, with more pronounced relative hypo-

mutation in MSI and POLE-mutant samples (Supp Fig 1a).  

As CpG methylation is typically lower at CGI-associated promoter elements (Long et 

al., 2016), we associated methylation and mutations around the TSS, using normal sigmoid 

colon whole-genome bisulfite sequencing (WGBS) data (Roadmap Epigenomics Consortium 

et al., 2015). We mapped average CpG methylation, observing a corresponding decrease in 

methylation in the region immediately surrounding the TSS (Fig 1a; see also Supp Fig 1b for 

DNase I hypersensitivity (DHS) and H3K4me3 profiles around the TSS – indicating 

promoter activity). We measured the association between methylation and CpG mutations per 

Mb across autosomes in colorectal cancer, finding a significant association for each subtype 
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(P < 0.0001, Pearson’s correlation; Fig 1b). We observed significantly greater slopes in 

POLE-mutant and MSI samples when compared with the slope in MSS samples (72% and 

51% greater rate of mutation per unit increase in methylation respectively, P < 0.0001, 

Poisson regression; Fig 1b). This finding shows that despite the increased mutation load of 

MSI and POLE-mutant colorectal cancers, mutations at CpG sites remain methylation-

associated. Taking the mutation-methylation association in MSS samples to be that occurring 

due to endogenous mCpG deamination and repair in colon tissue, the greater slopes of MSI 

and POLE-mutant cancers must be attributable either to increased mutagenesis or to 

deficiencies of repair.  

Potential role for mismatch repair in 5mC deamination repair and regional variation  

At megabase scales, MMR activity causes genome-wide variation in mutation load 

according to replication timing (Schuster-Bockler and Lehner, 2012; Supek and Lehner, 

2015). This means that in MSI colorectal cancers (which are MMR-deficient), genomic 

variation at such scales is mostly lost (Supek and Lehner, 2015). We note that average 

methylation, varies only slightly with replication timing changes at megabase scales (r
2
 = 

0.20 P < 0.0001, Pearson’s correlation;  = 0.0013, with fraction methylation per line of best 

fit, ranging from 0.75 to 0.83; Supp Fig 2a). We hypothesised therefore, that the strong 

mutation-methylation association in MSI colorectal cancers (see Fig 1b) may underlie the 

reported loss of genomic variability (Supek and Lehner, 2015), with MMR during replication 

playing a significant role in the repair of the GT mismatches that result from 5mC 

deamination.  

To investigate this hypothesis, we isolated C>T mutations at CpGs in MSS and 

POLE-mutant
 
colorectal cancers. We also isolated C>T CpG mutations from late-onset MSI 

(median 66.7% of time spent as MSI) and early-onset MSI (median 84.3% of time spent as 
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MSI) samples (P < 0.0001, unpaired t-test; Supp Fig 2b), boosting sample sizes by 

incorporating WGS uterine and stomach cancers into our MSI subsets. We then correlated 

mutations with replication timing, finding a positive correlation in both MSS and POLE-

mutant colorectal cancers (r
2
 = 0.97 P < 0.001 and r

2
 = 0.64 P = 0.0567 respectively, 

Pearson’s correlation; Fig 2a), consistent with the higher rates of mutation accumulation 

known to occur in late-replicating regions (Schuster-Bockler and Lehner, 2012; Supek and 

Lehner, 2015). Strikingly however, we found both early- and late-onset MSI cancers to 

exhibit significant negative correlations between C>T mutations and replication timing at 

CpG dinucleotides (r
2
 = 0.92 and r

2
 = 0.88 respectively, P < 0.01, Pearson’s correlation; Fig 

2a), with more mutations occurring at early-replicating regions. In fact, the earlier that a 

sample gained MSI, the more negative was the slope of the line of best fit between CpG C>T 

mutations and replication timing (r
2
 = 0.50 P < 0.05, Pearson’s correlation; Supp Fig 2c). 

In vivo studies using SV40 heteroduplex transfection have shown that MMR is 

involved in the repair of a small proportion (~8%) of 5mC deamination events (Brown and 

Jiricny, 1987, 1988; Wiebauer et al., 1993). Our findings also suggest that MMR may play a 

role in the repair of deamination-induced GT mismatches. The increased time available for 

BER to recognise and repair the GT mismatches resulting from 5mC deamination prior to 

cellular replication should result in a decrease in mutation load in late-replicating regions. In 

MSI samples, such an association is evident (Fig 2a), with most CpG mutations accumulating 

in the absence of MMR. In contrast, since MMR activity is enhanced in early-replicating 

euchromatic regions (Supek and Lehner, 2015), when MMR is proficient – as in MSS and 

POLE-mutant colorectal cancers – we see a decrease in mutation load in such regions (Fig 

2a), obscuring what may be an otherwise negative BER-associated trend. We find no 

evidence for decreased BER function in MSI cancers (see Supplementary Data), leading us 
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to suggest MMR involvement in the repair of mismatches at mCpG sites, with the precise 

mechanism requiring further research. 

mCpG mutability contributes to the regional loss of mutation density variation in MSI 

cancers 

To determine whether the negative correlation that we observed in Fig 2a does 

contribute to the reported overall genome-wide loss of mutation density variation in MSI 

samples (Supek and Lehner, 2015) as we had hypothesised, we plotted the correlation of non-

C[>T]pG MSI signature mutations (see Methods), CpG C>T mutations and full (CpG-

inclusive) MSI signature mutations against replication timing (Fig 2b). The full MSI 

signature (n = 323,848 mutations in MSI samples) is thus the combination of both non-

C[>T]pG MSI signature (n = 236,732; 73%) and CpG C>T (n = 87,116; 27%) mutations. Our 

analysis confirmed the findings of Supek & Lehner (2015), as the slope of the mutation-

replication timing association was consistently lower across all mutation categories in MSI 

samples when compared with MSS and POLE-mutant samples
 
(Fig 2b, Supp Fig 2d). 

However, our analyses also showed that the negative association of CpG C>T mutations in 

MSI cancers ( = -5.30x10
-4

) does contribute to the magnitude of genomic variability loss 

according to replication timing for overall CpG-inclusive MSI-associated mutations ( = -

0.0632x10
-4

; non-C[>T]pG MSI signature mutations  = 1.95x10
-4

; Fig 2b). Thus, while 

MMR does underlie mutation rate variation across the genome, we suggest that the effect of 

MMR deficiency on mutation accumulation at CpG dinucleotides is a factor that contributes 

to the extent of this loss of mutation-replication timing-association.  

Mutagenesis at 5mC nucleotides in POLE-mutant colorectal cancers 

We computed the correlation coefficient between CpG mutations and methylation 

separately for individual POLE-mutant colorectal cancer samples, finding the slope of the 
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line of best fit from binned data to range from 19.23 to 3,090 (Supp Fig 3). We found the 

slopes to significantly positively correlate with the total number of mutations in each POLE-

mutant sample (r
2
 = 0.75 P < 0.01, Pearson’s correlation; Fig 3a), suggesting that much of 

the increased mutagenesis at CpGs in POLE-mutant cancers is methylation-associated. 

POLE-mutant samples have an inactivated exonuclease domain, leading to a loss of 

proofreading ability on newly-synthesized DNA (Kane and Shcherbakova, 2014; Rayner et 

al., 2016). Samples with greater absolute numbers of mutations therefore likely have either a 

stronger mutator phenotype, or have become POLE exonuclease domain mutated earlier. 

However, with neither of these factors expected to alter the rate of 5mC deamination, we 

hypothesised that exonuclease domain-mutated POLE may more often make replication 

errors when encountering a site requiring the insertion of guanine in a mCpG context. It is 

possible that these data could also be explained if errors are introduced by wild-type POLE 

when encountering a mCpG context and, where there is proofreading deficiency, these errors 

remain uncorrected in the genome. However, to our knowledge, there is no evidence from in 

vitro studies that wild-type replicative polymerases typically make such errors in the context 

of methylated cytosines.  

Consistent with our hypothesis of a POLE-mutant mutator phenotype, we found a 

significantly greater proportion of T[C>T]G mutations to occur at high rather than low 

methylated TCG sites (P < 0.01, paired t-test; Fig 3b), with the TCG trinucleotide being the 

most highly mutated CpG variant in POLE-mutant tumours (Alexandrov et al., 2013; 

Shinbrot et al., 2014). Given POLE’s role in leading strand replication (Miyabe et al., 2011; 

Pursell et al., 2007), we investigated the strand-specificity of the T[C>A]T and T[C>T]G 

mutations, which are both common mutations in POLE-mutant cancer genomes (Alexandrov 

et al., 2013; Shinbrot et al., 2014). In support of our mutator-phenotype hypothesis, we found 

significant strand asymmetry to occur in both trinucleotide contexts around known origins of 
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replication (P < 0.05 and P < 0.0001, Fisher’s exact test; Fig 3c, d). There is a growing body 

of evidence which suggests that POLE exonuclease domain mutation can result in a mutator 

phenotype greater than that from proofreading-deficiency alone (Kane and Shcherbakova, 

2014). Some variants have been shown to increase mutation load above that from inactivation 

of the catalytic domain alone (Shinbrot et al., 2014), lending further support to our 

hypothesis. 

mCpG mutations as potential driver events in POLE-mutant colorectal cancers 

Many mutations responsible for genetic diseases are C>T transitions occurring at CpG 

dinucleotides (Cooper et al., 2011; Walsh and Xu, 2006). Additionally, methylated CpGs are 

hotspots for somatic cancer mutations in driver genes such as TP53, RB1 and EGFR (Fujii et 

al., 2015; Holliday and Grigg, 1993; Jones et al., 1992; Walsh and Xu, 2006). POLE-mutant 

colorectal cancers harbour specific mutation hotspots in the key tumour-suppressors TP53 

and APC (Palles et al., 2013; Shinbrot et al., 2014) (a finding which we have confirmed in 

our samples (Fig 4a)). As POLE exonuclease domain mutation is thought to be an early event 

in tumours (Rayner et al., 2016), these POLE-mutant-signature mutations could occur 

reasonably early in oncogenesis, serving as gatekeeper mutations which confer a growth 

advantage to cellular subpopulations, and driving tumour growth. We observed that these 

mutation hotspot (truncating C>T mutations at TP53 R213X and APC R1114X) occur at 

TCG trinucleotides, and so we hypothesised that these sites may be more often mutated 

specifically in POLE-mutant tumours because of the strong mutation-methylation association 

in this subtype (see Fig 1b).  

We found that these sites are in fact highly methylated in normal colon tissue, with 

the CpG at TP53 R213 methylated in 97.1% of cells, and at APC R1114 methylated in 98.7% 

of cells (Fig 4b). However, while these sites are methylated to a significantly greater extent 
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than other codons in the same gene (P < 0.01, one-sample t-test; Fig 4b), there may yet be 

other locations in TP53 or APC which are equally likely to become mutated – when 

considering methylation alone. To investigate this, we considered all possible C>T mutations 

at TCG trinucleotides which would lead to the immediate truncation of either TP53 or APC. 

We found that the R213 site in TP53 is the only possible trinucleotide which fulfils these 

criteria (Supp Fig 4a), adequately explaining its hotspot mutation status in POLE-mutant 

samples. In APC however, we found three additional sites occurring earlier from the N-

terminal of the protein which fulfilled the criteria listed, together with five mutation sites at or 

after the C-terminal of codon 1920 (Supp Fig 4b). This suggests that while methylation may 

be responsible for the formation of specific mutation hotspots in POLE-mutant cancers, other 

factors may also contribute to mutation occurrence and selection within cells – perhaps due to 

a phenotype conferred to cells by mutations at specific sites, making them more likely to be 

observed in cancer sequencing data (Walsh and Xu, 2006).  

Differential influence of methylation on mutation accumulation across cancer types and 

subtypes 

 Having described a strong mutation-methylation association across colorectal cancer 

subtypes, we next sought to investigate whether any such association exists in other cancer 

types. To do so, we incorporated into our analyses, somatic mutations from an additional 847 

cancer samples across 11 cancer types available from TCGA and previously published 

datasets (Zheng et al., 2014). We developed regression models using both tissue type-specific 

methylation data (Supp Table 1) and average cell-type replication timing data, plotting 

actual mutations together with the function predicted by multivariable regression models (see 

Methods).  
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To first validate our regression models, we investigated the predicted associations in 

colorectal cancer, finding a positive association between mutation probability and fraction 

methylation across colorectal cancer subtypes for all possible methylation values (function 

vertex > 1; Table 1), consistent with what we have already demonstrated (see Fig 1b). Also 

confirming previous findings (Supek and Lehner, 2015), we found mutation probability to 

vary little across replication timing changes in MSI colorectal cancers, compared with MSS 

and POLE-mutant subtypes (depicted in rightmost graphs, Fig 5a-c). This is demonstrated by 

the small improvement to the area under the curve (AUC) in nested models which 

additionally incorporated methylation (MSI: 2.0%), compared with 16.5% in MSS and 12.5% 

in POLE-mutant subtypes (Table 1).  

We next examined the mutation-methylation association in skin cancer subtypes, as 

skin cancers are subject to well-defined mutation and repair processes associated with UV 

light. Interestingly, we found that the association between mutation rate and methylation was 

not positive across all methylation values (Fig 5d, e). In melanoma, the vertex predicted by 

the multivariable regression model was at 0.50 fraction methylation (Table 1), meaning that 

at methylation fractions greater than 0.50, increasing methylation was associated with 

decreasing mutation probability (leftmost graph; Fig 5d). When removing replication timing 

variation from the function (see Methods), the association between methylation and the log 

odds of mutation probability remained negative at high levels of methylation (middle graph; 

Fig 5d) possibly suggesting either that this is the true underlying association, or that currently 

unknown factors are influencing the mutation rate at highly methylated CpGs in melanoma. 

NER is particularly vital in skin cancers due to its role in the repair of UV light-

induced DNA lesions (Schärer, 2013). We found replication timing and levels of NER in 

response to UV light exposure (Zheng et al., 2014) to be significantly correlated with one 

another (cyclobutane pyrimidine dimer (CPD): r
2
 = 0.79, and (6-4)pyrimidine-pyrimidone 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 8, 2017. ; https://doi.org/10.1101/106872doi: bioRxiv preprint 

https://doi.org/10.1101/106872


 
 

13 
 

photoproduct ((6-4)PP): r
2
 = 0.59, P < 0.0001, Pearson’s correlation; Supp Fig 6a). 

Strikingly, we also found that the mutation-methylation pattern in melanoma closely mimics 

the replication timing-methylation pattern in NHEK cells (Supp Fig 6b), likely attributable to 

the association of replication timing and chromatin density. The propensity for mutagenic 

CPD DNA lesion formation following UV light exposure is known to increase at mCpGs 

(Cannistraro et al., 2015; Rochette et al., 2009), and hence we expect that there is an 

underlying positive linear association between CpG mutation rate and methylation in UV 

light-induced cancers. If this is true, then this linear association should become clearer in 

XPC
-/-

 squamous cell carcinomas (SCCs), as XPC
-/-

 SCCs are global genome NER-deficient 

(Zheng et al., 2014) and ought to have a mutation profile mostly absent the influence of any 

NER-induced replication timing-association. Confirming this expectation, we found the 

vertex of the function predicting mutation probability to be at 0.64 fraction methylation in 

XPC
-/-

 SCC (Table 1), meaning that the mutation-methylation association remained positive 

over a greater range of methylation values in XPC
-/-

 SCC than it did in melanoma. Further, 

the AUC showed a 4.9% improvement when methylation was added to a nested model, with 

only a 2.4% improvement in melanoma (Table 1). Some highly methylated regions are active 

gene bodies which tend to be both early-replicating (Aran et al., 2010) and subject to 

transcription-coupled NER (Zheng et al., 2014), possibly leading to their reduced overall 

mutation load in melanoma. Taken together, our results suggest that the negative association 

between mutation rate and methylation at high fractions of methylation may, at least in part, 

be driven by the underlying mutation-replication timing-association.  

When investigating other cancer types, we found that multivariable regression models 

predicted the function’s vertex to be between 0 and 1 fraction methylation for some cancers. 

This was the case in breast, liver, ovarian and pancreatic cancers, as well as chronic 

lymphocytic leukaemia (Supp Table 2). For these cancers, like in skin cancer, the association 
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between mutation probability and fraction methylation was negative at some higher values of 

methylation (see Supp Fig 5). The primary mutation and repair processes are not well 

understood in many of these cancers, with samples harbouring varied mutation signatures and 

many mutations of unknown origin (Alexandrov et al., 2013). It is possible that our 

regression models are unable to completely separate the association between replication 

timing and methylation, with both factors significantly impacting on mutation rate. However, 

it may also be true that in some cancer types, the underlying association with methylation is 

actually such that, at high rates of methylation, mCpGs are less likely to become mutated. 

This may be due to the specific mutation and repair processes inherent in various tissue types, 

which are not well understood. In fact, other analyses have shown that the genome-wide rate 

of C>T single nucleotide polymorphisms (SNPs) increases only at low and intermediate (20-

60%) methylation levels, but not at highly methylated sites (Xia et al., 2012). 

Influence of methylation on mutation accumulation in cancers with AID/APOBEC mutation 

signature 

Many cancer types harbour mutation signatures related to the action of activation 

induced deaminases (AID) or apolipoprotein B mRNA editing enzyme catalytic polypeptide-

like (APOBEC) enzymes (Alexandrov et al., 2013), a family of DNA deaminases involved in 

immunity and DNA demethylation (Rebhandl et al., 2015). These enzymes have been found 

to have substantially altered activity on differentially methylated cytosines (Nabel et al., 

2012), and hence we investigated mutation rates at mCpG dinucleotides in breast cancer 

samples with and without mutation signatures indicating AID/APOBEC enzyme activity (see 

Methods). We found that regression models predicted the function’s vertex to shift from 0.75 

fraction methylation in breast cancer samples without AID/APOBEC enzyme activity 

signatures to 0.50 fraction methylation in samples with those signatures (Fig 6b; Supp Table 

2). This means that in breast cancer samples with AID/APOBEC enzyme activity signatures, 
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mutation probability decreases as methylation increases, across a much greater range of 

methylation values than it does in samples without the signatures. This observation supports 

findings from biochemical studies indicating reduced activity of AID/APOBEC enzymes on 

5mC (Nabel et al., 2012), translating such studies into an in vivo biological context.  

Conclusion 

In this study, we analyse 63 colorectal cancer whole-genomes, together with data 

from an additional 11 cancer types. Using tissue-specific methylation data, we describe a 

strong association between C>T mutations and methylation at CpG dinucleotides in many 

cancer types, driving patterns of mutation formation throughout the genome. Using analyses 

of replication timing, we suggest a potential role for MMR in the repair of GT mismatches 

resulting from deamination of 5mC. We also propose a specific mutator phenotype to exist at 

methylated CpGs resulting from POLE exonuclease domain mutation – a phenotype which 

may be responsible for driving tumour growth through the formation of specific mutation 

hotspots in key cancer-associated genes. Additionally, we reveal differential associations 

between mutations and methylation across cancer types, with our findings providing 

significant developments in our understanding of mutation formation and repair at CpG 

dinucleotides in cells. 

These analyses highlight the importance of understanding differential methylation-

mutation associations across cancer types and subtypes. We emphasise the need for 

researchers to understand and stratify cancer subtypes according to their underlying mutation 

and repair processes when developing predictive models of expected mutation loads 

according to genetic and epigenetic features in the genome. Our work may assist cancer 

researchers in more accurately identifying driver mutations from among passenger mutations, 

by further defining expected background mutation rates in cancer genomes. 
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Methods 

Somatic alterations and sample subtype classification 

Somatic point mutations calls were made from BAM files available from The Cancer 

Genome Atlas (TCGA), as previously described (Perera et al., 2016), with the exception of 

mutation calls for XPC
-/-

 squamous cell carcinoma, which were taken directly from Zheng et 

al. (2014).  

MSI samples were selected if they were listed as “MSI-H” in TCGA “clinical” data 

from the TCGA data portal. Early- and late-onset MSI samples were obtained from a 

previous study (Supek and Lehner, 2015), with additional WGS ‘UCEC’ and ‘STAD’ 

samples from TCGA. The early-onset MSI samples used in analyses were colorectal cancer 

samples TCGA-A6-6781, TCGA-AD-6964 and TCGA-AA-A00R, together with UCEC 

samples TCGA-AP-A0LD, TCGA-B5-A11H and TCGA-AP-A054 and STAD sample 

TCGA-CG-5723. The late-onset MSI samples used in analyses were colorectal cancer 

samples TCGA-QG-A5Z2, TCGA-D5-6540, TCGA-AA-3518 and TCGA-AA-3516, 

together with UCEC samples TCGA-A5-A0G9 and TCGA-BS-A0TE and STAD sample 

TCGA-BR-4280. 

POLE-mutant samples were selected as such if they had a genome-wide mutation 

signature correlation with Signature 10 (Alexandrov et al., 2013) of greater than 0.85. Sample 

classifications were confirmed as exonuclease domain mutated if they contained an 

exonuclease domain mutation (between codons 268-471) as listed by Shinbrot et al. (2014) in 

“Supplemental Table 1A”.  

To select breast cancer samples with and without AID/APOBEC signatures, 

deconstructSigs (Rosenthal et al., 2016) was run on each sample. Breast cancer samples were 
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determined to have AID/APOBEC signatures if they had greater than 5% of mutations 

designated each to signatures 2 and 13, as these signatures have been attributed to the activity 

of AID/APOBEC family of cytidine deaminases (Alexandrov et al., 2013). Breast cancer 

samples without any mutations recorded as either signatures 2 or 13 were classified as being 

without AID/APOBEC mutation signatures. 

Methylation data 

Methylation data from normal sigmoid colon tissue was downloaded from the 

Roadmap Epigenomics Atlas (Roadmap Epigenomics Consortium et al., 2015) (Gene 

Expression Omnibus [GEO]: GSM983645). These data were from WGBS, and were obtained 

as a wig file, converted to BED format using “convert2bed”. Methylation values and 

chromosome coordinates for individual nucleotides in each CpG were merged, taking the 

methylation value for the cytosine of each CpG dinucleotide. This value was then used for all 

methylation calculations (when matched with colon cancer sample mutations) throughout this 

study.  

Additional methylation datasets were obtained from the Roadmap Epigenomics Atlas 

(Roadmap Epigenomics Consortium et al., 2015) and analysed similarly. These datasets were 

matched to various cancer types and subtypes as listed in Supp Table 1, together with their 

GEO accession numbers. 

Where data are binned across methylation values, bins spanning 0.1 methylation were 

used for all methylation values between 0 and 1. For CpGs with methylation values equalling 

exactly 0 or 1, data were allocated to bins representing either 0 or 1 methylation only, 

respectively.  
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Regression models and correlations which incorporated methylation data (that is, Fig 

1b, Fig 5, Fig 6, Supp Fig 2a, Supp Fig 5 and Supp Fig 6) used only methylation values 

from CpG dinucleotides located on autosomes. 

Promoter profiles 

H3K4me3 chromatin immunoprecipitation sequencing (ChIP-seq) data from normal 

sigmoid colon tissue were obtained from the Roadmap Epigenomics Atlas (Roadmap 

Epigenomics Consortium et al., 2015) (GEO: GSM956024), and converted to bigwig using 

“wigToBigWig”. Normal sigmoid colon tissue WGBS methylation data were obtained as 

described above, and converted to bigwig similarly. DNase I hypersensitivity (DHS) data 

were obtained for HCT116 cells from the ENCODE project consortium (The Encode Project 

Consortium, 2012) and downloaded as a bigwig file through UCSC (GEO: GSM736600).  

Transcription start sites (TSSs) for each gene were obtained from the UCSC table 

browser. Mutation profiles were generated by counting mutations at each base within ± 4 kb 

of a TSS, with counts normalised to mutations per Mb. Methylation, H3K4me3 and DHS 

profile data were created by use of the “computeMatrix” (reference-point) and “plotProfile” 

tools available through the deepTools package (Ramírez et al., 2014). All profiles were 

orientated so that the gene body runs from 5’ to 3’, downstream from the TSS.    

Replication timing analyses 

Genome-wide replication timing datasets were downloaded from UCSC Genome 

Browser (also available through GEO as GSE34399). GM12878 was the only lymphoblastoid 

cell-line used, to avoid biasing the sample through inclusion of multiple lymphoblastoid cell-

lines, as previously described (Supek and Lehner, 2015). The remaining datasets contained 

replication timing values for 11 cell-types. The genome was divided into megabase windows 
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using BEDtools (Quinlan and Hall, 2010), with replication timing averaged across cell-types 

within these windows. Thus data points in Supp Fig 2a show average replication timing and 

methylation in megabase bins. To ensure robust measurements with enough data points, sites 

were excluded from some analyses if they had replication timing listed as <20 or >80. 

(Replication timing values in the raw data range from 0 to 100. For presentation in figures, 

these values have been inverted, such that lower values indicate earlier replication). chrY was 

excluded from replication timing analyses, as values for this chromosome were not present in 

the original raw data. 

MSI-signature mutations were determined using the “MSI-enriched signatures” from 

Supek & Lehner (2015) “Extended Data Figure 4i”. Therefore, non-C[>T]pG MSI signature 

mutations include all of the following, in addition to their complementary trinucleotides and 

alternate nucleotide: C[C>A]A, C[C>A]T, C[C>A]C, C[C>A]G, A[C>T]A, A[C>T]T, 

A[C>T]C, G[C>T]A, G[C>T]T, G[C>T]C, T[A>G]A, T[A>G]C, T[A>G]T, T[A>G]G, 

C[A>G]A, C[A>G]C, C[A>G]T, C[A>G]G, A[A>G]A, A[A>G]T, A[A>G]C, A[A>G]G, 

G[A>G]A, G[A>G]C, G[A>G]T, and G[A>G]G. C>T CpG mutations included A[C>T]G, 

C[C>T]G, G[C>T]G and T[C>T]G, together with their complementary trinucleotides (for 

G>A mutations only). Full MSI-signature mutations included all trinucleotide/mutation 

options listed above. This signature corresponds closely with signature 6 from Alexandrov et 

al. (2013), which is associated with microsatellite instability. 

Excision repair sequencing (XR-seq) data for skin fibroblast cell line NHF1 (Hu et al., 

2015) were obtained in Sequence Read Archive (SRA) format (GEO: GSM1659156), and 

processed as previously described (Poulos et al., 2016).  

Strand specificity and origins of replication 
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TOP1 and LMNB2 oriC sites were selected for use since they were well-defined oriC 

per Shinbrot et al. (2014). The region used in analyses as that surrounding the oriC for TOP1 

was chr20:39,300,000-39,900,000, with the oriC isolated upstream of the TOP1 TSS as 

shown in Fig 3d (upper panel). The region used in analyses as that surrounding the oriC for 

LMNB2 was chr19:2,000,000-2,700,000, with the oriC as given in Shinbrot et al. (2014) and 

shown in Fig 3d (lower panel).  

Statistical analyses 

Regression models and other statistical analyses were performed in R. For each 

cancer type or subtype, the binary logistic regression model used incorporated methylation 

(with a quadratic term), replication timing and an interaction between methylation and 

replication timing, as shown below:  

𝑙𝑜𝑔 (
𝑃𝑚𝑢𝑡

1 − 𝑃𝑚𝑢𝑡
) = 𝑏0 + 𝑏1𝑀 + 𝑏2𝑀2 + 𝑏3𝑅 + 𝑏4(𝑀 × 𝑅) 

Where, Pmut = probability of mutation 

 M = methylation 

 R = replication timing 

 b0, b1, b2, b3 and b4 represent constants estimated from logistic regression. 

This model was selected for use as it significantly improved upon nested binary 

logistic regression models with fewer terms (data not shown). A significant improvement was 

determined by use of both a Likelihood Ratio Test (LRT; “lrtest” function from the “lmtest” 

package (Zeileis and Hothorn, 2002); model selected if LRT showed significant improvement 

by P < 0.05 at all steps between nested models) and the Akaike Information Criterion (AIC; 

model with smallest AIC was selected).  

Regression models were constructed using data for autosomes only. Mutations were 

considered a binary outcome, with each CpG designated as either never mutated in any 
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sample, or mutated in at least one sample, within a given cancer type or subtype. The area 

under the curve (AUC) was calculated using the ROCR package (Sing et al., 2005).  

Equations predicted by the regression models, together with the predicted vertex and 

AUC from relevant nested models are recorded in Table 1 and Supp Table 2. To plot the 

actual and predicted values from the regression model (as in Fig 5, Fig 6 and Supp Fig 5), 

data was binned either by methylation (bin size of 0.1, ranging from 0 to 1; for CpGs with 

methylation values equalling exactly 0 or 1, mutations were allocated to bins representing 0 

or 1 methylation only, respectively) or by replication timing (bin size of 10, ranging from 20 

to 80).  

Regarding Fig 5 and Supp Fig 5, where mutation probability or log odds of mutation 

probability was plotted against methylation (leftmost two graphs, respectively), an average 

was used for replication timing within each bin. To separate the influence of each factor, 

where the predicted function was plotted against methylation using average replication timing 

(middle graph) or against replication timing using average methylation (rightmost graph), the 

overall genome-wide average for replication timing or methylation (respectively) was used in 

the equation for all bins. Where log odds of mutation probability was plotted against 

replication timing (remaining graph), an average was used for methylation within each bin. 

In Fig 1b, significance was determined by Pearson’s correlation on binned data, with 

slopes of MSI and POLE-mutant colorectal cancer compared to MSS colorectal cancer data 

via a Poisson regression, with MSS as the factor level reference. Statistical analyses shown in 

Fig 2a, b and Supp Fig 2d were performed using Pearson’s correlation on binned data. 

Statistical analyses displayed in Supp Fig 2a, c, Fig 3a and Supp Fig 6a were performed 

using Pearson’s correlation on the data points shown. Fisher’s exact test was used to 

determine the levels of significance given in Fig 3c and Fig 4a. Fig 3b shows significance by 
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paired t-test between samples and Fig 4b displays significance by one-sample t-test. All other 

determinations of significance were made by unpaired t-test. In all instances, significance was 

determined using a threshold of P < 0.05.   
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Figures and Legends 

 

 

Figure 1 – Association between mutation accumulation and methylation in colorectal 

cancer subtypes. (a) Colorectal cancer (n = 63) mutation profile and average methylation 

profile from colon whole genome bisulfite sequencing (WGBS) around transcription start 

sites (TSSs). Nucleotide-resolution mutation data (light beige), together with mutation data in 

25 bp bins (dark beige) is shown. (b) Correlation between mutations and colon WGBS 

methylation across autosomes for POLE-mutant, MSI and MSS colorectal cancers. Binned 

data is shown (bins of 0.1 methylation), along with r
2
 and significance from Pearson’s 

regression. Mutation rate increase was calculated by Poisson regression on binned data, with 

MSS as the reference factor.  
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Figure 2 – Replication timing and MSI-associated mutations in colorectal cancer 

subtypes (a) Association between CpG C>T mutations and replication timing for 

microsatellite stable (MSS) colorectal cancers, and those with Polymerase epsilon 

exonuclease domain mutation (POLE-mutant). Association also shown for colorectal, uterine 

and stomach cancers with early- and late-onset of microsatellite instability (MSI). (b) 

Association between non-C[>T]pG MSI signature, CpG C>T, and full MSI signature 

(including CpG C>T) mutations with replication timing for MSI colorectal cancers. Data 

points show binned data (bins of 10 replication timing), with r
2
 and significance by Pearson’s 

correlation.  denotes the slope of the line.  
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Figure 3 – Methylation-associated mutations in POLE-mutant colorectal cancers. (a) 

Correlation of total mutations per Polymerase epsilon exonuclease domain mutant (POLE-

mutant) colorectal cancer sample, with the slope of line of best fit from the mutation-

methylation association at Supp Fig 3. r
2
 and significance is by Pearson’s correlation. (b) 

Percentage of candidate sites which harbour C>T mutations in a TCG context per sample for 

low (<25%) and high (>75%) methylated CpGs (in normal colon tissue) per POLE-mutant 

colorectal cancer sample. Significance is by unpaired t-test where ** P < 0.01. (c) Strand-

specificity of T[C>A]T (left) and T[C>T]G (right) mutations in the regions 5’ and 3’ to 

origins of replication (oriC) near TOP1 (top) and LMNB2 (bottom). Significance is by 

Fisher’s exact test. (d) Excerpt from the UCSC genome browser, depicting strand specificity 

of T[C>A]T and T[C>T]G mutations 5’ and 3’ to the oriC near TOP1 (top) and LMNB2 

(bottom).  
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Figure 4 – Mutation hotspots in cancer driver genes in POLE-mutant tumours. (a) 

Contingency table and significance from Fisher’s exact test of Polymerase epsilon 

exonuclease domain mutant (POLE-mutant) and microsatellite stable (MSS) colorectal 

cancer samples which are wild-type or mutant at TP53 R213 and APC R114 codons. (b) 

Methylation status in normal colon tissue for each CpG site within coding exons of TP53 and 

APC, together with significance by one-sample t-test against methylation at R213 and R1114 

codons respectively. ** denotes P < 0.01.   
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Figure 5 - Actual and predicted mutation rates, according to methylation and 

replication timing, for colorectal and skin cancer subtypes. Graphs depict actual and 

predicted (by regression model; see Methods) mutation probability and log odds of mutation 

probability by methylation or replication timing, for (a) microsatellite stable (MSS) colorectal 

cancer, (b) colorectal cancers with microsatellite instability (MSI), (c) colorectal cancers with 

Polymerase epsilon exonuclease domain mutation (POLE-mutant), (d) melanoma and (e) 

XPC
-/-

 squamous cell carcinoma. Graphs from left to right are: mutation probability by 

fraction methylation (actual and predicted), log odds of mutation probability by fraction 

methylation (actual and predicted), log odds of mutation probability by fraction methylation 

(predicted, using overall average replication timing in all bins), log odds of mutation 

probability by replication timing (actual and predicted) and log odds of mutation probability 

by replication timing (predicted, using overall average methylation in all bins). Binned data is 

shown (bins of 0.1 for methylation or 10 for replication timing), with any vertex between 0 

and 1 fraction methylation indicated by a dotted line. See Table 1 for regression output, 

predicted vertex and area under curve values. 
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Figure 6 – Association between methylation and mutation probability in breast cancer 

samples with and without AID/APOBEC mutations signatures. Graphs depict actual and 

predicted (by regression model; see Methods) mutation probability against fraction 

methylation for breast cancer samples (a) without and (b) with AID/APOBEC enzyme 

deaminase mutation signatures. Binned data is shown (bins of 0.1 for methylation) with any 

vertex between 0 and 1 fraction methylation indicated by a dotted line. See Supp Table 2 for 

regression output, predicted vertex and area under curve values. 
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Supplementary Figure 1 – Mutation, DNase I hypersensitivity (DHS) and H3K4me3 

signal around transcription start sites (TSSs) in colorectal cancer. (a) Mutation profiles 

around the TSS for microsatellite stable (MSS) colorectal cancer (left panel), those with 

microsatellite instability (middle panel) and with Polymerase epsilon exonuclease domain 

mutation (POLE-mutant; right panel). For mutations, nucleotide-resolution data is shown 

(light colour) along with data in 25 bp bins (dark colour). (b) Colorectal cancer mutation 

profile along with average DHS signal from HCT116 colorectal cancer cell-line (left panel) 

or colon tissue H3K4me3 signal (right panel) around the TSS.   
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Supplementary Figure 2 – Replication timing, methylation and MSI-associated 

mutations in colorectal cancer subtypes. (a) Association between normal sigmoid colon 

methylation from whole-genome bisulfite sequencing and replication timing across 

autosomes. Grey dots show data binned to megabase-scales. (b) Time spent with 

microsatellite instability (MSI) (%) for late- and early-onset MSI uterine, stomach and 

colorectal cancer samples. Significance is by unpaired t-test, where **** P < 0.0001. (c) 

Association between the slope of the line of best fit from CpG C>T mutations versus 

replication timing-association, and time spent as MSI for colorectal cancer samples. (d) 
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Association between CpG C>T mutations, non-C[>T]pG MSI signature and full MSI 

signature (including CpG C>T) mutations with replication timing for microsatellite stable 

(MSS; left panel) colorectal cancers and colorectal cancers with Polymerase epsilon 

exonuclease domain mutation (POLE-mutant; right panel). Data points show binned data 

(bins of 10 replication timing). Unless otherwise stated, r
2
 and significance are by Pearson’s 

correlation and  denotes the slope of the line. 
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Supplementary Figure 3 – Association between mutations and methylation in individual 

POLE-mutant colorectal cancers. Line of best fit from binned data of mutation-methylation 

associations in Polymerase epsilon exonuclease domain mutant (POLE-mutant) colorectal 

cancers. α denotes the slope of the line of best fit, with data binned by 0.1 methylation.  
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Supplementary Figure 4 – Methylation status for all possible sites of truncating 

T[C>T]G mutations within TP53 and APC genes in normal colon tissue. Methylation 

status in normal colon tissue of each TCG trinucleotide which, via a C>T mutation, would 

result in a protein truncation within a coding exon of TP53 (top) and APC (bottom). The 

R213 (TP53) and R1114 (APC) codons are indicated in red, with a horizontal line marking 

the methylation level at these codons.  
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Supplementary Figure 5 – Actual and predicted mutation rates, according to 

methylation and replication timing, across cancer types. Graphs depict actual and 

predicted (by regression model; see Methods) mutation probability and log odds of mutation 

probability by methylation or replication timing, for (a) breast cancer, (b) chronic 

lymphocytic leukaemia, (c) esophageal cancer, (d) liver cancer, (e) lung cancer, (f) 

lymphoma, (g) ovarian cancer, (h) pancreatic cancer and (i) stomach cancer. Graphs from left 

to right are: mutation probability by fraction methylation (actual and predicted), log odds of 

mutation probability by fraction methylation (actual and predicted), log odds of mutation 

probability by fraction methylation (predicted, using overall average replication timing in all 

bins), log odds of mutation probability by replication timing (actual and predicted) and log 

odds of mutation probability by replication timing (predicted, using overall average 

methylation in all bins). Binned data is shown (bins of 0.1 for methylation or 10 for 

replication timing), with any vertex between 0 and 1 fraction methylation indicated by a 

dotted line. See Supp Table 2 for regression output, predicted vertex and area under curve 

values. 
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Supplementary Figure 6 – Associations with replication timing of nucleotide excision 

repair and methylation in skin cells. (a) Association between cyclobutane pyrimidine dimer 

(CPD; left) or (6-4)pyrimidine-primidone photoproduct ((6-4)PP; right) excision sequencing 

(XR-seq) repair reads with replication timing. r
2
 and significance is by Pearson’s correlation, 

with grey dots showing data binned to megabase scales. (b) Association between replication 

timing and normal human epidermal keratinocyte (NHEK) cell methylation. Data is shown in 

bins of 0.1 methylation.  
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Tables 

Table 1 – Regression equation from multivariable models predicting mutation probability across colorectal and skin cancer subtypes, 

together with vertex and area under curve (AUC) predictions. 

Cancer 

type/subtype 
Regression model equation* 

Vertex
^
 

(fraction 

methylation) 

AUC
@

 for 

regression 

model A
A
 

AUC
+
 for 

regression 

model B
B
 

AUC
+
 for 

regression 

model C
C
 

Increase to 

AUC via 

replication
#
 

Increase to 

AUC via 

methylation
+
  

MSS 

colorectal 

cancer 

y = -5.788 + 3.2436M + -1.3425M
2
 + -

0.0277*R + -0.0026(M × R) 
          1.21            0.579          0.657          0.674  16.5% 2.7% 

MSI colorectal 

cancer 

y = -5.7974 + 1.6834M + -0.1411M
2
 + 

-0.0142*R + 0.0082(M × R) 
          5.97            0.589          0.540          0.600  2.0% 11.1% 

POLE-mutant 

colorectal 

cancer 

y = -5.0593 + 4.7117M + -2.2413M
2
 + 

-0.0265*R + 0.0058(M × R) 
          1.05            0.580          0.619          0.653  12.5% 5.5% 

Melanoma 
y = -3.5202 + 3.6233M + -3.5961M

2
 + 

-0.0379*R + 0.0117(M × R) 
          0.50            0.595          0.659          0.674  13.4% 2.4% 

XPC
-/-

 

squamous cell 

carcinoma 

y = -5.6325 + 4.8751M + -3.7947M
2
 + 

-0.0232*R + 0.008(M × R) 
          0.64            0.586          0.600          0.630  7.4% 4.9% 

* See Methods for canonical regression model formula, where y = log odds of mutation probability, M = methylation and R = replication timing 
^
 Vertex (unit: fraction methylation) predicted by regression model, calculated as -b1/(2×b2). 

@
AUC = area under curve 

A
 Regression model equation: y = b0 + b1 M + b2 M

2
 where y = log odds of mutation probability, M = methylation and R = replication timing 

B
 Regression model equation: y = b0 + b1 R where y = log odds of mutation probability, M = methylation and R = replication timing 

C
 Regression model equation: y = b0 + b1 M + b2 M

2
 + b3 R, where y = log odds of mutation probability, M = methylation and R = replication 

timing 
#
 Calculated using values of AUC from models: (C-A)/A 

+
 Calculated using values of AUC from models: (C-B)/B 
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Supplementary Tables 

Supplementary Table 1 – Methylation datasets matched with each cancer type and 

subtype used in regression analyses. 

Cancer Type Samples* WGBS tissue type
#
 GEO

+
 accession  

Breast cancer 119 
Breast luminal 

epithelial cells 
GSM1127125 

Breast cancer: 

without AID/APOBEC 

signatures 

88 
Breast luminal 

epithelial cells 
GSM1127125 

Breast cancer: 

with AID/APOBEC signatures 
14 

Breast luminal 

epithelial cells 
GSM1127125 

Chronic lymphocytic leukaemia 28 
CD34, mobilized 

primary cells 
GSM916052 

Esophageal cancer 16 Esophagus, adult GSM983649 

Liver cancer 244 Liver, adult GSM916049 

Lung cancer 24 Lung, adult GSM983647 

Lymphoma 44 Thymus GSM1010979 

Melanoma 36 
Foreskin keratinocyte 

primary cells 
GSM1127056 

Ovarian cancer 93 Ovary, adult GSM1010980 

Pancreatic cancer  201 Pancreas GSM983651 

Squamous cell carcinoma (all 

samples are XPC
-/-

) 
5 

Foreskin keratinocyte 

primary cells 
GSM1127056 

Stomach cancer 37 Gastric, adult GSM1010984 

* All samples are from The Cancer Genome Atlas (TCGA), with the exception of the XPC
-/-

 

squamous cell carcinomas which were published by Zheng et al. (2014).  
#
 WGBS = whole genome bisulfite sequencing. All tissue-types used were from normal cells. 

+
 GEO = Gene Expression Omnibus 
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Supplementary Table 2 – Regression equation from multivariable models predicting mutation probability across cancer types and 

subtypes, together with vertex and area under curve (AUC) predictions. 

Cancer 

type/subtype 
Regression model equation* 

Vertex
^
 

(fraction 

methylation) 

AUC
@

 for 

regression 

model A
A
 

AUC
+
 for 

regression 

model B
B
 

AUC
+
 for 

regression 

model C
C
 

Increase to 

AUC via 

replication
#
 

Increase to 

AUC via 

methylation
+
  

Breast cancer: 

with AID/ 

APOBEC sig. 

y = -7.7013 + 1.1657M + -1.1587M
2
 + 

-0.0019*R + -0.0098(M × R)           0.50            0.562          0.544          0.576  2.6% 6.0% 

Breast cancer 

without AID/ 

APOBEC sig. 

y = -6.7419 + 2.8769M + -1.9303M
2
 + 

-0.0142*R + -0.0035(M × R)           0.75            0.560          0.594          0.610  8.8% 2.6% 

Breast cancer 

y = -6.2782 + 2.3895M + -1.6076M
2
 + 

-0.01*R + -0.0069(M × R)           0.74            0.550          0.584          0.594  8.0% 1.7% 

Chronic 

lymphocytic 

leukaemia
=
 

y = -8.9527 + 3.9184M + -2.0027M
2
 + 

-0.0212*R + -0.0072(M × R)           0.98            0.557          0.649          0.666  19.7% 2.7% 

Esophageal 

cancer
=
 

y = -7.1719 + 2.1664M + -0.5986M
2
 + 

-0.0211*R + -0.0031(M × R)           1.81            0.561          0.622          0.644  14.8% 3.5% 

Liver cancer 

y = -4.3453 + 1.5195M + -1.5371M
2
 + 

-0.0172*R + 0.0029(M × R)           0.49            0.555          0.585          0.593  6.8% 1.3% 

Lung cancer 

y = -5.2744 + 1.9996M + -0.7005M
2
 + 

-0.0221*R + -0.0087(M × R)           1.43            0.552          0.648          0.657  19.0% 1.4% 

Lymphoma 

y = -7.1358 + 2.09M + -0.565M
2
 + -

0.0185*R + -0.0055(M × R)           1.85            0.564          0.624          0.639  13.4% 2.5% 

Ovarian 

cancer 

y = -5.8518 + 2.7244M + -1.6735M
2
 + 

-0.015*R + -0.0068(M × R)           0.81            0.552          0.608          0.620  12.3% 2.0% 

Pancreatic 

cancer 

y = -4.8767 + 4.9924M + -3.6038M
2 

+ 

-0.026*R + 0.0015(M × R)           0.69            0.592          0.634          0.658  11.0% 3.7% 

Stomach 

cancer 

y = -5.2204 + 0.9192M + 0.2171M
2
 + 

-0.0151*R + 0.0018(M × R) -        2.12            0.573          0.571          0.606  5.8% 6.3% 
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* See Methods for canonical regression model formula, where y = log odds of mutation probability, M = methylation and R = replication timing 
^
 Vertex (unit: fraction methylation) predicted by regression model, calculated as -b1/(2×b2). 

@
AUC = area under curve 

A
 Regression model equation: y = b0 + b1 M + b2 M

2
 where y = log odds of mutation probability, M = methylation and R = replication timing 

B
 Regression model equation: y = b0 + b1 R where y = log odds of mutation probability, M = methylation and R = replication timing 

C
 Regression model equation: y = b0 + b1 M + b2 M

2
 + b3 R, where y = log odds of mutation probability, M = methylation and R = replication 

timing 
#
 Calculated using values of AUC from models: (C-A)/A 

+
 Calculated using values of AUC from models: (C-B)/B 

=
 For both chronic lymphocytic leukaemia (CLL) and esophageal cancers, the LRT did not indicate that there was a significant improvement 

between the model as given above but excluding the interaction term (M × R), and the full model as stated above, including the interaction term 

(P = 0.1303 and P = 0.1055, respectively). However, as the AIC was still smallest for the full model which included the interaction term, and for 

consistency of model usage across cancer types, the full model was used for the analyses of CLL and esophageal cancer. 
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