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Abstract

The engineering of hundreds of synonymous codon changes into a viral genome appears to provide a

general means of achieving attenuation. The mechanistic underpinnings of this approach remain enign-

matic, however. Using quantitative proteomics and RNA sequencing, we explore the molecular basis

of attenuation in a strain of bacteriophage T7 whose major capsid gene was engineered to carry 182

suboptimal codons. As expected, there was no evident effect of the recoding on transcription. Pro-

teomic observations revealed that translation is halved for the recoded major capsid gene, and a smaller

reduction applies to a few genes downstream, potentially caused by translational coupling. Viral burst

size is also approximately halved, and the fitness drop accompanying attenuation is compatible with the

reduced burst size. Overall, the fitness effect and molecular basis of attenuation by codon deoptimization

are compatible with a relatively simple model of reduced translation of a few genes and a consequent

diminished virion assembly. This mechanism is simpler than that operating in eukaryotic viruses.
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Introduction

A recent methodological advance in the development of attenuated viral vaccines has been the design of

genomes with hundreds of synonymous codon changes that are collectively suboptimal (Burns et al , 2006;

Mueller et al , 2006; Coleman et al , 2008; Burns et al , 2009; Wimmer et al , 2009; Mueller et al , 2010; Bull

et al , 2012; Nougairede et al , 2013; Shen et al , 2015). The nature of the design varies from the replacement

of common codons with rare codons to merely shuffling existing codons to create uncommon codon pairs.

By maintaining wild-type protein sequences, the recoding method retains the antigenic profile of the wild

type while reducing viral growth rate and virulence. Based on the premise that silent codon changes have

individually small effects, the method should not only allow the tunable crippling of viral growth to arbitrary

degree but also profoundly retard the re-evolution of high viral fitness. Both predictions have been supported

empirically. Thus, poliovirus, influenza, several arboviruses, and a bacteriophage all exhibit quantitative

fitness declines after synonymous codon changes (Burns et al , 2006; Mueller et al , 2006; Coleman et al ,

2008; Mueller et al , 2010; Nougairede et al , 2013; Shen et al , 2015; Bull et al , 2012), and fitness recovery

during viral growth over hundreds of generations is at best slow (Burns et al , 2006; Coleman et al , 2008;

Bull et al , 2012; Nougairede et al , 2013).

The broad success of attenuation from synonymous codon changes in different viruses and with different

designs could arise from a common underlying mechanism. Yet, there is ongoing debate about how syn-

onymous codon changes affect fitness and thus what that mechanism could be. One popular hypothesis is

that codon usage controls translational efficiency, in turn affecting the rate of protein synthesis (Fredrick

and Ibba, 2010; Plotkin and Kudla, 2010; Tuller et al , 2010; Shah and Gilchrist, 2011; Zur and Tuller,

2016). Under this hypothesis, highly expressed and functionally important genes are encoded by optimal

codons to increase translational efficiency. However, a simple codon ‘optimality’ model cannot explain the

attenuation attained by merely shuffling codons—since the abundance of the different codons is not being

changed by shuffling, the suboptimality must be due to something besides codon abundance. Likewise, some

highly-expressed genes in cyanobacteria and Neurospora have non-optimal encodings (Xu et al , 2013; Zhou

et al , 2013). In other cases, codon usage determines expression through transcription, not translation (Zhou

et al , 2016). In the face of so many seemingly contradictory observations, further advances in this research

program would benefit from the identification of a common mechanism for viral attenuation, or at least

benefit from the demonstration that different mechanisms are involved.

Resolving the basis of attenuation in viral systems is partly hampered by the sequence of life-history

steps between the initial effects of codon changes and the final emergence of assembled virions. The initial

impact may lie in transcription or translation of one or more genes, but the effect on the number of virions
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will depend on which proteins are limiting during assembly. The same modification of an early life-history

stage may have different fitness effects in different viruses. Ultimately, it may be necessary to interpret the

genome engineering in the context of a system-wide, comprehensive model of the viral life cycle. Such is our

motivation.

In the bacterial virus T7, recoding the major capsid protein (gene 10A) with synonymous codons reduced

the fitness of the phage (Bull et al , 2012). The engineering of T7 substituted codons that were underutilized

in E. coli (the T7 host) in place of codons that were highly utilized in the host. The major capsid protein,

which forms the head of the T7 phage particle, is the most abundant and highly-expressed phage protein

(Dunn and Studier, 1983). In the phage genome with the most extensive set of gene 10A synonymous codon

replacements, the fitness was 35.7 doublings per hour compared to 43.2 doublings per hour in the wild type

(Bull et al , 2012). This difference translates to a 180-fold decline in descendants produced per hour. Fully

182 codons were changed, just over half the number of codons in the major capsid gene; in addition, the first

20 codons were not altered to avoid disrupting translation initiation processes.

After evolving the recoded phage for 1000 generations, fitness recovered to about half the difference from

the wild-type phage (on a log scale). Thus, recoding gene 10A induced a moderately stable fitness reduction.

A mere 9 nucleotide changes were responsible for the fitness recovery, and 7 fell outside the recoded region,

shedding little light on the underlying mechanism of fitness reduction.

Here, we apply new methods to continue exploration of the T7 attenuation. Our purpose is to develop

a comprehensive model of the way silent codon changes cause reduced fitness. As part of this effort, we

propose and test three mechanistic models that could explain the fitness reduction in recoded T7. In

testing those models, we apply proteomic methods, RNA sequencing, and various phenotypic measures in

a systems approach to understanding the basis of attenuation. We find that recoding gene 10A reduces

protein abundances of gene 10 and also of several downstream genes. From there, we address the impact

of protein abundances on viral fitness components (burst size and lysis time), ultimately connecting these

measurements to a model that describes actual fitness.

Results

Codon deoptimization reduces capsid protein abundances

As codon deoptimization is thought to affect translational efficiency, we propose three models in which

recoding gene 10 (capsid protein) affects protein abundances in T7. In model 1, codon deoptimization slows

translation of gene 10 and reduces the abundance of the capsid protein only. In model 2, deoptimization
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depletes the ribosome pool by creating high ribosomal densities on capsid protein transcripts, thus reducing

translation of all viral proteins late in the infection cycle (Vind et al , 1993; Birch et al , 2012; Raveh et al ,

2016). In model 3, codon deoptimization has intermediate effects between models 1 and 2: translation is

impaired for gene 10 and downstream genes but not for upstream genes. The expectation in model 3 arises

because T7 produces many polycistronic transcripts, leading to translational coupling of gene 10 and genes

immediately downstream. Translational coupling has been observed in bacterial operons but has not been

considered in the context of codon deoptimization (Oppenheim and Yanofsky, 1980; Schümperli et al , 1982;

Aksoy et al , 1984; Tian and Salis, 2015). All three models assume that deoptimizing gene 10 will reduce the

abundance of at least the capsid protein.

To differentiate between our three proposed models, we compared the T7 proteome during infection

among wild-type, attenuated, and evolved phages using mass spectrometry-based protein quantitation. T7

is thought to encode 58–60 proteins, but only 19 are essential, and many have no known function (Dunn

and Studier, 1983; Molineux, 2005) (e.g., some are thought to be homing endonucleases, selfish elements).

All genes are encoded on the same strand, and expression order is linear; genes are numbered in order

with essential genes having integral numbers (1 -19 ) and non-essential genes having fractional numbers. The

genome is divided into 3 expression groups. Class I genes are the first to enter and are expressed from

promoters at the entering end of the genome, transcribed by the host RNA polymerase (RNAP). The phage

RNAP gene (numbered gene 1 ) is the last of the class I genes and the first essential gene. All other genes are

expressed from phage promoters, but nearly all transcripts are polycistronic, as there is only one terminator

for phage RNAP (immediately after gene 10 ), and there are only 17 phage promoters (Fig 8). Gene 1.1 is

the first class II gene (Dunn and Studier, 1983). [Note that genes 1.1–1.3 are sometimes also considered to

be part of class I, because they are transcribed by both E. coli and T7 RNAP (Molineux, 2005).] Gene 6.5

is the first class III gene.

Because the wild-type phage lyses the cell at approximately 11 minutes after infection (Heineman and

Bull, 2007; Bull et al , 2011) the proteome of infected hosts was sampled at 1, 5, and 9 minutes after phage

addition to the culture; infection of cells is neither immediate nor synchronous upon phage addition to the

culture, so these times are approximate post-infection values. By 9 minutes after infection, roughly 50 of the

known or predicted T7 proteins were detected. All samples recovered approximately 4000 E. coli proteins.

Since proteins have a much longer half-life than transcripts, and T7 has no known mechanism of degrading

E. coli proteins (Molineux, 2005), we assumed that E. coli protein abundances remained constant over the

9 minute infection, and normalized the phage protein abundances to that of E. coli (Houser et al , 2015).

Thus, we report all phage protein abundances as a proportion of E. coli protein content.

Abundances of the major capsid protein (a product of gene 10 ) were of primary interest, as gene 10 is the
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most highly-expressed phage gene and is also the one deoptimized. Gene 10 comprises two protein products:

the major capsid protein (10A) and the much less abundant minor capsid protein (10B). The minor capsid

protein is produced after a frameshift and stop codon read-through of 10A and, except for the C-terminal

∼53 amino acids, is identical in sequence to the major capsid protein. Thus, our proteomic methods have

limited ability to distinguish between the two protein products, so we combine abundance estimates into a

single capsid protein measurement (see Materials and Methods). By 9 minutes after infection, capsid protein

abundances in the attenuated strain were about half of those in the wild type (p < 0.05, paired t test, Fig 1).

The capsid protein abundance for the evolved strain was intermediate.

Recoding of gene 10 could have reduced capsid protein abundance by reducing rates of translation

elongation, thereby increasing the likelihood of ribosome stalling and fall-off. If ribosome fall-off were the

dominant mechanism by which protein abundance was reduced, attenuation should have been accompanied

by an excess of short peptides from the N-terminal end. Alternatively, if translation was slowed down

without ribosome fall-off, a uniform distribution of peptides should be observed across the capsid protein.

When mapping individual peptides recovered from the mass spectrometry proteomics, no systematic change

was observed in the distribution of peptides across the protein (Fig 2). Thus, the recoded phage strains

produced complete capsid protein, but in smaller quantities than that of the wild type.

Codon deoptimization reduced some other class III protein abundances

If recoding a highly expressed gene saturates the pool of ribosomes by slowing translation of the recoded gene,

the rate of translation of all T7 genes could ultimately decline (model 2, above). Models of T7 replication

in E. coli, and limited experimental data, are consistent with protein synthesis being the rate-limiting step

of T7 replication (although the evidence is at best weak and indirect) (Endy et al , 1997; You et al , 2002).

Moreover, depletion of free ribosomes is common in E. coli transformed with highly expressed heterologous

genes (Vind et al , 1993; Scott et al , 2010; Reuveni et al , 2011; Raveh et al , 2016).

The data allow us to measure other T7 protein abundances over time. Nine minutes post-infection,

abundances of class III proteins p11, p12, p13, p14, and p15 in the recoded strain were lower than that of

the wild type (false discovery rate FDR < 0.1, FDR-corrected t test) (Fig 3, Table 1). These proteins are

mostly or all structural: tail tubular proteins (p11 and p12), and two internal virion proteins (p14 and p15),

and a protein of unknown function but required for incorporation of other essential proteins in the virion

(p13). The T7 endonuclease (p3), encoded by a class II gene, also showed reduced abundance in the recoded

strain. Abundances of these class III proteins in the evolved strain again fall somewhere between that of

the wild-type and recoded strains. Together, these results demonstrate that recoding gene 10 reduced the
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protein abundances of the capsid protein and several proteins encoded downstream of the capsid protein.

The false discovery threshold we employed allows for one or two of those downstream proteins identified to

be false positives, but the majority are likely real.

Whereas proteins encoded downstream of the recoded gene 10A showed decreased abundances, those

encoded immediately upstream of gene 10A were not obviously affected. Gene 9, immediately upstream of

10, encodes the highly expressed scaffold protein but this protein showed no difference in abundance between

wild-type and recoded strains (Fig 4). Under the ribosome depletion hypothesis (model 2), we expected all

genes expressed at the same time as gene 10 to be suppressed, thus including gene 9. Indeed, because of

the high levels of expression of 9 and the consequent ease of measuring it with our proteomics methods, we

reject the ribosome depletion model as the basis of attenuation.

E. coli mRNA transcripts declined after bacteriophage T7 infection

A reduction in capsid protein abundance in the attenuated virus could be explained by fewer transcripts from

the gene. Of course, a reduction in transcription is not expected from a change in codon usage, and indeed,

the design left the 5’-end of the gene unaltered specifically to keep transcription and translation initiation

unchanged. Nonetheless, RNA-sequences were obtained from phage-infected E. coli at 1 minute, 5 minutes,

and 9 minutes after infection to see if the decline in protein was accompanied by a decline in transcripts.

Transcript abundances were normalized to the to total RNA abundance within a sample, excluding rRNA

and tRNA. Both phage and E. coli transcripts were included.

Gene 10 transcript abundance increased over time, being highest at the final 9 minute time point. Yet

no significant heterogeneity was observed among the wild-type, recoded, and evolved strain transcripts of

gene 10 (Fig. 6A). This observation seems to rule out a transcriptional cause of capsid protein reduction.

As validation of the RNA-sequencing methods, transcription analyses were extended to other properties

of the T7 and E. coli transcriptomes. Gene 1 (T7 RNA polymerase) transcript abundance decreased over

time as a proportion of total transcripts (Fig 6B), consistent with previously observed class I gene expression

timing (Molineux, 2005). Likewise, the relative abundance of T7 transcripts to E. coli increased sharply,

consistent with established mechanisms by which T7 shuts off host transcription and degrades the host

genome (Molineux, 2005). At 1 minute after infection, T7 transcripts comprised less than 1% of the transcript

pool of infected E. coli (Fig 5). By 5 minutes after infection, T7 transcripts made up more than 75% of the

transcript pool. By 9 minutes post-infection, this proportion reached approximately 95%. Although it is not

possible to assess changes in absolute transcript abundances (see Materials and Methods), the data require

some combination of host-cell transcripts being degraded rapidly, or T7 synthesizing transcripts so rapidly
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that they quickly dwarf the pool of E. coli transcripts. No strain-specific trends were detected.

Downstream effects of recoding support a model of translational coupling

The proteomics suggest that translation of some downstream genes are specifically depressed by the recoding

of 10. This effect on downstream genes might involve translational coupling, in which a stalling of translation

over 10 delays translation of genes further down on the same transcript. Translational coupling often occurs

when multiple genes are encoded on a single transcript with little intergenic space, such as in bacterial

operons and viruses (Lesage et al , 1992; Hellmuth et al , 1991; Schümperli et al , 1982; Oppenheim and

Yanofsky, 1980; Aksoy et al , 1984; Torgov et al , 1998). Translational coupling is a plausible process for sets

of T7 genes because most transcripts include multiple genes (Dunn and Studier, 1983). The T7 class III

promoters precede genes 6.5 (the first class III gene), 9, 10, 13 and 17 ; some transcripts with 9 and 10

will thus include earlier genes, but many will not (Fig 8). Although a phage-specific terminator between 10

and 11 aborts most (but clearly not all) 10 transcripts before 11, all transcripts with 11 and 12 necessarily

include 10. Thus, translational coupling would operate for 11 and 12 if many of the ribosomes on those

genes first translated 10. Translational coupling beyond 12 is less plausible, however. The combination of

an RNAse III site between 12 and 13 and a promoter before 13 will mean that many or most transcripts

with 13 do not include 12. So we expect substantially higher levels of translational coupling of 11 and 12

with 10, but far less between 10 and 13.

Polycistronic transcripts are necessary for translational coupling but not sufficient. It must also be the

case that translation of downstream genes is usually from ribosomal re-initiation from the upstream genes,

with few de novo ribosome initiations on the downstream genes. In turn, ribosome initiation can be impeded

by secondary structure that sequesters the RBS (ribosome binding site) of the downstream genes (Tian and

Salis, 2015; Rex et al , 1994; Qu et al , 2011). Ribosomes that reach the stop codon of one gene often expose the

RBS of the next gene on the transcript and then reinitiate translation on that downstream gene (Spanjaard

and van Duin, 1989). Support for the coupling model was evaluated from secondary structure predictions

and in silico predictions of ribosome binding (Tian and Salis, 2015). Due to limitations in our software-

based methods, we only tested the coupling of genes 10 and 11. With translational coupling, translation

initiation rates are predicted to be about 6 times greater for gene 11 than they would if gene 11 occurred

on a single-gene transcript. This supports a model in which at least genes 10 and 11 are translationally

coupled.

As the inference of translational coupling here is indirect and tentative, additional insight was sought

from a mathematical model. The model assumed three genes on a single transcript in the order a, b and
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c (Fig 7A, eqs. 1–6 in Materials and Methods). Gene b is the one recoded to slow translation in some

iterations of the model. Protein production rates (i.e. the rate at which ribosomes complete translation)

depend on translation initiation and translation elongation rates. The model allowed varying degrees of

coupling, with a coupling constant q assigned the values 0.2, 0.4, 0.6, and 0.8 (see Table 2 and Materials and

Methods for all parameters). In a system with no coupling (q = 0), translation initiation of gene b does not

depend on translation of gene a, and likewise between genes b and c. In a fully coupled system (q = 1.0),

translation initiation of gene b depends entirely on the rate at which ribosomes complete translation of gene

a. Translation of gene c similarly depends on gene b in a fully coupled system. We refer to this upstream-

gene-dependent translation initiation rate as the effective initiation rate. Intermediate values of coupling are

referred to as weakly coupled (q = 0.2), partially coupled (q = 0.4, 0.6), or strongly coupled (q = 0.8), and

indicate that effective translation initiation rates depend on both elongation rates of upstream genes and

rates of de novo initiation (indicated by the (1− q) term in eqs. 2 and 3). To simulate codon deoptimization

of one gene in the transcript, we varied the translation elongation rate of gene b only. All genes were assumed

to be the same length. Thus, we explored how rates of protein production depend on both coupling between

genes and elongation rates within genes.

This model demonstrated that recoding a gene in a translationally coupled set of genes affects the protein

production rates of downstream, but not upstream, genes (Fig 7). Under strong translational coupling, the

translation initiation rates of a gene depended entirely on the rate of ribosomes moving through the stop

codon of an upstream gene. Thus the rate of protein A, B, and C production (assuming that elongation is

slower than initiation in each gene) depended only on the translation initiation rate of gene a because b and

c rely on re-initiation from a. In turn, when the translation time increased (i.e. elongation rate decreased) for

gene b, translation elongation became rate-limiting and the production rates of proteins B and C decreased

while A production rates remained unaffected (Fig 7B, right panel). Conversely, in a weakly coupled model,

even if elongation rates decreased below initiation rate in gene b, production of protein C was only weakly

affected by recoding of gene b (Fig 7B, left panel). In partially coupled models (Fig 7B, middle panels),

the production rate of protein C also decreased as elongation rates decreased below initiation rates for gene

b. However, this decrease in the rate of C protein production was smaller than the decrease observed on a

strongly coupled model.

Connecting proteomics to fitness

In previous work, the T7 with recoded capsid gene had been found to have a fitness of 35.7 doublings/hr,

compared to a value of 43.2 for the wild type. Here we consider whether and how the altered proteomics
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might lead to this fitness reduction. The connection from proteomics to fitness spans two steps: (i) identify

the phage life-history components affected by the recoding and evaluate whether that change is compatible

with the proteomics, then (ii) assess whether the magnitude of altered fitness components is compatible with

overall fitness.

In the growth conditions used for our assays, fitness is determined by cell density and three phage

properties: burst size, lysis time, and adsorption rate (Wang et al , 1996; Shao and Wang, 2008; Guyader

and Burch, 2008; Bull, 2006; Patwa and Wahl, 2009; Bull et al , 2011). Burst sizes and lysis times were

estimated here for the wild-type and recoded phages (there was no expectation that adsorption rate would

be affected, which depends on the presence of tail fibers, the product of gene 17 ). Although the same cell

line was used here as in previous studies (IJ1133), new cell preparations were used, so quantitative agreement

with past estimates of burst size and lysis time is not expected, but proportional differences should scale

across different cell preparations. No difference in lysis time was observed between strains, but burst size

was reduced almost 50% with the recoding (Fig 9).

The proportional reduction in burst size is nearly the same as that for the reduction in capsid protein

abundance at 9 minutes. This reduction in burst size is no doubt caused by the reduction in capsid protein.

There is perhaps little basis for arguing that the reductions should match quantitatively, but the agreement

between the two numbers poses no dilemma.

The second step in connecting proteomics with fitness is to consider whether a 50% reduction in burst

size (with no change in lysis time) is compatible with the observed fitness reduction of 7.5 doublings/hr.

The mapping of phage fitness components onto total fitness has been addressed in detail (Bull et al , 2011).

From numerical trials in that study, a 50% reduction in burst size is compatible with a fitness reduction of

the magnitude observed here (their Table 1, lines L1 and L5).

Discussion

In the decade since the first proposals to attenuate viruses by synonymous codon substitutions, it has been

established that the method works in many viruses and offers many advantages over earlier methods of

attenuation. Yet the mechanism by which silent codon changes attenuate not only remains elusive but seems

less clear now than it did at the start. Nor is it clear that a single mechanism underlies the attenuation in

different systems. Here, we extended previous work on a bacteriophage system in which the encoding of rare

codons in the major capsid gene reduced fitness. Our goal was to refine an understanding of the molecular

basis of the attenuation.

The capsid protein (encoded by gene 10 ) is the most abundant protein produced during the infection cycle
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of bacteriophage T7. Deoptimizing 50% of gene 10 codons reduced fitness (Bull et al , 2012). In exploring

the underlying molecular mechanism by which the recoding has this effect, our primary result is that the

protein product of gene 10 is reduced almost 50% by the end of the infection cycle, but protein abundance

of genes immediately downstream of gene 10 are also depressed. The differences in protein abundance are

not reflected in transcript levels, so it appears that the suppression of protein levels lies in translation. The

evidence thus supports a simple interpretation of the fitness impact of recoding the major capsid gene:

1. Capsid protein is expressed at a reduced level, as are a few downstream genes.

2. Burst size is correspondingly reduced approximately 50% with no change in lysis time, compatible with

the observed reduction in total fitness.

One mechanism we entertained to explain the altered proteomics of the recoded phage is saturation of

the ribosomes with gene 10 transcripts. Such a model requires that the production of all T7 proteins would

decline late in the infection cycle for the recoded phage. Within the limits of resolution, the proteomics rule

out an overall reduction in T7 protein production, indicating that reductions are limited to the recoded 10

and a few downstream genes. This study may provide the first indication that translational effects of the

recoding extend beyond the recoded genes. There was also no evidence for aborted gene 10 polypeptides in

the recoded strains, as might occur from ribosomes stalled on gene 10 transcripts. An obvious next step is

to extend these analyses to ribosome profiling, which would directly indicate whether the recoding does tie

up ribosomes on gene 10 (Li et al , 2014).

The means by which synonymous codon replacement attenuates may be more straightforward for phage

T7 than for eukaryotic viruses. Several lines of evidence suggest that the eukaryotic virus attenuation

by synonymous codon changes is from the creation of CpG dinucleotides (Burns et al , 2009; Atkinson

et al , 2014; Tulloch et al , 2014); indeed, especially powerful evidence to support this interpretation is

that evolutionary reversions of attenuated viruses disproportionately reverse CpGs (Burns et al , 2006). In

contrast, T7 evolutionary reversions did not exhibit any signature suggestive of a dinucleotide basis for

attenuation (Bull et al , 2012). Nonetheless, we expect that the mechanism of attenuation in T7 will apply

across other viruses, even if it is not the only mechanism operating in those viruses.

If our interpretation is correct for the mechanism underlying the effect of the recoding, an evolutionary

response to overcome the effect might be duplication of promoter immediately upstream of gene 10. Such a

duplication would increase the number of 10 transcripts and, in the absence of ribosome saturation, would

increase the amount of capsid protein. A duplication of a class II promoter was observed during adaptation

of a different phage (Springman et al , 2005), adding credence to the possibility of such an outcome. Yet the

mutational origin of a promoter duplication may be highly dependent on surrounding sequences so perhaps
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not feasible for all promoters.

We propose that translational coupling may explain why expression of genes downstream of 10 is sup-

pressed by the recoding. Part of that inference is based on a mathematical model of translation. That model

is necessarily simplifed, however, and there are some obvious improvements needed to increase its realism.

First, it assumes a fixed quantity of transcripts, when we know from our RNA-sequencing results that T7

transcripts increase rapidly during infection. Second, the model assumes a per-gene translation elongation

rate, but does not model individual codons. A more sophisticated model that includes codon-level detail and

the T7 life cycle would be needed to predict the fitness effects of codon deoptimization. Several life-cycle and

molecular models of T7 have achieved limited success in predicting the phenotypic effects of genome manip-

ulations (Endy et al , 1997; You et al , 2002; Kosuri et al , 2007; Birch et al , 2012), but none enable codon

modifications or complex translation mechanisms such as coupling. The proteomics and RNA-sequencing

data generated in this study should be useful in future high-resolution modeling studies that scale from the

molecular level to that of viral fitness.

Although it is tempting to interpret the slowed translation as a consequence of using rare codons, which

then use rare tRNAs, some recoding strategies used in other genomes suggest alternative possibilities. Codon

deoptimization of GFP in E. coli initially yielded a range of protein expression effects, but these effects were

eventually attributed to changes in mRNA secondary structure in the first 28 codons of the GFP sequence

(Kudla et al , 2009). Codon changes beyond these first 28 codons had a weak effect on protein expression

(Kudla et al , 2009). In our designs, we explicitly excluded these 5’-end codons from modification. Moreover,

some attenuation designs with influenza virus and poliovirus have achieved attenuation by merely shuffling

codons within a gene or genome to create rare codon pairs. Since the numbers of each codon are not changed

in those designs, the mechanism cannot be one of simple tRNA abundance. One possibility is suggested by

recent work in yeast, whereby the degree of codon clustering is important to rapid translation (Cannarozzi

et al , 2010; Gamble et al , 2016). We did not attempt to control for codon-pair bias in our recoded T7

constructs. Further experiments will be needed to determine if prokaryotic translation machinery, like that

of the eukaryotes, is sensitive to changes in codon-pair bias.

The approach developed here should help elucidate other mechanisms of viral attenuation. For example,

the timing of gene expression appears important to fitness: a reciprocal exchange of some middle and late

genes had some major fitness effects, and those effects were not recovered on long term adaptation (Cecchini

et al , 2013). Ultimately, we envision a future in which an understanding of viral life history at the molecular

level enables facile engineering of arbitrary fitness and alternative vaccine designs.
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Materials and Methods

Gene 10 nomenclature

Gene 10 is translated in two forms, A and B. Form A is 344 amino acids and is formally denoted the

major capsid protein. Form B (the minor capsid protein) is not essential and results from a ribosomal

frameshift at the end of A and is 397 amino acids. In the engineering, all codon changes were within 10A

and thus also within 10B. Moreover, since most peptide fragments coming from the minor and major capsid

proteins ambiguously mapped to both proteins, abundances of 10A and 10B were not differentiated using our

proteomic methods and were combined. We followed a similar procedure for our RNA-sequencing analyses.

To simplify notation, we merely refer to the recoded gene as 10 and the affected A and B proteins as capsid

protein.

Bacteriophage T7 strains and E. coli hosts

The host for all experiments was IJ1133 [Escherichia coli K-12, F-∆lacX74 thi∆ (mcrC-mrr)102::Tn10]. T7

strains used in this study come from (Bull et al , 2012). An isolate of T761 (a population adapted to grow

optimally on IJ1133 specifically through serial passage) was first deleted of its gene 10A, then recombined

over a plasmid carrying a different gene 10A engineered to contain a low fraction (0.1) of preferred codons.

The recombinant, denoted here as the recoded strain, could be identified by its ability to grow without

complementation. The evolved strain was initiated from the recoded phage and adapted over 800–1000

generations [strain L1 from (Bull et al , 2012)]. The wild-type strain in this study was derived from the

recoded strain after recombination over a plasmid containing wild-type gene 10, then grown out for 6 hours

of serial transfer on IJ1133. Fitness of this ‘wild-type’ strain was approximately the same as that of the

ancestral population (T761).

Burst size and lysis time

Lysis time and burst size assays were performed as previously described (Heineman and Bull, 2007; Bull

et al , 2011). The initial infection steps were identical for both assays. Briefly, 108 phage (MOI = 0.1) were

added to a 10 mL culture of exponentially growing cells (37◦C with agitation), incubated for 3 minutes and

subsequently diluted 104-fold to prevent further adsorption. For lysis times, phage were plated at various

time points between 4 and 18 minutes (after initial infection) to monitor changes in titer; lysis time was

taken as the time of the first significant increase in titer.

To determine burst size, initial density of phage-infected cells was determined by plating phage before
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and after treatment with chloroform 5 and 6 minutes after initial infection. Cells infected with phage at the

time of chloroform treatment do not produce viable phage, so only free phage will form plaques, allowing for

the determination of phage-infected cells at these times. Final phage titers were obtained at 15, 16, and 17

minutes by plating chloroform-treated samples. Burst size was then calculated as the phage titer at the end

time points divided by the number of initial phage-infected cells.

RNA sequencing

E. coli was grown in LB broth to a concentration of 108 cells/mL at 37◦C with agitation, then infected

with phage at an MOI of 2.5. At 1, 5, and 9 minutes post-infection, 2 mL of bacterial suspension were

removed from the phage-infected cultures and pelleted in a microcentrifuge. Pellets were either flash frozen

in liquid nitrogen or immediately used for downstream processes (RNA extraction or protein preparation

for proteomics). RNA was isolated using Trizol reagent, following the manufacturer’s protocol. Library

preparation and sequencing was performed by the University of Texas Genome Sequencing and Analysis

Facility (GSAF) using Illumina NextSeq 500 (SR75).

Since gene 10B is a readthrough product of gene 10A, we excluded the gene 10B transcript from the

reference transcriptome. RNA-sequencing reads were quantified using Kallisto (Bray et al , 2016) and E.

coli K-12 (NCBI: U00096.3) and T7 (NCBI: NC_001604.1) reference genomes. For analyses of the recoded

and evolved T7 strains, the gene 10A sequence was replaced with the recoded sequence (Bull et al , 2012,

Supplementary file S1) in the reference genome. A population of T7-infected E. coli has no core set of

stably-expressed genes with which to normalize during differential expression analysis. Therefore, all tran-

script abundance estimates (transcripts per million, TPM) were normalized to the total cellular transcript

abundance (including both T7 and E. coli transcripts). Differential expression analysis was only possible

within genes, but not between them.

Proteomics

Proteomics was performed as previously described in Houser et al (2015). In brief, T7-infected E. coli cell

pellets (prepared as described in the RNA sequencing section above) were resuspended in 50 mM Tris-HCl

pH 8.0, 10 mM DTT. 2,2,2-trifluoroethanol (Sigma) was added to 50% (v/v) final concentration and samples

were incubated at 56◦C for 45 minutes. Following incubation, iodoacetamide was added to a concentration

of 25 mM and samples were incubated at room temperature in the dark for 30 minutes. Samples were diluted

10-fold with 2 mM CaCl2, 50 mM Tris-HCl, pH 8.0. Samples were digested with trypsin (Pierce) at 37◦ C for

5 hours. Digestion was quenched by adding formic acid to 1% (v/v). Tryptic peptides were bound, washed,
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and eluted from HyperSep C18 SpinTips (Thermo Scientific). Eluted peptides were dried by speed-vac and

resuspended in Buffer C (5% acetonitrile, 0.1% formic acid) for analysis by LC-MS/MS.

For LC-MS/MS analysis, peptides were subjected to separation by C18 reverse phase chromatography on a

Dionex Ultimate 3000 RSLCnano UHPLC system (Thermo Scientific). Peptides were loaded onto an Acclaim

C18 PepMap RSLC column (Dionex; Thermo Scientific) and eluted using a 5–40% acetonitrile gradient

over 250 minutes at 300 nL/min flow rate. Eluted peptides were directly injected into an Orbitrap Elite

mass spectrometer (Thermo Scientific) by nano-electrospray and subject to data-dependent tandem mass

spectrometry, with full precursor ion scans (MS1) collected at 60,0000 resolution. Monoisotopic precursor

selection and charge-state screening were enabled, with ions of charge > +1 selected for collision-induced

dissociation (CID). Up to 20 fragmentation scans (MS2) were collected per MS1. Dynamic exclusion was

active with 45 s exclusion for ions selected twice within a 30 s window.

We assigned each peptide to a protein or protein group (in the case of ambiguous peptides which map to

multiple proteins) using Proteome Discoverer (Thermo Scientific) and REL606 and T7 reference proteomes

(NCBI: NC_012967, NC_001604.1) concatenated with a database of contaminant proteins (http://www.

biochem.mpg.de/5111795/maxquant). We selected the top three most abundant peptides by peak area

for each protein. We averaged the these peptide peak areas across technical replicates to obtain a protein

abundance estimate (Silva et al , 2006). All protein abundance estimates were normalized to the total E. coli

protein content of the sample.

To determine if gene 10 C-terminal peptides were more common than N-terminal peptides in the recoded

T7 strain compared to the wild-type strain, we compared the fit of the following two models [given here in

notation from the lme4 (Bates et al , 2015) R package]:

count ∼ strain + location + (1|peptide) (1)

count ∼ strain + location + strain : location + (1|peptide) (2)

where count is the number of peptides of type peptide, strain is the strain of T7, and location is the

location of peptide within gene 10. We assume peptide to be a random effect, given by the (1 | peptide)

term. The term strain:location indicates interaction between strain and location. Thus, we compare

a model in which the location of a peptide and the strain interact, and a model in which there is no such

interaction. If N-terminal peptides were less prevalent than C-terminal peptides in the recoded T7 strain,

we would expect equation 2 to provide a better fit than equation 1.
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Models of translational coupling

Biophysical model

Secondary structure near the ribosome binding site can inhibit translation initiation. On polycistronic

transcripts, this secondary structure can be disrupted by ribosomes completing translation of an upstream

gene, thus increasing translation initiation rates. Estimates of this relative increase in translation initiation

of gene 11 due to translational of gene 10 and were predicted using the Operon Calculator (Tian and Salis,

2015).

Mathematical model

To model the effects of translational coupling on rates of protein production, we first assume that we have a

polycistronic transcript with genes a, b, and c. For the effective translation initiation rate ain of gene a, we

define the following relationship

ain = min

{
k,
sa
τa

}
, (3)

where k is some arbitrary initiation rate, sa is the length of gene a and τa is the time it takes to translate

gene a. As the time to translate gene a increases, the elongation rate will eventually be less than k and

become the rate-limiting step as the transcripts back up with ribosomes.

For the effective initiation rate bin of gene b we define the following relationship

bin = min

{
ain,

sb
τb

}
q + min

{
k,
sb
τb

}
(1− q) , (4)

where sb and τb are the length of gene b and the time to translate gene b, respectively. The constant q

indicates the amount of translational coupling (the proportion of ribosomes terminating translation on gene

a and reinitiating translation on gene b), where 0 is no coupling and 1 is fully-coupled. The term (1 − q)

indicates the proportion of translation initiation events occurring de novo. Thus, the effective initiation rate

is the sum of both the reinitiation rate from gene a to gene b, and de novo initiation rate of gene b. Similarly,

the effective initiation rate cin of gene c is

cin = min

{
bin,

sc
τc

}
q + min

{
k,
sc
τc

}
(1− q) , (5)

where sb and τb are the length of gene c and the time to translate gene c, respectively. The coupling constant

q and initiation rate k are the same as defined previously.

Now that we have defined effective initiation rates for genes a, b, and c, then the protein production rates
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(Ȧ, Ḃ, Ċ) are defined as

Ȧ = ainI(t− τa) , (6)

Ḃ = binI(t− τb − τa) , (7)

and

Ċ = cinI(t− τc − τb − τa) , (8)

where each rate depends on the effective translation initiation rate and a delay function I(t). Lastly, we

define the delay function as

I(t) =


0 for t < 0,

t for t ≥ 0,
(9)

where t is time.

Statistical software and plots

All statistical tests were conducted using the R language (R Core Team, 2014). All plots were generated

using the ggplot2 package (Wickham, 2009).

Data availability

We are in the process of submitting raw RNA reads to NCBI GEO (Barrett et al , 2013) and raw MS

proteomics data to ProteomeXchange (Vizcaíno et al , 2014). All processed data and scripts are available at:

https://github.com/benjaminjack/t7_attenuation.
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Figure 1: Recoding gene 10A reduces capsid protein abundances. We measured protein abundance at 1, 5,
and 9 minutes after infection. In the recoded (attenuated) strain, protein abundance for capsid protein after
9 minutes of infection is half of that of the wild type (p < 0.05, paired t test). The evolved strain also has
significantly lower levels of capsid protein after 9 minutes. Each point represents a single measurement, and
lines connect biological replicates.
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Figure 2: Peptides abundances are uniformly distributed across the capsid protein in the recoded T7 strain.
Here we show the abundance of individual peptides within the capsid protein of the recoded strain, relative
to the wild type. Data are from 9 minutes after infection. If translation consistently terminated before the
stop codon in gene 10 due to recoding, we would expect the relative peptide abundance to systematically
vary with the location of the peptide. Therefore, we tested a model that includes an interaction between
strain and peptide location, and a model that includes no interaction (see Materials and Methods). We found
that a model in which an interaction is included between the strain and peptide location fits the peptide
count data no better than a model without interaction (log-likelihood = −1682.2, log-likelihood = −1682.4,
respectively). Thus, in the recoded strain, there is no evidence of early translation termination.
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Figure 3: Recoding of gene 10A reduces protein abundances of capsid protein, 5 other proteins encoded
immediately downstream of 10A, and the T7 endonuclease. The bacteriophage T7 genome contains many
polycistronic transcripts. Genes 11 and 12 are only transcribed with gene 10, following a read-through of
the Tφ terminator. Genes 13, 14, 15 may also share the same transcript as gene 10, although these will
be less common because of an RNAse cleavage site between genes 12 and 13, and a promoter before gene
13. We show the relative protein abundances corresponding to these genes, in addition to gene 3, for all
wild-type, recoded, and evolved strains at the 9 minute time point. All of these genes, with the exception
of gene 3, are class III genes, expressed late in the T7 life cycle. In addition to lower abundance of capsid
protein (10 ), all protein products from the 5 genes immediately downstream of 10 are also suppressed (false
discovery rate FDR < 0.1, FDR-corrected paired t test). These proteins are tail tubular proteins (11 and
12 ), probable virion-associated protein (13 ), and two internal virion proteins (14 and 15 ). Gene 3, which
codes for the T7 endonuclease, also has a reduced abundance in the recoded strain. Protein abundances
for the evolved strain fall somewhere between that of the wild-type and the recoded strains. Each point
represents a single measurement, and lines connect biological replicates.
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Figure 4: Gene 9, encoding the highly-expressed scaffold protein, shows no detectable difference in abundance
between wild-type and recoded strains. Genes 9 (left) and 10 (right) are both class III genes that are
expressed at approximately the same time in the T7 life cycle. All abundances are from 9 minutes post-
infection. Each point represents a single measurement, and lines connect biological replicates.
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Figure 5: T7 transcripts make up most of the mRNA content of infected E. coli. The top row shows total
E. coli transcript abundances, and the bottom row shows total T7 abundances. Points show individual
experiments, while lines connect measurements from the same biological replicate. Each bar represents the
mean relative mRNA abundance for a given strain and time point. Transcript abundances are shown relative
to the total mRNA content of the sample. Wild-type, recoded, and evolved strains are shown, and there are
no detectable differences between the three strains.
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Figure 6: Transcript abundances of individual T7 genes change over time. Three biological replicates each
are shown for wild-type, attenuated, and evolved strains. Transcript abundances are presented relative to
the total mRNA content in the sample. Each column represents a different time point after infection. Both
gene 10 and gene 1 follow the expected expression patterns of class I and class III genes, respectively. Each
point represents a single measurement, and lines connect biological replicates.

A Transcripts of gene 10 increase over time. There are no detectable differences in gene 10 mRNA
abundances between the attenuated and wild-type T7 strains.

B Transcripts of gene 1 increase from 1 to 5 minutes, then decrease from 5 to 9 minutes. Again, there
are no detectable differences in gene 1 mRNA abundances between the attenuated and wild-type T7
strains.
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Figure 7: When genes are translationally coupled, the translation rate of upstream genes can affect translation
rates of downstream genes.

A Here we show three genes (a, b, and c) in a polycistronic transcript that are translationally coupled.
That is, we assume that the translation initiation rates of one gene depend partially on the rate of
ribosomes reaching the stop codon of the previous gene. Typically, translation initiation is the rate-
limiting step in translation. All genes are assumed to be the same length. Translation initiation of
gene a is given as k, and the translation time (after initiation) is given as τ . Upon recoding gene b, we
hypothesize that the ribosomal density on b increases (bottom row).

B As translation elongation rates decrease below initiation rates, the rate of translation of downstream
genes also decreases. The translation rate of b and c decline sharply as the translation elongation rate
of gene b decreases below the initiation rates of b and c. The left, middle, and right panels show models
with coupling constants (q) of 0.2, 0.4, 0.6, and 0.8 respectively. A larger coupling constant indicates
that downstream genes are less likely initiate translation de novo and instead rely on ribosomes from
upstream genes. As coupling increases, production of protein C becomes more sensitive to translation
elongation rates of gene b.

29

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 7, 2017. ; https://doi.org/10.1101/106799doi: bioRxiv preprint 

https://doi.org/10.1101/106799
http://creativecommons.org/licenses/by-nc-nd/4.0/


R3.8 R4.7 R6.5 Tφ R18.5(R13)

gene 1 2 3 4A 5 6 7 8 9 10B10A 11 12 13 14 15 16 17 18 19

class II

class III

readthrough

Figure 8: T7 produces many polycistronic transcripts. The bar across the top shows the T7 genome, and
each class is shown in a different color. Horizontal lines represent transcripts. Dashed vertical lines represent
RNAse cleavage sites, where R3.8, R4.7, R6.5, and R18.5 are strong cleavage sites. R13 is a weak RNAse
cleavage site. The solid vertical line represents the terminator Tφ. Genes 11 and 12 are only ever expressed
as a product of read-through of Tφ, indicated by the read-through transcript. Only transcripts containing
class III genes are shown. Not all read-through products are shown. Data are from Dunn and Studier (1983).
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Figure 9: Burst size in recoded T7 strain is lower than that of the wild-type and evolved strains, while lysis
time is indistinguishable for all three strains.

A Five replicates each of burst size measurements are shown for the wild-type, recoded, and evolved T7
strains. Points represent individual measurements in plaque forming units (PFUs), and each set of
measurements in a replicate are connected by a line. Bars show the mean burst size for each strain.
Burst size of the recoded strain is smaller than that of the evolved (p = 0.02, paired t test) and wildtype
(p = 0.002, paired t test) strains.

B Lysis time for the three different strains is shown. Points represent individual measurements, and bars
represent the mean lysis time for each strain. There were no significant differences between the lysis
times of each strain (p = 0.4, ANOVA).
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Table 1: Proteins in which abundance differs significantly (FDR < 0.1, FDR-corrected paired t test) between
the wild-type and recoded strains of T7. Most differentially expressed genes are class III genes, with the
exception of p3, a class I gene. The mean differences in abundance, unadjusted p-values, and false discovery
rates are shown. Since eight genes fall below a false discovery rate of 0.1, we expect approximately one of
these genes to be a false positive.

protein mean difference p-value false discovery rate
p3 2.7e-04 0.00014 0.0061
p10 2.2e-02 0.00051 0.0110
p13 8.4e-05 0.00180 0.0260
p12 3.2e-04 0.00590 0.0510
p14 2.3e-04 0.00560 0.0510
p11 3.3e-04 0.00740 0.0530
p15 2.9e-04 0.01400 0.0880
p18 3.2e-04 0.01600 0.0880

Table 2: Parameters for 3-gene model of translational coupling.

name description
k translation initiation rate of ribosomes on genes a, b, and c in the absence of translational coupling
q coupling constant
ain effective initiation rate of ribosomes on gene a
A concentration of protein A
bin effective initiation rate of ribosomes on gene b
B concentration of protein B
cin effective initiation rate of ribosomes on gene c
C concentration of protein C
sa length in maximum number of ribosomes that can translate gene a
sb length in maximum number of ribosomes that can translate gene b
sc length in maximum number of ribosomes that can translate gene c
τa time to translate gene a
τb time to translate gene b
τc time to translate gene c
I delay function
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