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ABSTRACT

Competitive gene-set analysis, also called enrichment analy-
sis, is a widely used tool for functional interpretation of high-
throughput biological data such as gene expression data. It
aims at testing a known category (e.g. a pathway) of genes
for enriched differential expression (DE) signals compared
to genes not in the category. Most enrichment testing
methods ignore the widespread correlations among genes,
which has been shown to result in excessive false positives.
We show, both theoretically and empirically, that existing
methods to account for correlations, such as GSEA and
CAMERA, can result in severely mis-calibrated type 1 error
and/or considerable power loss due to the failure to properly
accommodate the DE heterogeneity across genes. We
propose MEACA, a new gene-set testing framework based
on a mixed effects model. Our method flexibly incorporates
the unknown distribution of DE effects, effectively adjusts
for completely unknown, unstructured correlations among
genes, and does not rely on time-consuming permutations.
Compared to existing methods, MEACA enjoys robust type
1 error control in widely ranging scenarios and substantially
improves power. Applications of MEACA to a Huntington’s
disease study and a lymphoblastoid cell line data set
demonstrate its ability to recover biologically meaningful
relationships. MEACA is available as an R package.

INTRODUCTION

Advancements in high-throughput technologies such as
microarray and RNA-Seq have made genome-wide expression
profiling a popular research tool to study how gene expression
patterns associate with experimental, environmental or clinical
conditions. A key task of gene expression data analysis
involves the detection of differentially expressed genes, which
refer to genes whose expression levels are associated with a
factor of interest. To this end, the conventional strategy has
been to analyze individual genes separately. However, the
results from such single-gene analysis are often challenging
to interpret, due to the large numbers of genes that are profiled
out of which a long list may be significantly differential. To
overcome this, a widely used approach has been to study
biologically interpretable sets of genes rather than individual
genes. Typically, a gene set consists of genes sharing a
common biological property (e.g. genes in a known pathway
or annotated with a common biological function), and is
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available through publicly accessible databases such as the
Kyoto Encyclopedia of Genes and Genomes (KEGG) (1)
and Gene Ontology (GO) (2) . Gene-set analysis of gene
expression data aims to evaluate the association between the
expression levels of genes in a pre-defined set, referred to
as the test set, and experimental or environmental factors
of interest. It examines whether the test set contains or is
enriched with differential expression (DE) signals, where the
DE signal of a gene can be quantified by comparing the
gene’s expression levels across samples grouped according
to the factor of interest (e.g. between diseased subjects and
healthy controls). Gene-set tests help researchers understand
the underlying biological processes in terms of ensembles of
genes.

Depending on the null hypothesis that is tested, there are
two types of gene-set tests (3): self-contained tests and com-
petitive tests (also called enrichment tests in some literature).
A self-contained test examines the DE signals of genes in the
test set without reference to other genes in the genome, with
the null being that no genes in the test set are differentially
expressed (4, 5, 6, 7, 8, 9). A competitive test compares DE
signals of genes in the test set to those of the genes not in the
test set, trying to detect whether the former are more abundant
and/or profound than the latter (10, 11, 12). Many competitive
testing methods perform a three-stage analysis (13). At the
first stage, a gene-level statistic is calculated for each gene
in the whole genome to measure the association between its
expression levels and the design variable(s) of interest; such
gene-level statistics include, among others, signal-to-noise
ratio (14), ordinary t-statistic (10) or moderated t-statistic
(15), log fold change (16) and z-score (17). At the second
stage, a set-level statistic is calculated by comparing the gene-
level statistics to the genes’ memberships with respect to the
test set (i.e., whether a gene belongs to the test set). Examples
of the set-level statistics are the enrichment score (14), the
maxmean statistic (18), and a statistic derived from convoluted
distribution of gene-level statistics (12), to name a few. At the
third stage, a p-value is obtained for the test set by comparing
the set-level statistic to its reference distribution. Compared
with self-contained tests, competitive gene-set tests are much
more widely used in the genomic literature (11, 19) and will
be the focus of our work.

Most competitive gene-set tests assume independence
between gene-level statistics(20). Given that the gene-level
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statistics are calculated based on a common set of sam-
ples, this assumption implicitly requires that the expression
levels of different genes are independent. Examples of
independence-assuming gene-set tests include, among many
others, PAGE (16), the contingency-table-based tests (see (21)
for a review) and sigPathway (10, 15). However, between-
gene correlations can be widespread, for example, among
co-regulated genes (19). It has been recognized that even
mild between-gene correlations may result in severely inflated
false positive rate for independence-assuming gene-set tests
(3, 11, 12, 18, 19).

A handful of methods have been proposed to account
for between-gene correlations in competitive gene-set tests.
One attempt is to evaluate the null distribution of the set-
level statistic by permuting the clinical/treatment labels of
the samples. Examples include the widely used Gene Set
Enrichment Analysis (GSEA) proposed by Subramanian et al.
(14) and various other methods (22, 23). Permuting sample
labels does not require an explicit understanding of the underl-
ying correlation structure among genes and thus protects the
test against such correlations. Since permuting sample labels
is computationally inefficient, Zhou et al. (24) proposed an
analytic approximation to permutations for set-level score
statistics, which preserves the essence of permutation gene-set
analysis with greatly reduced computational burden. However,
permuting sample labels in these methods inevitably alters
the null and alternative hypotheses of a competitive gene-set
test by excluding from the null the possibility that DE signals
are present but not enriched in the test set, and consequently
confuses the competitive test with the self-contained test,
making the results hard to interpret (3, 11, 13).

Another attempt to account for correlated genes is to
use set-level statistics that directly incorporate between-gene
correlations estimated from the data. For example, CAMERA
(11) calculates a variance inflation factor (VIF) from the
sample correlations (after the treatment effects removed) of
the observed expression data, which is then incorporated into
the set-level statistic to account for the correlations between
the gene-level statistics. QuSAGE (12), a recent extension to
CAMERA that quantifies gene-set activity with a probability
density function, uses a similar VIF to handle between-gene
correlations. MAST (25) adapts CAMERA to the analysis of
single-cell RNA-Seq data. However, as we will demonstrate
both theoretically and empirically, the VIF approach implicitly
assumes that all genes are homogeneous in terms of whether
DE is present and the magnitude of the DE effect. This
is problematic because DE heterogeneity commonly arises
in gene expression studies: in most real data sets, one
expects some of the genes to be differentially expressed while
others not, and those that are differentially expressed to have
varying DE effects. As a result of its failure to account for
this heterogeneity, the VIF approach tries to quantify the
correlations among gene-level test statistics (e.g., t-statistics)
using the within-treatment-group correlations between the
expression levels of different genes. However, the former are
often smaller than the latter because, when a fraction of the
genes are differentially expressed, their DE effects add to the
variability of the gene-level statistics across genes and hence
act to dilute the correlation between these statistics. We will
show that the VIF approach can lead to severely compromised
type 1 error and power in gene-set testing.

To address these challenges, we propose a new fra-
mework for competitive gene-set analysis, which we will
call MEACA (Mixed-effects Enrichment Analysis with
Correlation Adjustment). Our idea is motivated by the discre-
pancy, due to DE heterogeneity, between the within-treatment-
group correlation structure of the genes expression levels and
the correlation structure among gene-level statistics. Using a
mixed-model approach, we model the covariance structure of
gene-level statistics by two components, one attributable to the
correlations between the expression levels of different genes
after treatment effects are removed, and the other attributable
to the variability across genes in terms of the presence of
DE and the effect size. Our method is able to adjust for
completely unknown, unstructured correlations among the
genes. We use a quasi-likelihood framework, which does not
require the gene expression data or the distribution of the DE
effects across genes to be Gaussian. MEACA uses a score-
type test and allows for analytical assessment of p-values,
which renders it computationally efficient for analysis of large
numbers of genes and gene sets. We will show that, compared
to existing methods including GSEA (14) and CAMERA (11),
MEACA consistently outperforms existing methods in terms
of type 1 error control in a wide variety of correlation settings
and enjoys substantial power gain.

The rest of the paper is organized as follows: in Material &
Methods, we will describe the methodology of MEACA, and
the simulation setup for evaluating its type 1 error rate and
power with a summary of the methods we will compare to;
in Results, we will present simulation results to compare the
performance of MEACA to other methods, and illustrate the
use of our method using two real data sets; in Conclusion, we
will discuss some future work.

MATERIAL & METHODS

We consider a gene expression (e.g. RNA-Seq or microar-
ray) experiment, in which we compare the expression data
of samples from two groups: a treatment group with n1
samples referred to as “cases” and a control group with n2
samples referred to as “controls” (n1,n2≥3). Suppose the
expression levels of a set of m genes are observed for each
sample. An unknown subset of these genes are differentially
expressed between cases and controls, with varying sign and
magnitude of DE effects. The genes are also allowed to
have (negatively or positively) correlated expression levels.
In enrichment analysis, we are interested in a pre-defined set
of genes, for example, from a known pathway or given by a
functional annotation term from a database such as KEGG (1)
or GO (2). Our goal is to test whether this known gene set is
enriched with DE signals compared to the rest of the genes. We
will refer to the genes in the pre-defined gene set as “the test
genes” which make up the “the test set,” and genes not in this
set “ the background genes” which make up “the background
set.” The rest of this paragraph will provide a brief overview
of the model underlying MEACA, with some technical details
to be explained later. We will use a gene-level test statistic,
denoted by Ui, to capture the unknown DE signal of gene i.
Let G be an m-dimensional vector defining the gene set of
interest, where Gi=1 if and only if gene i is in the test set and
Gi=0 otherwise (for any given gene set G is known). In the
following sections, we will derive a model for Ui’s conditional
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on G, using a mixed-effects framework of the form (details to
be explained later)

Ui=β0+β1Gi+ψi+ηi, i=1,...,m, (1)

where β1 is a fixed effect capturing the mean difference
between the test set and the background set, and ψi and ηi are
random effects. The term ψi captures the variability among
Ui’s due to some genes being differentially expressed and
some not, and to the varying magnitude of the DE effects. The
variance of ψi depends on whether Gi=0 or 1, which allows
the spread of gene-level statistics to be different between the
test set and the background set. The ηi’s account for the
variability in Ui’s due to sample-level noise and are allowed to
be correlated with each other to accommodate between-gene
covariation.

To justify model (1) and to specify the modeling assumpti-
ons on ψi and ηi, we will start by constructing a hierarchical
model for the observed gene expression data, from which
we will then derive a mixed-effects model for the gene-level
statistics jointly for all the genes. Based on this model, we
will then present our enrichment testing method, and discuss
its connections with CAMERA. Finally, we will describe our
simulation studies used to evaluate the proposed method.

A hierarchical model for gene expression data
We will start by presenting the hierarchical model for the
observed gene expression data jointly for all genes, which
will incorporate the following features. Firstly, for a given
sample, the expression levels of different genes are allowed to
be correlated. We further assume that the correlation structure
is the same across samples. Secondly, different genes may
have different baseline expression levels, where “baseline”
refers to the average among controls. Thirdly, for any given
gene, its mean expression level in the treatment group can
be either higher, lower or the same compared to the control
group, depending on whether the gene is up-regulated, down-
regulated, or not differentially expressed. For the genes that
are differentially expressed, their DE effects are modeled
additively and are allowed to have heterogeneous signs and
magnitudes. Finally, given a gene and its DE effect, the
expression level is allowed to vary independently across
samples, which captures measurement error and sample-level
variability.

To present our model formally, we first introduce some
notation. Let n=n1+n2 be the total sample size. Let X be
an n-dimensional known vector of 1’s and 0’s denoting the
case-control membership of the samples, with Xi=1 for a
case and Xi=0 for a control. Let Y be an m by n matrix
representing the expression data, in which each column is the
expression profile for a sample and Yij (1≤ i≤m,1≤j≤n)
is the expression level of sample j at gene i. Let μi (1≤ i≤m)
be the baseline expression level for gene i. The quantities μi’s
are treated as nuisance parameters and as we will see later do

not contribute to our analysis. Let Δ=(Δ1,··· ,Δm)T be a
vector for the additive DE effects for the genes. Gene i is not
differentially expressed if Δi=0, up-regulated if Δi>0 and
down-regulated if Δi<0. We model Δ as a random effect,
for which we will detail our assumptions later. Given μi and
Δi, the mean expression level for the control group and the

treatment group are μi and μi+Δi, respectively. Given these

means, the noise in the observed expression data for the jth

sample is denoted by the error vector εj=(ε1j ,··· ,εmj)
T ,

1≤j≤n. We assume ε :=(ε1,··· ,εm) to be independent of
Δ and to have mean zero. Without loss of generality, we also
assume Var(εij)=1 for all genes and samples. For a real gene
expression data set typically not satisfying this assumption,
we can standardize the data by each gene to ensure that
its empirical variance equals one before implementing our
method (Supplementary Data A). For the covariance structure
of ε, we assume independence across samples and allow
correlations between genes, namely

εj1 and εj2 are independent, for j1 �=j2, (2)

Cov(εj |G)=C, 1≤ i≤n, (3)

where C is an m by m between-gene correlation matrix
shared by all samples and is generally unknown. Putting these
elements together, we obtain the following model for the
expression data Y given X

Yij=μi+Xj ·Δi+εij , (4)

for 1≤ i≤m,1≤j≤n. The gene-set membership vector G
enters this model via Δi and possibly μi.

Assumptions on the DE effects
Conditional on G, we assume that the Δi’s are mutually
independent and come from either of the two distributions, D1
for the background set (i.e, Gi=0) and D2 for the test set (i.e,
Gi=1). We denote the expected values of D1 and D2 by β0
and β0+β1, respectively, and their variances by σ21 and σ22 ,
respectively. It follows that

E(Δ|G)=β0+β1G, var(Δ|G)=σ21I1+σ22I2, (5)

where I1 and I2 are diagonal matrices of dimension m with
0’s and 1’s on their diagonals. The 1’s in the diagonal of I1
correspond to the genes with Gi=0 and those for I2 to the
genes with Gi=1.

Aside from the conditions in equation (5) on the first two
moments, we do not impose on the DE effects, Δ, any specific
distributional assumptions such as normality. For example, the
distribution of a given Δi can put a positive probability mass
on zero, which allows for the highly likely scenario in which
some of the genes are not differentially expressed. To further
illustrate our general framework for Δ, we present a simple
model included by equation (5) as a special case. Suppose the
m genes are independently sampled to be either differentially
expressed or not. The probability for gene i to be differentially
expressed is pt if Gi=1, or pb if Gi=0. For differentially
expressed genes, their DE effects are sampled independently
from a common distribution with mean μδ and variance σ2δ .
Under these assumptions,

E(Δi|G)=piμδ, Var(Δi|G)=piσ
2
δ+pi(1−pi)μ

2
δ , (6)

where pi=pt if Gi=1 and pi=pb if Gi=0 (Supplementary
Data B). It can be shown that this model is a special case of
equation (5), where β1=0 is equivalent to pb=pt.
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Model for gene-level statistics
For each gene i, we consider the gene-level statistic Ui given
by

Ui=

∑
j:Xj=1Yij

n1
−
∑

j:Xj=0Yij

n2
, (7)

which is sample mean difference in the expression levels
between cases and controls. Given our assumption that the
expression data Y have been standardized so that εi has
variance 1, Ui is equivalent to the two-sample t-test statistic
and provides a DE metric for gene i.

We will construct a quasi-likelihood model for the conditi-

onal distribution of U=(U1,··· ,Um)T given G, by deriving
the conditional mean and covariance structures of U from the
model for Y described in the previous two subsections. We
first observe that combining equations (4) and (7) yields

Ui=Δi+ηi,where ηi=
1

n1

∑
j:Xj=1

εij− 1

n2

∑
j:Xj=0

εij . (8)

It can be shown (Supplementary Data C) based on equations
(2), (3), (5) and (8) that

E(U |G)=β0+β1G, (9)

Σ :=Var(U |G)=σ20C+σ21I1+σ22I2, (10)

where σ20=1/n1+1/n2 is a known parameter. We note that
in equation (10), the covariance structure of U has three
components, a component with C which accounts for the
contribution of sample-level noise ε, and two additional
components from the heterogeneity of the DE effects Δ.
It is noteworthy that both the C component and the Δ
components contribute to the variance of Ui’s, whereas only
the C component contributes to the covariance between two
Ui’s. As the result, the correlation between two Ui’s is affected
by both the Δ components as well as the C component,
with the former serving to increase the variance and therefore
dilute the correlation. Ignoring the contribution of the former,
as is done by some previously proposed methods including
CAMERA, tends to lead to overestimation of the extent of
between-gene correlations for the Ui’s.

Finally, we note that by letting Δi=β0+β1Gi+ψi, equa-
tion (8) is equivalent to model (1) whose mean and variance
are given by equations (9) and (10). The random effects ψi’s
capture the heterogeneity of the DE effects that are conditional
on whether gene i belongs to the test set (Gi=1) or not
(Gi=0).

The MEACA set-level test statistic
To detect patterns of the DE signals in the gene set of
interest that stand out compared with genes not in the set,
we test H0 :D1=D2 against H1 :D1 �=D2. For example, for
the special scenario given by equation (6), this amounts to
testing pb=pt against pb �=pt. To construct the set-level test
statistic, we focus on the part of the alternative space where
E(D1) �=E(D2), or equivalently β1 �=0. We first consider the

less interesting case with uncorrelated genes, in which C
equals I , an m-dimensional identity matrix. Under the quasi-
likelihood model for U given in equations (9) and (10), the

quasi-score statistic for β1 has the form S∝GT (U−β̂01m),

where β̂0=U is an estimate for β0 and 1m is a m-dimensional
vector of 1’s. To perform a quasi-score test, one would divide
S2 by its estimated variance under H0 and the assumption that
C=I . The resulting test statistic is

Tu=
S2

V̂ar0,C=I(S|G)
=

[GT (U−β̂01m)]2

GT (I−H)G
, (11)

where H=
1

m
1m1Tm and the subscript “u” stands for “uncor-

related genes.” For the case of interest when between-gene
correlation is present, C is a non-trivial correlation matrix.
We will again form our test statistic based on S. However,
for the denominator of the statistic, the null variance of
S will be evaluated under the quasi-likelihood model with
a non-trivial C. By equation (10), the variance of S is

given by Var(S|G)=GT (I−H)Σ(I−H)G. Note that H0 :
D1=D2 implies σ21=σ22 . Thus, under H0, Σ=Var0(U |G)=

σ20C+σ21I , where σ20=1/n1+1/n2 is known and σ21 is an

unknown parameter. To estimate σ21 under H0, we observe that

Var0(Ui)=σ20+σ21 and thus use σ̂21=
∑m

i=1(Ui−U)2/(m−
1)−σ20 . Therefore, assuming C is known, we can obtain the
two-sided MEACA test statistic given by

T =
S2

V̂ar0(S|G)
=

[GT (U−β̂01m)]2

GT (I−H)Σ̂(I−H)G
, (12)

where Σ̂=(1/n1+1/n2)C+σ̂21I is a null estimate of Σ

and β̂0=U . Under suitable regularity conditions, significance
of the test could then be assessed by comparing T to a χ2

1
distribution.

When it is desirable to test the one-sided alternative
hypothesis that E(D1)<E(D2), one may use the signed
squared root of T given by

Tone sided=
GT (U−β̂01m)√

GT (I−H)Σ̂(I−H)G
(13)

as the test statistic, whose p-value can be obtained by
comparing to the standard normal distribution.

Estimating the between-gene correlation matrix C

In practice, the between-gene correlations are usually

unknown. Therefore we substitute C with Ĉ, the empirical
correlation matrix of the expression data after possible DE
effects are controlled for by centering the expression levels

of cases and controls separately around zero. Formally, Ĉ is

given by Ĉik=
1

n

∑n
j=1(Yij−αij)(Ykj−αkj), where αij=∑

j′:Xj′=Xj
Yij′/

∑n
j′=11{Xj′ =Xj} is the average expres-

sion level at gene i for all samples from the same group
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(either cases or controls) as sample j. In real data sets, the
number of genes, m, is usually much greater than the sample
size n, in which case C is a high-dimensional parameter that

cannot be efficiently estimated by Ĉ. Interestingly, however,
we find that the MEACA test statistic T relies not on
the entry-wise accurate estimation of C, but only on three
parameters involving the entries of C, which can be much
more realistically estimated given a moderate sample size. To
demonstrate this, let m1 and m2 be the sizes of the test set
and the background set, respectively (m1+m2=m). Also let
ρ1 be the average correlation between two genes in the test set,
ρ2 be the average correlation between two background genes,
and ρ3 be the average correlation between a test gene and a
background gene. Then, ρ1 is the mean of the off-diagonal
entries in the m1×m1 sub-matrix of C made up of rows
and columns corresponding to the test set, ρ2 is that in the
m2×m2 sub-matrix corresponding to the background set, and
ρ3 is the mean of the entries in the m1×m2 sub-matrix of C
corresponding to the cross-covariance between the test and the
background sets. It can be shown that the denominator of the
MEACA test statistic given in equation (12) can be written as

a1ρ1+a2ρ2−a3ρ3+a4+a5σ̂1
2, (14)

where a1,··· ,a5>0 are constants that do not depend on
C (for details see Supplementary Data D). Therefore, the
MEACA test statistic depends on C only through ρ1, ρ2 and
ρ3.

Connections with CAMERA
Model (1) and equation (14) also help reveal the connections
between CAMERA and our method. When considered under
our framework with Var(εij)=1 and equation (7) as the gene-
level statistics, the CAMERA approach can be viewed as a
score test derived from a model which effectively assumes the
following:

(A1) The random effect ψi=0 can be dropped from model
(1) for both genes in the test set and those in the back-
ground set. Or equivalently, σ21=σ22=0 in equation
(10). This amounts to assuming, both in the test set and
in the background set, that either none of the genes are
differentially expressed or all genes are differentially
expressed with the exact same DE effect;

(A2) The between-gene correlation structure satisfies ρ2=
ρ3=0, which means that between-gene correlations are
present only among genes in the test set, not among
background genes or between background and test
genes.

Both assumptions are likely violated in reality. In particular, it
is likely for both the test set and the background set that some
genes are differentially expressed while others are not, and that
the genes that are differentially expressed vary in terms of the
signs and magnitudes of their DE effects. In our model, this is
accounted for by a non-trivial ψi term or equivalently by the
heterogeneity in the Δi’s, which adds to the variances of Ui’s
without contributing to their pairwise covariances. However,
with Assumption (A1), CAMERA effectively ignores the Δi
heterogeneity and consequently under-estimates the variances

of Ui’s and over-estimates the correlations between Ui’s.
This tends to result in over-adjustment of between-gene
correlations in enrichment testing and lead to conservative
type 1 error and power loss. In the setup given by equation
(14), this issue would be reflected by incorrectly calculated
constants a1,··· ,a5 which overall would produce a greater
than necessary denominator in the set-level test statistic and
thus tends to drive the p-value towards the non-significant side.
With Assumption (A2), ignoring a positive ρ2 has the effect of
under-estimating the null variance of the set-level test statistic
and thus may inflate type 1 error, whereas ignoring a positive
ρ3 has the opposite effect. Overall, whether CAMERA results
in a conservative or anti-conservative type 1 error will depend
on how these factors act upon each other. In simulation studies,
we will explore how CAMERA behaves in different scenarios.

Simulation study design
In this section, we will specify the setup of our type 1
error and power simulation studies. Let Yj be a vector
denoting the expression profile of sample j. Conditional on
the genes’ DE effects, we simulate the Yj’s independently
from a multivariate normal distribution with unit variance and
ρi1,i2 =Cor(Yi1,j ,Yi2,j) as the correlation coefficient between
genes i1 and i2. We assume a common pairwise correlation
coefficient for genes from the same category (either the test
set or the background set): Cor(Yi1 ,Yi2)=ρ1 if genes i1 and
i2 are both test genes (i.e., Gi1 =Gi2 =1), Cor(Yi1 ,Yi2)=
ρ2 if they are both background genes (i.e., Gi1 =Gi2 =0).
For a test gene and a background gene (i.e., Gi1 =1,Gi2 =
0), we assume Cor(Yi1 ,Yi2)=ρ3. We examine five different
correlation structures, listed as follows:

(a): ρ1=ρ2=ρ3=0; that is, the genes are independent of
each other.

(b): ρ1=ρ2=ρ3=0.1; that is, all genes are correlated, with
an exchangeable correlation structure.

(c): ρ1=0.1, ρ2=ρ3=0; that is, only the genes in the test
set are correlated.

(d): ρ1=0.1, ρ2=0.05, ρ3=0; that is, genes are correlated
within the test set and within the background set, but
any two genes, one from the test set and the other from
the background set, are independent.

(e): ρ1=0.1, ρ2=0.05, ρ3=−0.05; that is, all genes are
correlated, but the correlation between two genes
depends on their membership status to the test set.

The five structures will help us evaluate the robustness of
MEACA and how violations of the independence assumption
or Assumption (A2) affect the competing methods.

The simulations run as follows. First, we consider a total
of m=500 genes, of which m1=100 genes are in the test
set and the remaining m2=400 genes in the background
set. Second, we randomly sample genes to be differentially
expressed with probability pt in the test set and with pro-
bability pb in the background set. If gene i is sampled to
be differentially expressed, we simulate its DE effect Δi
from a normal distribution N(2,1), and if gene i is not
differentially expressed, we set Δi=0. Third, we set the mean
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expression levels of the m genes to be μ1=0m for a control
sample and μ2=Δ for a case sample. Fourth, for each of
the n1=25 samples in the control group, we simulate its
expression profile independently from a multivariate normal
distribution MVN(μ1,Σ), where Σ=[Cov(Yi1 ,Yi2)]m×m is

the covariance matrix corresponding to one of the structures
in (a)-(e) detailed in the previous paragraph. For each of
the n2=25 samples in the treatment group, we simulate its
expression profile from MVN(μ2,Σ).

Further assumptions on pt and pb will complete our genera-
ting model used in the type 1 error and power simulations.
Table 1 summarizes the configurations of pb and pt we
consider. In order to examine how the presence of DE and the
heterogeneity of the DE effects may affect various enrichment
tests, for each correlation structure in (a)-(e), we conduct
two groups of simulations: genes in the background set are
allowed to be differentially expressed in group II but not in
group I (so Assumption (A1) holds for group I but not for II).
In both type 1 error and power simulations, we set the DE
probability for the background genes to be pb=0% in group
I and pb=10% in group II. In the type 1 error simulations,
we have pt=pb under the null. In the power simulations, we
consider four different scenarios, S1−S4, for the alternative
hypothesis corresponding to different levels of enrichment:
for genes in the test set, we set the DE probability to be
pt=5%(S1),10%(S2),15%(S3) and 20%(S4) in group I, and
15%(S1),20%(S2),25%(S3) and 30%(S4) in group II.

Table 1. DE probability configurations in type 1 error and power simulations.

Snull is for type 1 error simulations. S1-S4 represent the four scenarios

considered in power simulations. pb and pt are the DE probability for genes

in the background set and that in the test set, respectively.

Group
Background DE prob. in test set (pt)

DE prob. (pb) Snull S1 S2 S3 S4

I 0% 0% 5% 10% 15% 20%
II 10% 10% 15% 20% 25% 30%

Other methods considered in simulations
We will compare MEACA to five existing gene-set
testing methods: sigPathway (10), MRGSE (26), CAMERA,
QuSAGE (12), and GSEA (14). MRGSE is a rank-based
method assuming between-gene independence, and is recom-
mended by Tarca et al. (27) as the best performing one
among a wide class of independence-assuming methods.
sigPathway is a parametric version of MRGSE, and in our
simulations we use the moderated t-statistic (15) as its
gene-level statistic. The other three methods in comparison,
CAMERA, QuSAGE (12), and GSEA (14), all incorporate
features intended for between-gene correlation correction.
CAMERA uses the moderated t-statistic as the gene-level
statistic and estimates a VIF to account for between-gene
correlations. QuSAGE is an extension of CAMERA that
quantifies gene-set activity with a probability density function.
GSEA first calculates an enrichment score for a test set
from the ranks of all genes based on DE evidence, and
then determines the significance of the enrichment score by
randomly permuting the case-control labels of the samples.
We note that, GSEA as implemented in the R-GSEA script

(http://software.broadinstitute.org/gsea/index.jsp) can yield p
values that are exactly zero, which have been shown to be
inaccurate for permutation tests (28). To avoid exactly zero p-
values, we follow the recommendation of Phipson et al. (28)
and calculate the GSEA p value using (b+1)/(K+1), where
K is the total number of permutations performed and b out of
the K permutations result in statistics that are more extreme
than the observed statistic. In the simulation studies, we use
default of the R-GSEA program K=999.

RESULTS

Based on the simulation setup described in Material &
Methods, empirical type 1 error is evaluated under the null
in which DE probabilities are the same for genes in the test
set and for those in the background set (i.e., pt=pb=0%
for group I and pt=pb=10% for group II). In the power
simulations, we set DE probability according to each of the
alternative scenarios S1–S4 (see Table 1) and calculate the
proportion of data sets for which a test would reject the null at
a given level α.

Type 1 error simulations
We evaluate the calibration of MEACA and the competing
methods using data simulated under a variety of settings. For
MEACA and five other approaches (sigPathway, MRGSE,
GSEA, CAMERA and QuSAGE), Figure 1 shows the
quantile-quantile (QQ) plots of p-values in simulation groups
I (left column) and II (right column) and under each of the
five correlation structures (each row, from top to bottom,
corresponds accordingly to correlation structures (a)-(e)). The
plots are based on 10,000 simulation replicates. In each QQ
plot, the vertical axis corresponds to the empirical p-values
and the horizontal axis corresponds to quantiles from the
uniform distribution between 0 and 1, which is the theoretical
distribution of the p-values if a method is correctly calibrated.
For any given setting, a curve that closely follows the diagonal
line indicates a method that is well calibrated. A curve that
falls consistently below the diagonal line indicates a method
that has inflated type 1 error, whereas a curve consistently
above the diagonal line indicates overly conservative type 1
error control.

Across the settings, MEACA shows consistent accuracy
for type 1 error control. All the other methods, however,
can be severely mis-calibrated under various scenarios. In
particular, the independence-assuming methods, sigPathway
and MRGSE, are well calibrated only when the genes are
uncorrelated (structure (a)) or when the genes are equally
correlated (structure (b)). When the genes go beyond these
simple structures, sigPathway and MRGSE become very
liberal ((c)-(e))), with type 1 error rates at level 0.05 as high as
0.68 (structure (e), group I). These results show that even small
between-gene correlations (e.g. 0.05) can result in inflated
type 1 error if the test does not account for such correlations.

For GSEA, accuracy of type 1 error control relies on the
absence of background DE signals: in group I where no gene
is differentially expressed, GSEA performs extremely well;
group II, however, reveals the failure of GSEA in controlling
type 1 error when DE signals are present in both the test
and the background sets, regardless of whether between-gene
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correlations exist or not. This phenomenon is not surprising
given that GSEA permutes the case-control labels of samples,
which inevitably disturbs the DE patterns in the genes and
is effectively testing a very restrictive null hypothesis, one
in which not only the set of test genes cannot be enriched
with DE signals compared to the set of background genes,
but in fact neither set is allowed to contain any differentially
expressed genes at all. This null hypothesis implies the null
entailed by the goal of competitive gene-set testing, which
is why GSEA is correct in group I. But the former is much
more restrictive than the latter, which explains GSEA’s anti-
conservativeness in group II. It is notable that, in practice, one
rarely sees a situation where no differentially expressed genes
are present in the background set, so group II is more relevant
than group I, making GSEA a risky choice for the purpose of
competitive gene-set testing.

For CAMERA, control of type 1 error varies from being too
conservative to being too liberal across the settings in Figure
1. For any given setting, the performance of CAMERA would
depend on (1) whether DE effects are heterogeneous across
genes and (2) the between-gene correlation structure. These
two factors correspond, respectively, to Assumptions (A1) and
(A2) discussed in Material & Methods. In simulation group
I, (A1) holds because DE effects are completely absent and
therefore homogeneous across genes. In this case, CAMERA
is correctly calibrated under (a) and (c), when Assumption
(A2) also holds. When all genes, including the background
genes, are correlated (as is the case for structure (b)),
CAMERA is overly conservative with type 1 error rate at level
0.05 too stringently controlled at <10−4. Under structures (d)
and (e), CAMERA tends to be too liberal, with type 1 error
at level 0.05 as high as 0.21 (structure (e), group I). QuSAGE
has similar trends of mis-calibration in these group I settings,
and is anti-conservative under (a). In contrast to group I, group
II has a fraction of the genes that are differentially expressed
with varying effects, resulting in heterogeneity among genes
in terms of the presence and magnitude of DE effects. So
in this case Assumption (A1) is violated. As discussed in
Material & Methods, this would drive the type 1 error of
CAMERA towards the conservative side when between-gene
correlation is present, because CAMERA ignores the DE
heterogeneity and consequently would over-correct for the
correlation. Indeed, as shown in the right column of Figure 1,
when genes are correlated (structures (b)-(e)), the calibration
of CAMERA is very conservative, with type 1 error at level
0.05 falling below 0.005. Such stringent control of type 1 error
is expected to come at the cost of low power of detecting gene
sets that are truly enriched with DE signals, which we will
show in the power simulations. In group II, QuSAGE is also
mis-calibrated across the settings.

Power simulation
Figure 2 shows how the power of MEACA varies as the
enrichment in the test set becomes more profound (from
S1 to S4) in the alternative hypothesis. For each correlation
structure, we report the power trajectory at level 0.05. The
top is the power for group I, and the bottom for group II.
The power results under correlation structures (a) and (b)
are similar, and are among the highest under each of the
four alternatives. As the correlation structure becomes more

complex, from (c) to (d) then to (e), the power decreases
under every alternative setting. The power under correlation
structure (e) is the lowest for both groups I and II.

It is also of interest to explore whether MEACA, while
being able to adjust for between-gene correlations, will have
compromised power when genes are in fact uncorrelated. For
this purpose, we compare the empirical power of MEACA,
MRGSE, sigPathway and CAMERA under correlation stru-
cture (a). We do not consider GSEA or QuSAGE because
they do not have consistently accurate control of type 1 error
under (a). In Table 2, it is clear that MEACA does not lose
any power compared to the independence-assuming methods
when the genes are indeed independent. CAMERA also loses
little power under structure (a). However, we note that, in the
presence of between-gene correlations, CAMERA is expected
to lose power in many realistic scenarios due to its over-
stringent calibration (Table 3), and independence-assuming
methods tend to generate excessive false positives (Figure 1).

Finally, we compare the statistical power of MEACA to the
other methods under different correlation structures (Table 3).
Note that it is not fair or interesting to compare to a method
that does not effectively control false positives. Therefore, to
make a more meaningful power comparison, for any given
setting, we only consider the methods whose type 1 error
control is adequate (i.e. either accurate or conservative, but
not anti-conservative) as shown by Figure 1, and we leave
out a method if its type 1 error rate is inflated. For example,
in group II under correlation structure (c), all of MRGSE,
sigPathway, GSEA and QuSAGE are anti-conservative and
therefore excluded, whereas we include CAMERA which is
conservative and MEACA which is accurate. We focus on
the group II scenarios, which we consider more practically
relevant than group I because in real data sets one typically
expects at least some of the background genes to be differenti-
ally expressed. Table 3 shows that MEACA enjoys the highest
power under all of the correlation structures. CAMERA is
the only other method that is adequately calibrated across the
settings. However, CAMERA has by far a lower power when
the genes are correlated, with the power at level 0.05 as low as
0.028 (structure (b)). This aligns with the highly conservative
type 1 error control of CAMERA when DE signal is present
among the background genes (Figure 1). Our results indicate
that MEACA consistently maintains the highest power and
achieves great power gain over CAMERA, which can be
greatly underpowered in some realistic settings.

Real Data
We conduct competitive gene-set analysis on two real data
sets to illustrate the use of MEACA and to compare the
enriched gene sets it identifies with those obtained by three
other methods, GSEA, CAMERA and MRGSE.

Huntington’s Disease Data We examine an RNA-Seq data
set on the Huntington’s Disease (HD) to identify enriched
gene sets that are potentially responsible for HD. The mRNA
expression profiles in human prefrontal cortex were obtained
from 20 Huntington’s Disease samples and 49 neurologically
normal controls. Expression values were normalized and
filtered as described in (29). The data set, containing 28,087
genes is available as series GSE64810 in the GEO database
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Figure 1. Quantile-quantile plots for p-values by different methods in type 1 error simulations. The plots from top to bottom correspond to the correlation
structures (a)-(e), respectively. The left column is for group I simulation, and the right column for group II simulation (see Table 1 for details). Results are based
on 10,000 simulation replicates. MEACA gives uniformly distributed p-values under all simulation settings, whereas all of the other methods can be severely
mis-calibrated under some settings.

(http://www.ncbi.nlm.nih.gov/geo/). For each gene, we adjust
for two covariates—age at death (DeathAge) and RNA

Integrity Number (RIN), both treated as categorical variables
(29). Briefly, DeathAge is binned into intervals 0-45, 46-60,
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Table 2. Power comparison under (a), when genes are uncorrelated. MEACA, while being able to account for between-gene correlations, does not lead to power

loss when the genes are in fact uncorrelated. Empirical power at level 0.05 is calculated for each of the four alternative settings S1-S4 and groups I and II (see

Table 1 for details). Results are based on 10,000 simulation replicates. The highest power is in bold type for each setting.

Group Method S1 S2 S3 S4

I

MEACA 0.65 0.96 1.00 1.00
CAMERA 0.63 0.95 1.00 1.00
MRGSE 0.12 0.31 0.58 0.80
sigPathway 0.65 0.96 1.00 1.00

II

MEACA 0.23 0.59 0.87 0.98
CAMERA 0.23 0.58 0.86 0.98
MRGSE 0.11 0.31 0.58 0.83
sigPathway 0.23 0.59 0.87 0.98

Table 3. Power comparison under correlation structures (a)-(e) for group II. MEACA has the highest power for all settings. Power at level 0.05 is calculated

only for methods that have adequate (accurate or conservative, but not anti-conservative) type 1 error control for a given setting as shown in Figure 1. Data are

simulated under the alternative hypothesis S3 (see Table 1 for details). Results are based on 10,000 simulation replicates. The highest power is in bold type for

each setting.

Method (a) (b) (c) (d) (e)

MEACA 0.87 0.87 0.64 0.55 0.45
CAMERA 0.86 0.028 0.061 0.076 0.11
MRGSE 0.58 0.58 – – –

sigPathway 0.87 0.87 – – –
GSEA – – – – –

QuSAGE – 0.84 – – –

61-75, 76-90 and 90+, and RIN is dichotomized as > or ≤ 7.
We regress the normalized expression levels on AgeDeath and
RIN and use the resulting residuals as the covariate-adjusted
expression levels.

We perform enrichment analysis on the covariate-adjusted
data using the MsigDB (14) C2 Canonical Pathways (February
5, 2016, data last accessed). The C2 Canonical Pathways have
a collection of 1330 gene sets, with an average size of 50
genes (the size ranges from 3 to 1028, and the median is 29).
Since the genes are named by HGNC symbols in C2 and by
Ensembl IDs in the HD expression data set, we convert the
Ensembl IDs in the expression data into HGNC symbols using
BioMart (http://uswest.ensembl.org/biomart/martview/). We
retain 26,941 genes that have corresponding HGNC symbols.

On each gene set in the entire collection of C2 Canonical
Pathways, we perform four testing methods (MEACA, GSEA,
CAMERA and MRGSE) to obtain p-values evaluating whe-
ther the gene set is enriched with DE signals associated with
HD. Similar to the simulation studies, the GSEA p-values are
obtained using (b+1)/(K+1), where we increase the number
of permutations, K, from its default value 999 in the GSEA
program to 9999 due to the need to more accurately estimate
smaller p-values.

In Figure 3 we plot the p-values of MEACA against those
of GSEA, CAMERA and MRGSE on the negative log10
scale. The p-values of CAMERA are overwhelmingly larger
than those of GSEA and MEACA, yet smaller than those of
MRGSE. This is consistent with our observation in the type
1 error simulations that CAMERA can produce conservative
p-values. The p-values of MEACA and those of the other

three methods are highly correlated (Pearson’s correlations
of log10 p between MEACA and GSEA, CAMERA and
MRGSE are 0.91, 0.96, and 0.81, respectively). The p-values
of MRGSE are in general smaller than the corresponding p-
values of MEACA, likely due to unadjusted between-gene
correlations and leading to more gene sets claimed to be
significant by MRGSE.

We then compare the resulting list of significant gene sets
identified by MEACA to those by the other three methods.
For multiple comparison adjustment, we use the Benjamini-
Hochberg (30) procedure (BH) to control the false discovery
rate (FDR) at 0.05. Out of a total of 1330 C2 Canonical
Pathways, MEACA identifies 89 gene sets to be significantly
enriched. In contrast, GSEA identifies 3 enriched gene sets—
2 of them are also among those 89 gene sets identified
by MEACA (the one that is not significant according to
MEACA has a nominal p-value of 0.013 and a BH-adjusted
p-value of 0.100). MRGSE identifies as many as 371 gene
sets, which include all the 89 sets identified by MEACA as
well as 282 other gene sets, which are likely to contain
many false discoveries due to MRGSE’s failure to control
for between-gene correlations. CAMERA fails to detect
any significant gene set. In their original paper, Labadorf et
al. (29) used the same HD data set to conduct enrichment
analysis with topGo (31). They noted that the enriched gene
sets they identified showed a clear immune response and
inflammation-related pattern, including the PID NF-kappaB
canonical pathway, PID IL4-mediated signaling events (Path-
way name: PID IL4 2PATHWAY) and the Reactome innate
immune system pathway. In our analysis, MEACA is able to
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Figure 2. Power of MEACA under correlation structures (a)-(e). The top
corresponds to group I simulations, and the bottom to group II simulations
(see Table 1). The error bars are the 95% confidence intervals based on
10,000 simulation replicates.

capture all of these three gene sets, which rank (by nominal p-
values) 3, 10 an 18, respectively, among the 89 enriched gene
sets by MEACA.

In Table 4, we report the top 30 enriched gene sets (ordered
by nominal p-values) identified using MEACA. Among these,
only one gene set (labeled by “∗” in the table) is also identified
by GSEA at FDR level of 0.05, and none by CAMERA. The
majority of the enriched gene sets by MEACA have been pre-
viously shown to be closely related to HD pathogenesis. For
example, the top enriched gene set, PID SMAD2 3NUCLEAR
PATHWAY, is responsible for regulation of nuclear SMAD2/3
signaling. Nuclear SMAD2/3 has been linked to polygluta-
mine diseases, a group of neurodegenerative disorders that
include HD (32). The second gene set, REACTOME YAP1
AND WWTR1 TAZ STIMULATED GENE EXPRESSION,
consists of genes whose expressions are regulated by tran-
scriptional co-activators YAP1 and WWTR1. YAP1 has been
extensively linked to HD (33, 34, 35). The third enriched
gene set, PID NFKAPPAB CANONICAL PATHWAY, is a
canonical NF-kappaB pathway, and its dysregulation has been
shown on the cellular level to cause HD immune dysfunction
(36). It has also been found that reduced transport of NF-
kappaB out of dendritic spines and its activity in neuronal
nuclei may contribute to the etiology of HD (37). This also
suggests that the BIOCARTA NTHI PATHWAY, related to
NF-kappaB activation, is a plausible pathway associated with
HD. Moreover, the PID HIV NEF PATHWAY, is a pathway
for negative effector of Fas and TNF-alpha, both of which
are proteins that have been linked to HD in mice (38).
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Figure 3. Comparison of p-values between MEACA, GSEA, CAMERA and
MRGSE in HD data. The p-values are reported from enrichment test of each
gene set in the C2 Canonical Pathway gene sets.

Furthermore, three of the enriched gene sets, PID MYC
REPRESS PATHWAY, BIOCARTA TOLL PATHWAY, and
KEGG NOD LIKE RECEPTOR SIGNALING PATHWAY,
involve C-MYC, toll-like receptors and NOD-like receptors,
respectively, all of which have previously been found to relate
to HD or other neurodegenerative disorders (39, 40, 41). The
KEGG TGF BETA SIGNALING PATHWAY has been asso-
ciated with HD using an independent data set (42). Another
gene set, REACTOME INNATE IMMUNE SYSTEM, has
been found to contribute to HD pathogenesis (29, 36). In
addition, Chiang et al. (43) demonstrated that the systematic
downregulation of PPARγ, related to the BIOCARTA PPARA
PATHWAY, seems to play a critical role in the dysregulation
of energy homeostasis observed in HD, and that PPARγ is
a potential therapeutic target for this disease. For PID P53
DOWNSTREAM PATHWAY, Ghose et al. (44) have shown
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Table 4. Top 30 enriched gene sets identified by MEACA for HD data. The coefficients, ρ̂1, ρ̂2 and ρ̂3, respectively, are the average estimated sample correlations

of observed data between genes in the test set, between genes in the background set, and between two genes belonging to two different sets. A gene set significantly

enriched by GSEA is indicated by “∗”. No gene set is identified as enriched by CAMERA and all the 30 gene sets are among the 371 genes identified by MRGSE.

For all methods, FDR is controlled at 0.05.

Gene Set Size ρ̂1 ρ̂2 ρ̂3 p-value BH-adjusted p-value

PID SMAD2 3NUCLEAR PATHWAY 79 0.063 0.013 0.015 5.8E-06 5.7E-03 ∗
REACTOME YAP1 AND WWTR1 TAZ STIMULA-
TED GENE EXPRESSION

23 0.121 0.013 0.014 8.5E-06 5.7E-03

PID NFKAPPAB CANONICAL PATHWAY 22 0.127 0.013 0.019 2.3E-05 1.0E-02
BIOCARTA NTHI PATHWAY 23 0.130 0.013 0.023 6.2E-05 2.1E-02
BIOCARTA TID PATHWAY 18 0.101 0.013 0.012 1.2E-04 2.2E-02
PID HIV NEF PATHWAY 35 0.065 0.013 0.013 1.2E-04 2.2E-02
KEGG PATHWAYS IN CANCER 311 0.028 0.013 0.010 1.3E-04 2.2E-02
PID MYC REPRESS PATHWAY 60 0.057 0.013 0.013 1.9E-04 2.2E-02
BIOCARTA TOLL PATHWAY 36 0.083 0.013 0.018 2.0E-04 2.2E-02
PID IL4 2PATHWAY 59 0.081 0.013 0.010 2.0E-04 2.2E-02
KEGG TGF BETA SIGNALING PATHWAY 82 0.055 0.013 0.011 2.2E-04 2.2E-02
BIOCARTA DEATH PATHWAY 33 0.067 0.013 0.013 2.4E-04 2.2E-02
KEGG NOD LIKE RECEPTOR SIGNALING PATH-
WAY

55 0.045 0.013 0.008 2.6E-04 2.2E-02

BIOCARTA CTCF PATHWAY 23 0.083 0.013 0.015 2.8E-04 2.2E-02
ST TUMOR NECROSIS FACTOR PATHWAY 28 0.031 0.013 0.014 3.2E-04 2.2E-02
BIOCARTA TNFR2 PATHWAY 17 0.151 0.013 0.022 3.3E-04 2.2E-02
KEGG APOPTOSIS 82 0.036 0.013 0.008 3.3E-04 2.2E-02
REACTOME INNATE IMMUNE SYSTEM 209 0.039 0.013 0.009 3.3E-04 2.2E-02
PID HES HEY PATHWAY 47 0.071 0.013 0.019 3.4E-04 2.2E-02
REACTOME DOWNSTREAM TCR SIGNALING 31 0.082 0.013 0.011 3.7E-04 2.2E-02
PID TCPTP PATHWAY 42 0.076 0.013 0.010 3.7E-04 2.2E-02
BIOCARTA 41BB PATHWAY 14 0.110 0.013 0.023 3.9E-04 2.2E-02
PID FRA PATHWAY 34 0.154 0.013 0.008 4.1E-04 2.2E-02
PID P53 DOWNSTREAM PATHWAY 131 0.045 0.013 0.012 4.2E-04 2.2E-02
PID EPO PATHWAY 34 0.069 0.013 0.013 4.3E-04 2.2E-02
BIOCARTA PPARA PATHWAY 53 0.031 0.013 0.008 4.4E-04 2.2E-02
BIOCARTA EPONFKB PATHWAY 11 0.068 0.013 0.010 4.7E-04 2.2E-02
BIOCARTA HIVNEF PATHWAY 58 0.063 0.013 0.019 4.8E-04 2.2E-02
BIOCARTA CD40 PATHWAY 13 0.165 0.013 0.026 4.8E-04 2.2E-02
BIOCARTA IL7 PATHWAY 17 0.100 0.013 0.016 5.2E-04 2.3E-02

the likely involvement of NFkB (RelA), p53 and miRNAs in
the regulation of cell death in HD pathogenesis.

Male vs Female Lymphoblastoid Cells Data As a simple
test to verify our method, we analyze the mRNA expression
profiles from lymphoblastoid cell lines derived from 17
females and 15 males. Subramanian et al. (14) examined
this data set with their GSEA method, testing the MsigDB
cytogenetic gene sets (C1) for association with sex. The C1
collection includes 24 gene sets, one for each of the 24
human chromosomes, and 295 gene sets corresponding to
cytogenetic bands. Comparing male and female cell lines, one
would expect to home in on gene sets on chromosome Y(14).
Therefore, this data set is used as a benchmarking tool to
compare different testing methods.

We perform enrichment analysis with four tests, MEACA,
GSEA, CAMERA and MRGSE, on all the 309 C1 gene
sets containing at least 3 genes. Again, the GSEA p-values
are obtained using (b+1)/(K+1) with K=9999. In Table
5, we summarize all the gene sets that are identified to be

significant by at least one of the four testing procedures, with
FDR controlled at 0.05 by the BH procedure. MEACA has
recapitulated our knowledge about the data set to a great
extent in that it identifies all and only the four gene sets
corresponding to chromosome Y or Y bands. In comparison,
GSEA, CAMERA and MRGSE not only yield less significant
p-values than MEACAfor three of the gene sets on chromo-
some Y, but have also missed the fourth gene set, chrYp22.
Moreover, MRGSE claims as significant three autosomal
chromosomes which do not show evidence of enrichment by
any of the other methods.

CONCLUSION

We have developed MEACA, a new method for competitive
gene-set analysis of gene expression data, with the aim of
evaluating the association between a set of genes and a
factor of interest. MEACA features effective adjustment for
completely unknown, unstructured correlations among the
genes, and the ability to account for the DE heterogeneity
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Table 5. Enriched gene sets and their BH-adjusted p-values for lymphoblastoid cells data. Reported are gene sets with BH-adjusted p-value<0.05 for at least

one of MEACA, GSEA, CAMERA and MRGSE. An adjusted p-value is made bold if below 0.05.

Gene set Size MEACA GSEA CAMERA MRGSE

chrY 40 <1.0E-15 1.1E-02 1.6E-03 9.3E-05
chrYq11 16 <1.0E-15 1.1E-02 2.3E-05 8.9E-04
chrYp11 18 8.5E-13 1.1E-02 3.0E-02 2.7E-02
chrYp22 8 3.9E-02 6.8E-01 8.2E-01 2.2E-01
chr6 614 8.7E-01 1.0E-00 1.0E-00 1.3E-02
chr1 1104 8.7E-01 1.0E-00 1.0E-00 4.2E-03
chr12 571 8.8E-01 1.0E-00 1.0E-00 1.6E-06

across genes. It uses a score test approach and allows for
analytical assessment of p-values without the need of time-
consuming permutation procedures. Compared to previously
proposed approaches, MEACA enjoys robust and accurate
control of type 1 error and maintains high power across a wide
range of settings. Our method is available in the MEACA R
package.

Between-gene correlations are widespread in gene expres-
sion data, and failure to account for such correlations has been
extensively shown to be problematic for gene-set analysis.
Under the competitive gene-set testing framework, a number
of methods have been proposed to account for correlation
among genes. One approach is to evaluate the significance
of set-level statistic by permuting sample labels, as adopted
by the widely used procedure GSEA (14). However, the
sample permutation method has been criticized for altering
the null hypotheses being tested in the competitive gene-set
analysis (3, 13) and consequently tends to result in mis-
calibrated testing results. Instead, CAMERA (11) and a recent
extension, QuSAGE (12), correct for the correlations among
genes by estimating a VIF directly from the data. We are
the first to point out a major problem with this approach
related to its failure to properly model the DE heterogeneity
across genes, which results in incorrect adjustment for the
correlation between single-gene test statistics. We have shown
in both simulations and real data examples that this can
severely compromise the performance of CAMERA and
QuSAGE. In particular, we have found that CAMERA can be
profoundly mis-calibrated and underpowered under realistic
scenarios. We have addressed this challenge by modeling the
covariance structure between gene-level statistics using two
variance components, one attributable to correlations between
gene expressions after potential DE effects are removed, and
the other attributable to the heterogeneity of DE effects.
Moreover, MEACA is based on a quasi-likelihood framework,
which does not assume normality for the expression data or the
distribution of the DE effects.

We have compared the performance of MEACA to com-
peting approaches through both simulations and real data
examples. Through extensive simulation studies, we have
examined the calibration of MEACA and five other methods
(sigPathway, MRGSE, CAMERA, GSEA and QuSAGE) in a
variety of settings, and have demonstrated that MEACA con-
trols type 1 error accurately under all settings considered,
whereas each of the other methods has failed in at least
some situations. The power of MEACA is also shown to
compare favorably with the other methods. We have further

validated our approach using two real data sets, in which
MEACA, compared with its competitors, has yielded results
that are highly biologically relevant. In particular, we have
identified a moderate number of gene sets associated with HD,
many of which have previously been linked to the disease
yet most, if not all, of which were missed by GSEA and
CAMERA. As a simple benchmarking data set, we have also
analyzed a lymphoblastoid cell line data set for which we have
relatively confident prior understanding. MEACA has been
able to generate results that are highly consistent with our prior
knowledge.

Although MEACA is motivated by the problem of gene-set
analysis of transcriptomic data, it can be widely applicable to
other types of data sets (such as proteomic, metabolomic and
microbiome data) in which it is of interest to detect whether a
subset of the features (such as protein categories, metabolite
groups and microbial taxonomic groups) are enriched with
differential signals between two groups of samples. Examples
include detection of differentially abundant gene families in
functional analysis of metagenomic data (45) and enrichment
analysis of high-throughput proteomic data(46).

While two-group comparison is one of the most useful
designs, many studies involve a more complicated design
structure, involving multiple groups, a block structure and/or
time course measurements. MEACA provides a framework
that is potentially generalizable to these designs with an
extended mixed effects model and a modified set-level test
statistic. It is our current work to adapt our approach to be
applicable to analytical needs beyond two-group comparison.
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FIGURE AND TABLE CAPTIONS

Table 1. DE probability configurations in type 1 error and
power simulations.
Table 2. Power comparison under (a), when genes are
uncorrelated.
Table 3. Empirical power comparison under correlation
structures (a)-(e) for group II.
Table 4. Top 30 enriched gene sets identified by MEACA for
HD data.
Table 5. Enriched gene sets and their BH-adjusted p-values
for lymphoblastoid cells data.
Figure 1. Quantile-quantile plots for p-values by different
methods in type 1 error simulations.
Figure 2. Power of MEACA under correlation structures
(a)-(e).
Figure 3. Comparison of p-values between MEACA, GSEA,
CAMERA and MRGSE in HD data.
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