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Summary

1. Networks are being increasingly used to quantify interaction patterns of a

broad range of social systems ranging from solitary to eusocial species. So-

cial behavior driving the complexity of interaction networks has important

consequences towards infectious disease transmission.

2. Prior studies however have been species and population specific, which high-

lights the need to develop a general theory towards the implications of social
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behavior on disease risk.

3. We used quantitative tools to review the commonalities and differences in the

structure of 666 published interaction networks from 47 non-human species

categorized into four social systems - relatively solitary, fission-fusion, social

and socially hierarchical species. Additionally, we determined the disease

costs of sociality due to the underlying interaction network structure.

4. We found that the interaction networks of solitary species have the highest

variation in individual’s social partners, while the interaction networks of

fission-fusion species were the most fragmented.

5. Disease simulations show that the structure of interaction networks can alle-

viate the disease costs of group living for social, but not socially hierarchical

species.

6. We also find clear differences between the four social systems in terms of

behavioral plasticity of individuals towards increasing group size. Socially

hierarchical species maintained network connectivity with increasing group

size, whereas non-hierarchical social species reduced effort towards each pair-

wise interaction to offset the higher amount of energy invested in engaging

with new social partners.

7. Our findings offer new perspective on the debate about the disease costs

of group living by evaluating how social organization strategies mediate

pathogen pressures.
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Introduction

Animal societies are increasingly being recognised as complex, including species1

that have traditionally been considered as solitary. Over the past 20-30 years,2

modern technology has enabled researchers to quantify the social structure in3

animal societies using tools from network analysis. Mathematically, networks de-4

scribe interactions between a set of nodes by placing edges connecting the nodes.5

Social network approaches have been used in the literature to document animal6

interactions in multiple different contexts, including aggressive encounters (Casey7

et al., 2015), affiliative contacts (e.g., grooming, Franz, Altmann & Alberts (2015),8

trophallaxis, Quevillon et al. (2015)), and spatial proximity (Reynolds et al., 2015).9

Social networks quantify heterogeneity in individual behaviour, and network10

analysis has consequently been used to examine the relationship between individ-11

ual behaviour and its social network position (Aplin et al., 2013; Krause et al.,12

2016). For example, gregarious or high-ranking individuals interact with a greater13

proportion of individuals in a group and tend to occupy central positions in the14

social network (Krause et al., 2014). Individual position within the social net-15

work is known to be associated with several benefits such as reproductive success16

(Wey et al., 2013), access to mates (Oh & Badyaev, 2010), longevity (Silk et al.,17

2010), defense against predators (Krause et al., 2016), increased access to resources18
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(Aplin et al., 2012) and offspring survival (Silk et al., 2009). Higher frequency of19

affiliative, agonistic and mating contacts, however, is also associated with elevated20

risk of pathogen transmission (Godfrey et al., 2009).21

The perceived difference in the costs and benefits of group living is expected to22

modulate individual’s behavior (Kurvers et al., 2014), as well as the structure of23

the local and global social network. However, while previous studies have focused24

on how the position within a social network affects an individual’s fitness, few have25

explored the relationship between species sociality and network structure. Faust26

& Skvoretz (2002) compared 42 networks across human, animal and bird species27

and found network similarity to be dependent on the interaction type rather than28

the taxonomic classification. A follow-up study that compared 51 human and non-29

human social networks pointed out the difficulties in comparing network structures30

across taxa, as most of the global network properties are constrained by network31

size and edge density (Faust, 2006). Comparative studies of primate social net-32

works have shown an association between neocortex size, which is linked to higher33

social ability, with network density, connectivity, and global network efficiency34

(Lehmann & Dunbar, 2009; Pasquaretta et al., 2014). Lusseau & Newman (2004)35

compared the structure of dolphin social networks with known features of human36

social networks (positive degree homophily, preferential association by age), but37

no formal statistical comparisons were made. Other recent attempts have been38

limited to closely related species (e.g., comparison of grevy’s zebra, Equus grevyi39

and onager, Equus hemionus by Sundaresan et al. (2007)).40

Socially complex species with higher cognitive abilities are typically thought41

to live in larger groups (Dunbar, 1992; Lindenfors, 2005) and have elevated costs42

of disease transmission due to high contact rates (Loehle, 1995; Altizer et al.,43
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2003). While social complexity is assumed to be synonymous with higher network44

complexity, research on the interaction patterns of less social and solitary species45

have suggested that this is not necessarily true. For example, the analysis of the46

association data in blacktip reef sharks, Carcharhinus melanopterus (Mourier, Ver-47

celloni & Planes, 2012), desert tortoises, Gopherus agassizii (Sah et al., 2016), and48

raccoons, Procyon lotor (Hirsch et al., 2013) demonstrate that individuals form49

non-random and social preferences, even though they are typically considered as50

solitary species. The expectation of higher disease costs of sociality have also been51

weakly supported in the previous literature (Arnold & Anja, 1993; Rifkin, Nunn &52

Garamszegi, 2012; Patterson & Ruckstuhl, 2013). It has been argued that higher53

sociality might also have selected for behavioral mechanisms, life history traits, or54

physiology that alleviates or even confers higher disease resistance as compared55

to less social species (Loehle, 1995; Cremer, Armitage & Schmid-Hempel, 2007;56

Meunier, 2015). Recent mathematical models predict that the network structure57

itself, under certain conditions, can serve as a primary defense mechanism against58

infectious disease by lowering the risk of disease invasion and spread in socially59

complex species, without requiring an additional increase in physiological immuno-60

competence or behavioral avoidance (Hock & Fefferman, 2012). However, to our61

knowledge, there are no empirical evidences till date towards this prediction.62

Another aspect to consider in evaluating the disease costs of social complexity63

is how disease transmission scales across groups (i.e., of the same species) of dif-64

ferent sizes. This is important because group sizes can range over several orders65

of magnitude, even in similar environmental conditions (Sjoberg, Albrectsen &66

Hjalten, 2000; Griesser et al., 2011). Accurate predictions of disease costs across67

spatially distinct groups can be made using the knowledge of how host interaction68
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network scales with group size (Ferrari et al., 2011). Scaling of host contacts and69

pathogen transmission rate is ultimately determined by the behavioral plasticity70

at the individual level. Change in group size can act as potent stressors to animals71

because it can increase the cost of group living, but on the other hand, larger72

group sizes may also improve group-living benefits (e.g., protection against preda-73

tors and reproductive success). The social behaviour of an individual towards its74

group members, therefore, changes depending on the perceived trade-off between75

the costs and the benefits of larger group size (Vander Wal, Yip & Mclaugh-76

lin, 2012; Cross et al., 2013; Gogarten et al., 2014; Hubbard & Blumstein, 2015).77

The behavioral plasticity associated with group size has important implications78

towards infectious disease spread. If the costs of larger group size surpass the79

benefits, then animals may limit their energy invested in social interaction and80

restrict social partners to a smaller proportion of the total group size. This, under81

constant spatial area conditions, is analogous to the frequency-dependent model82

of disease transmission, where contact rate saturates with increasing host density.83

On the other hand, when there are higher perceived benefits of larger groups, then84

individuals may invest more energy interacting with larger proportion of group85

members. An increase in association rates with an increase in group-size may re-86

sult in increased disease transmission from infected to susceptible host members,87

which is analogous to density-dependent scaling of disease transmission. Most88

empirical studies on the subject however have been species-specific and document89

specific interaction type, making it difficult to infer the relationship between group90

size and pathogen scaling across different social systems.91

In this study, we conduct a quantitative analysis of 666 interaction networks92

across 47 non-human species to investigate the relationship between social organi-93
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zation, network complexity, and the costs of disease transmission. This is achieved94

in three steps. First, we use phylogenetically-controlled Bayesian MCMC models95

to identify the differences in network structures associated with different social96

systems. Second, disease simulations are performed to determine the role of var-97

ious network measures in curbing the invasion of a novel pathogen and limiting98

the spread of infectious diseases. Finally, we identify the relative costs of disease99

transmission for each social system as mediated by their network structures. Be-100

cause group sizes are inherently dynamic in nature, we also compare behavioral101

plasticity of individuals towards increasing group size to determine how pathogen102

transmission scales across groups of different social systems.103

It is becoming increasingly clear that the disease implications of social com-104

plexity depend on the structure of interaction networks rather than a simple de-105

pendence on group size for social groups. Network comparisons across species106

are however often not straightforward, especially when networks vary in size and107

connection density (James, Croft & Krause, 2009). This work, by broadening the108

scope of network analysis from being just species-specific to a meta-analytic ap-109

proach, provides new insights towards how the organization of interaction patterns110

can mediate disease costs of sociality. A better understanding of the association111

between network structure and species sociality, in the future, can facilitate the112

development of an index that quantifies the spectrum of sociality levels observed113

across the taxonomic boundaries.114
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Results115

Structure of interaction networks associated with the social116

systems117

We obtained 666 interaction networks spanning 47 non-human species and 18 tax-118

onomic orders (Fig. 1). Edge connections of these networks summarized different119

types of interaction between individuals, including food sharing (trophallaxis),120

grooming, physical contact, and spatial proximity. Fig. 1 summarizes the species,121

their phylogenetic relationships, the number of networks available for each species122

and the type of interaction recorded. We classified the animal species in our123

database into four broad categories of sociality - relatively solitary, fission-fusion,124

social, and socially hierarchical. Relatively solitary species were defined as the125

species where adults infrequently interact with other adults outside the mating126

period. Examples of relatively solitary species in the database include the desert127

tortoise (Gopherus agassizii), raccoons (Procyon lotor), and the Australian sleepy128

lizard (Tiliqua rugosa). Species that change the composition of their groups by129

the means of fission and fusion of subunits were classified as fission-fusion. Social130

species were defined as the species where adults engage in prolonged interactions131

with other adults outside of breeding periods. We defined socially hierarchical as132

non fission-fusion species typically characterized by a permanent (such as ants) or133

temporary (e.g. baboons) social hierarchy (Grueter et al., 2012; de Silva, Schmid134

& Wittemyer, 2016).135

To determine how the structure of interaction networks is different across the136

social systems, we used a phylogeny-based, Bayesian generalized linear mixed137
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model with the four sociality levels as the categorical response. The following net-138

work measures were included as predictors in the model (see Table S1 in the Sup-139

plementary Information for definitions): degree heterogeneity, degree homophily,140

clustering coefficient, weighted clustering coefficient, transitivity, betweenness cen-141

trality, weighted betweenness centrality, average group size, network fragmenta-142

tion, group cohesion, relative modularity and network diameter. We found several143

network measures to be collinear with Variance Inflation factor (VIF) value of144

more than 3. These metrics were therefore removed from the analysis, and the145

final model consisted of five network measures - degree heterogeneity, degree ho-146

mophily, betweenness centrality, group cohesion and network fragmentation (along147

with the number of nodes, number of edges and average edge weight to control148

for different sampling designs) (Table 1, Fig. 2). We found that the interaction149

networks of relatively solitary species were more likely to have the highest degree150

heterogeneity as compared to the other three social systems (pMCMC < 0.05,151

Table 1). The interaction networks of fission-fusion species, on the other hand,152

tended to be more fragmented in comparison to solitary, social and socially hi-153

erarchical species. In addition, social species had more fragmented interaction154

networks as compared to solitary species. No difference was detected in the aver-155

age betweenness centrality measure between the solitary and the social systems.156

Socially hierarchical species, however, had a higher average betweenness central-157

ity than the fission-fusion species, which indicates that individuals of hierarchical158

social systems occupy more central positions within the interaction networks. No159

difference was detected between the four social systems in terms of individuals’160

preference to associate with socially similar others (degree homophily) or prefer-161

ence to interact with members of own social group (group cohesion).162
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Disease implications of network structure and the social sys-163

tems164

Comparisons of interaction networks in our database revealed differences between165

the network structure of relatively solitary, fission-fusion, social and socially hierar-166

chical species. Do these differences in network measures also influence the disease167

costs of social organization? To answer this question, we performed Susceptible-168

Infected-Recovered disease simulations through the interaction networks in our169

database. Three measures relevant to disease management were used to summa-170

rize the simulations: (a) Proportion of individuals infected in the network (out-171

break size) that estimates the total burden of mortality (or morbidity), (b) the172

duration of infectious disease spread (outbreak duration), which estimates how173

quickly the infection spreads through the network and therefore the time duration174

within which disease control/management interventions have to be employed, and175

(c) epidemic probability, that measures the likelihood of an infectious disease in-176

vasion turning into a large outbreak (viz., outbreaks that infect at least 15% of177

the individuals in the network).178

In Fig. 3 we consider the disease costs of social organization for low, moderate179

and highly transmissible pathogen (see Fig. S1 in Supporting Information for180

the results on an extended range of pathogen transmissibility values). Disease181

simulations show that socially hierarchical species experience the largest disease182

outbreaks as compared to the other social systems, and have longer outbreaks of183

low transmissible infections. Social species, on the other hand, experience the184

lowest outbreak size from low and moderately transmissible pathogens, although185

the outbreak sizes were not significantly smaller than the outbreaks in fission-186
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fusion species. The risk of disease outbreaks turning into epidemics was lowest in187

relatively solitary and social species for moderately transmissible infections. For188

highly transmissible infections, however, only solitary species demonstrate a low189

epidemic probability as compared to the other social systems.190

The differences in the disease costs observed across the four social systems can191

be explained in terms of the organization of their underlying network structure,192

and its role in influencing disease transmission (Fig. 4, Fig. S2). Interaction net-193

works of socially hierarchical species have lower degree heterogeneity as compared194

to solitary species, and lower fragmentation as compared to fission-fusion species195

(Table 1). Our disease simulations show that low degree heterogeneity and less196

subdivided networks cause larger outbreaks for most levels of pathogen contagious-197

ness (Fig. 4). Highly fragmented networks of fission-fusion species, and highly198

degree-heterogeneous interaction networks of solitary species, therefore, tend to ex-199

perience smaller outbreaks than socially hierarchical species. Interaction networks200

of social species are more subdivided than solitary species; disease outbreaks in201

these species, therefore, tend to be smaller as compared to socially hierarchical202

species. Interestingly, outbreaks of highly transmissible infection in highly frag-203

mented networks are more likely to turn into epidemics (Fig. 4). This, along with204

the negative association between degree heterogeneity and epidemic probability205

explains why outbreaks of highly transmissible pathogen in networks of solitary206

species (that are less fragmented than social and fission-fusion species, and are207

highly degree heterogeneous) are less likely to turn into epidemics as compared to208

the other social systems.209
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Behavioral plasticity of individuals in different social systems210

towards increasing group size211

Since interaction networks are inherently dynamic in nature and pathogen trans-212

mission rate can vary with group size, we next examined how individuals of dif-213

ferent social groups modulate their interactions with increasing group size. We214

identified social groups within each interaction network using the community de-215

tection algorithm as described by Blondel et al. (2008). Only those interaction216

networks in our database that showed strong modular subdivisions (relative mod-217

ularity, Qrel>0.3) were considered for the analysis. For each network, we calculated218

the four following measures of behavioral response towards increasing group size -219

average individual degree, average individual strength, average pairwise strength220

and group connectivity (see Table S1 for definitions).221

Social plasticity of individuals towards increasing group size showed clear dif-222

ferences between the four social systems (Fig. 5). Individuals of all social systems223

interacted with more group members as the group size increased, but the largest224

increase in the number of social partners was observed in socially hierarchical225

species (Average individual degree, Figure 5). Solitary species, on the other hand,226

demonstrated the largest increase in average individual strength with larger group227

sizes, followed by fission-fusion and socially hierarchical species (Average individ-228

ual strength, Figure 5B), which indicates that solitary individuals invest a higher229

amount of energy towards social interaction with members of larger groups as230

compared to other social systems. On a dyadic level, pairwise interaction strength231

decreased for social species, suggesting that the individuals reduce effort towards232

each pairwise interactions in order to offset the increase in energy spent engaging233
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with new social partners in larger groups. In contrast, the amount of energy in-234

vested on pairwise interactions in solitary, fission species and socially hierarchical235

species did not change with increasing group size. Overall, group connectivity of236

socially hierarchical species remained unchanged in larger groups (Group connec-237

tivity, Figure 5). Larger group sizes, however, led to a decrease in connectivity for238

solitary, fission-fusion and social species.239

Discussion240

Comparative studies are a powerful approach for testing ecological and evolution-241

ary hypotheses. Network comparisons, however, are not straight-forward, as sev-242

eral topological measures depend on network size and edge density (James, Croft &243

Krause, 2009). Different data-collection methodology, sampling scheme, and edge244

weighting criteria can also create biases while comparing social networks (Castles245

et al., 2014). Beyond the differences in data sampling method and network size,246

comparing local network features is challenging as several metrics are correlated247

to each other (Farine & Whitehead, 2015). It is therefore not surprising that few248

studies have attempted to compare networks across different taxonomic groups and249

sampling schemes. This study, to our knowledge, is the first attempt to utilize an250

extensive database of non-human social networks to understand the disease costs251

of species sociality due to the underlying network structure. We demonstrate how252

comparative studies can be performed by accounting for variation in group sizes,253

network connectivity and edge weighting criteria.254

Social systems and the structure of the interaction networks. So-255

cial organization of species can be highly variable, ranging from solitary to highly256
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structured social societies. Species are generally categorized into social systems257

based on qualitative observations of life history traits (but see Aviles & Harwood258

(2012); Silk, Cheney & Seyfarth (2013)). The degree of social complexity of many259

species has, however been recently debated based on the structure of their in-260

teraction networks (Mourier, Vercelloni & Planes, 2012; Sah et al., 2016). Since261

interaction patterns are key to assessing the social complexity, can the structure262

of interaction networks be used to quantify the differences among the different263

social systems? To answer this question, we compared the structural character-264

istics associated with the interaction networks of species typically characterized265

as solitary, fission-fusion, social and socially hierarchical. The evidence that we266

present here suggests that, at the least, solitary, fission-fusion, and higher social267

organizations can be distinguished from each other based on (a) degree of variation268

among social partners, (b) the extent to which the interaction network is divided269

into cohesive social groups (i.e., the level of network fragmentation) and (c) the270

proportion of individuals that occupy socially central positions in the interaction271

networks (i.e, the average betweenness centrality of the network). Remarkably,272

these differences exist between the social systems in spite of differences in the data273

collection methodology, type of interaction recorded and the interaction weighting274

criterion.275

Social and fission-fusion species are typically considered to have large degree276

heterogeneity (e.g. bottlenose dolphins Lusseau et al. (2003), wire-tailed manakins277

Ryder et al. (2008)). Our results, however, show that the degree heterogeneity in278

relatively solitary species is much higher than the other social systems. Large vari-279

ation in the nodal degree in solitary species indicates that a small proportion of280

individuals interact with a large number of conspecifics, which could arise simply281
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due to a high variation in spatial behavior as compared to other social species282

(Pinter-Wollman, 2015; Sah et al., 2016). Our results also show that the interac-283

tion networks of fission-fusion species are the most fragmented followed by social284

species. Networks of relatively solitary and socially hierarchical species, on the285

other hand, were the least subdivided. Interaction networks of animal societies286

are ubiquitously divided into socially-cohesive groups (Sah et al., 2014; Griffin &287

Nunn, 2011). Presence of many small, socially cohesive groups within interac-288

tion networks of fission-fusion species can be explained based on the behavioral289

tendency to frequently switch affiliative partners; as a result, individuals form con-290

sistent social bonds with a small number of individuals (Rubenstein et al., 2015).291

Social species often form groups based on sex/age class, kinship and functional292

roles (Kanngiesser et al., 2011), and modular subdivisions has been shown in the-293

oretical models to promote behavioural diversity and cooperation (Whitehead &294

Lusseau, 2012; Gianetto & Heydari, 2015). Social species may therefore limit295

group size to maximize benefits of cooperation, making their interaction networks296

fragmented (Marcoux & Lusseau, 2013).297

Disease implications of network structure and the social sys-298

tems299

Social complexity is expected to have major implications towards infectious disease300

spread, and social species living in large groups are assumed to experience larger301

disease costs than other social systems (Altizer et al., 2003). However, our study302

demonstrates that the disease implications of social organization extend beyond a303

simple dependence on group size, and organization of interactions within groups304
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has important implications towards the disease costs of social complexity. Our305

results demonstrate that species with temporary or permanent hierarchical social306

organization experience larger outbreaks, and are vulnerable to outbreaks turning307

into epidemics as compared to other social systems. This is because interaction308

networks of socially hierarchical species are less fragmented, and individuals tend309

to have a similar number of social partners (i.e., low degree heterogeneity). In310

contrast, non-hierarchical social species and fission-fusion species experience lower311

disease costs because their interaction networks are highly fragmented. Disease312

burden in relatively solitary species is also lower than socially hierarchical species313

owing to the high variation in the number of social partners among individuals.314

Our analysis of the role of network structure in disease transmission revealed315

that the networks with high degree heterogeneity have lower outbreak sizes, shorter316

outbreak duration and have a lower risk of turning into epidemics (Figure 4). This317

is because heterogeneous degree networks have a larger proportion of low degree318

individuals as compared to homogeneous networks, and have a minority of large-319

degree superspreaders. As the proportion of higher degree individuals is rare, an320

infectious disease outbreak rapidly depletes these super-spreaders and must infect321

lower-degree individuals in order to propagate through the entire network, where322

the risk of stochastic extinction is higher. Typical disease outbreaks therefore die323

sooner in degree heterogeneous networks after infecting a small proportion of in-324

dividuals. In contrast, homogeneous networks with the same edge density have a325

higher proportion high degree nodes, and therefore local depletion of highly con-326

nected nodes occurs more slowly, leading to larger and longer disease outbreaks327

(Meyers et al., 2005; Kiss, Green & Kao, 2006). Our disease simulations also show328

that network fragmentation lowers the duration of disease outbreaks and epidemic329
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probability of low, but not of moderately and highly transmissible infectious dis-330

eases. A recent study has shown that network fragmentation is one of the two331

mechanistic features that drive modular subdivisions in animal social networks332

(Sah, P, unpublished data). High network fragmentation limits the global spread333

of infectious diseases by localizing infections to a small portion within the interac-334

tion networks (structural trapping), but can also enhance local transmission and335

cause structural delay of infection spread (Sah, P, unpublished data). Our results336

suggest that the infectious diseases from low transmissible pathogens experience337

strong structural trapping in fragmented networks, and therefore experience rapid338

extinction after infecting a local pocket of individuals in the network. In contrast,339

pathogens that are at least moderately transmissible avoid stochastic extinction by340

reaching the "bridge" nodes within the subdivided network, but experience delay341

in transmission due to the presence of structural bottlenecks.342

Behavioral plasticity of individuals in different social systems towards343

increasing group size344

Although living in groups confers several benefits to group members, change345

in group size can act as a potent stressor. Increase in group size, on one hand,346

can elevate the cost of group living, including higher resource competition, but on347

the other may also increase group-living benefits (e.g., better protection against348

predators and improved chances of winning between-group competition). Our349

study demonstrates that all species, irrespective of social complexity, can adjust350

their social behavior in response to the changes in their social environment. This351

behavioral plasticity is expected to depend on perceived costs and benefits of352

group living and species sociality (Gogarten et al., 2014; Hubbard & Blumstein,353

2015; Maldonado-Chaparro, Hubbard & Blumstein, 2015). Our results show that354
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individuals in socially hierarchical societies increase the number of social partners355

proportionate to the group size in order to maintain the overall group connectivity,356

probably due to higher perceived benefits of group living. Solitary and fission-357

fusion species, on the other hand, may perceive higher costs with larger groups358

and therefore reduce group connectivity with increasing group size. Interestingly,359

group connectivity of social species also reduces in larger groups, which suggests360

that many social species experience constraints on sociality (Maldonado-Chaparro,361

Hubbard & Blumstein, 2015).362

The knowledge of how group connectivity scales with group size is critical to363

make valid predictions about pathogen transmission rates across different pop-364

ulations. In theory, density- and frequency-dependent models of infectious dis-365

ease spread have been popularly based on two distinct assumptions about how366

transmission scales with the host group size (McCallum, Barlow & Hone, 2001).367

Frequency-dependent model of disease transmission assumes that the connectivity368

of hosts is constant across group sizes, and therefore per capita transmission rate369

declines with increasing host group size. In contrast, density-dependent trans-370

mission models assume linear scaling of group connectivity with group size and371

constant per capita transmission rate across host groups (Ferrari et al., 2011).372

Density-dependent transmission is typically assumed as a valid model for social373

hosts (Anderson & May, 1978), although species specific empirical evidences have374

been conflicted (Vander Wal, Yip & Mclaughlin, 2012; Cross et al., 2013). Our re-375

sults demonstrate that the density-dependent transmission model may be valid for376

socially hierarchical irrespective of pathogen transmission mode, but not for other377

social or solitary species. We did not find evidence for frequency-dependent trans-378

mission, as individual in all the social systems did increase their social partners379
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with increasing group size.380

Conclusions381

Despite the current challenges of comparing networks, our study revealed striking382

differences in the interaction networks of species categorized into four broad social383

systems - relatively solitary, fission-fusion, social and socially hierarchical. At the384

least, the social organization of these social systems differs in terms of (a) degree385

heterogeneity among social partners, (b) extent of network fragmentation and (c)386

the tendency of individuals to occupy central positions within the interaction net-387

work. Disease simulations show that, contrary to the expectation of higher disease388

costs of group living for social species, the organization of interaction networks can389

act as a first-line of defense for social and fission-fusion species. We also show that390

the individual’s behavioral response to larger groups can be different depending391

on the social organization of the species, probably due to the perceived trade-off392

between benefits and costs of living in larger groups. These findings shed new light393

on the association between group living and disease transmission, and evolution394

of social strategies to alleviate the disease costs of group living. In conclusion,395

we note that there is an enormous potential of adopting a comparative approach396

to study the commonalities and differences in the interaction networks across a397

wide range of across taxonomic groups and social systems. Although we limit our398

discussion to the disease implications of animal sociality and social network struc-399

ture, comparative network approaches can be used to quantitatively test several400

other evolutionary and ecological hypotheses, including the ones on group living,401

social complexity, information transfer, and resilience to population stressors.402
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Materials and methods403

Dataset404

We first conducted electronic searches in Google Scholar and popular data reposi-405

tories, including Dryad Digital Repository and figshare for relevant network dataset406

associated with peer-reviewed publications. We used the following terms to per-407

form our search: social network, social structure, contact network, interaction408

network, network behavior, animal network, behavior heterogeneity and social or-409

ganization. Only studies on non-human species were considered in our primary410

search. Studies reporting non-interaction networks (such as biological networks,411

food-web networks) were excluded. By reviewing the quality of published net-412

works datasets, we selected 666 social networks spanning 47 animal species and 18413

taxonomic order. Edge connections of these networks summarized several differ-414

ent types of interaction between animals, including dominance, grooming, physical415

contact, spatial proximity, food-sharing (trophallaxis), foraging, and interactions416

based on the asynchronous use of a shared resource. Fig. 1 summarizes the species,417

the number of networks and the reported interaction types contributed by each418

taxonomic order represented in the study.419

Structure of interaction networks associated with the social420

systems421

To examine the structure of networks associated with the four social systems,422

we used a Bayesian mixed-model approach using the MCMCglmm package in R423

(Hadfield, 2010), with four response sociality levels - relatively solitary, fission-424
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fusion, social and socially hierarchical. As fixed effects within our model we in-425

cluded the following network measures (Table S1): degree heterogeneity, degree426

homophily, clustering coefficient, weighted clustering coefficient, transitivity, be-427

tweenness centrality, weighted betweenness centrality, average group size, network428

fragmentation, group cohesion, relative modularity and network diameter. Com-429

munity structure, or the number and composition of groups within each animal430

interaction network was estimated using the Louvain method (Blondel et al., 2008).431

We also included the number of nodes and edges in the network to provide a sta-432

tistical control for any variability in the sampling effort, and average edge weight433

was included to control for different edge weighting criteria. All continuous fixed-434

effects were centered (by subtracting their averages) and scaled to unit variances435

(by dividing by their standard deviation) to assign each continuous predictor with436

the same prior importance in the analysis (Schielzeth, 2010).437

Traditional random-effect models assume that each data-point is independent.438

However, in meta-analysis involving multiple taxonomic groups, it is necessary to439

control for non-independence arising from shared evolutionary histories of species.440

We therefore controlled for phylogenetic relationships in the analyses by including441

a correlation matrix derived from phylogeny as a random factor. The phylogenetic442

relationship of all species in the database was estimated from the NCBI taxonomy443

database using phyloT (http://phylot.biobyte.de). We also controlled for repeated444

measurements within groups and the type of interaction recorded by including445

group and interaction type as random effects in the analysis.446

We avoid model selection and present the results of the full model, so that447

the fitted estimates are conditional on the values of all predictors and the esti-448

mated confidence interval are more robust (Harrell, 2002). A potential drawback449
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of including all predictors in the model is the presence of multicollinearity between450

different network measures. We therefore estimated Variance inflation factor (VIF)451

for each covariate in the fitted model, and covariates with VIF greater than 3 were452

sequentially removed to obtain the final model formulation. We used a weakly453

informative Gelman prior for fixed effects and parameter-expanded priors for the454

random effects to improve mixing and decrease the autocorrelation among itera-455

tions (Gelman, 2006). Specifically, a χ2 distribution with 1 degree of freedom was456

used as suggested by Hadfield (2014). We ran three MCMC chains for 15 million457

iterations, with a thinning interval of 1000 after burn-in of 50,000. Convergence458

of chains was assessed using the Gelman-Rubin diagnostic statistic (Gelman &459

Rubin, 1992) in the coda package (Plummer et al., 2006).460

Disease implications of network structure and the social sys-461

tems462

Disease simulations463

We performed Monte-Carlo simulations of discrete-time susceptible-infected-recovered464

(SIR) model of disease spread through each network in our database. For dis-465

ease simulations, we ignored the weights assigned to social interactions between466

individuals, because the impact of weight (whether they represent contact dura-467

tion, frequency or intensity) is generally unclear and is usually context-dependent.468

Transmissiblity of the simulated pathogen was defined as the probability of infec-469

tion transmission from an infected to susceptible host during the infectious period470

of the host. Assuming the individual’s recovery and infection transmission to be471

a Poisson process, pathogen transmissiblity can be calculated as T = β
β+γ

, where472
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β and γ is the infection and recovery probability parameter, respectively. Each473

disease simulation was initiated by infecting a randomly chosen individual in the474

social group. At subsequent time steps every infected individual(s) in the pop-475

ulation could either transmit infection to a susceptible neighbor with probability476

parameter β or recover with probability γ. The disease simulation were terminated477

when there were no remaining infected individuals in the network. We performed478

disease simulations of pathogens with a wide range of trasmissibility (0.001 to 0.5).479

Disease simulations for each value of pathogen transmissibility and social network480

were summarized using three measures: (a) Epidemic probability, measured as481

the proportion of simulations that ended up infecting at least 15% of individuals482

present in the interaction network, (b) outbreak size, or the average proportion483

of individuals infected and (c) outbreak duration, measured as the time interval484

between the beginning of an outbreak and the time the last infected individual in485

the interaction network recovers.486

Statistical analysis487

We used multivariate Bayesian-MCMC framework to establish disease costs of488

network measures and species sociality. Epidemic probabilities across different489

pathogen transmissibility were entered as the (multivariate) response variables.490

To evaluate the role of network structure on the probability of large outbreaks,491

network measures identified in the final model of the previous analysis were in-492

cluded as predictors. We repeated the analysis with species sociality as predictor493

to directly estimate the vulnerability of different social systems towards disease494

transmission. In both the models, number of nodes and number of edges were in-495

cluded as predictors to control for variability in sampling effort and edge weighting496
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criteria. (Average edge weights were not included because disease simulations were497

performed over unweighted networks). Phylogenetic correlations, group identifica-498

tion and the interaction type were included as the random effects in the analysis.499

Similar models were used to estimate the implications of network structure and500

social system towards the size and duration of outbreaks by replacing epidemic501

probability with outbreak size and duration as (multivariate) response terms, re-502

spectively.503

Behavioral plasticity of individuals in different social systems504

towards increasing group size505

We first identified group size and composition within each interaction network506

in the database using the Louvain algorithm (Blondel et al., 2008) that showed507

strong modular subdivisions (relative modularity, Qrel>0.3). For each social group,508

the following four network measures that are related to disease transmission were509

estimated - average individual degree, average individual strength, average pairwise510

strength and group connectivity (Table S1). To assess how individuals of different511

social systems respond to increase in group size we used a linear mixed model512

implemented in the lme4 package in R (version 3.2.3; R Development Core Team513

2015). Four separate models were run, each with one of the four network measures514

as the response variable, and group size interacted with species sociality (relatively515

solitary, fission-fusion, social and socially hierarchical) as the fixed effect. The516

interaction network nested within species and type of interaction recorded was517

included as a random effect to control for repeated measurements within species518

and variation in data-collection methods.519
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Table captions714

Table 1. Effect size estimates of the generalized linear mixed models (by MCM-715

Cglmm) examining the characteristics of interaction network structure for different716

social systems. Shown are the posterior means of the expected change in log-odds717

of being in focal social system (column headers), as compared to the base social718

system (row headers), with one-unit increase in the network measure. The 95%719

confidence intervals are included in brackets. Significant terms with pMCMC <720

0.05 are indicated in bold, where pMCMC is the proportion of MCMC samples721

that cross zero.722
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Figure captions723

Figure 1. Phylogenetic distribution of non-human species represented in the in-724

teraction network dataset used in this study. Numbers next to the inner ring725

denote the total networks available for the particular species. The inner and the726

middle ring is color coded according to the taxonomic class and the social system727

of the species. The colors in the outer ring indicates the type of interaction repre-728

sented in the network729

730

Figure 2. A stylized illustration of the network measures used (in the final model)731

to characterize the differences in the interaction networks species categorized into732

four social-systems: relatively solitary, fission-fusion, social and socially hierar-733

chical. (A) Degree heterogeneity, measured as the coefficient of variation (CV)734

of the degree distribution. Shown is the frequency distribution of nodal degrees735

for a network with homogeneous degree distribution (CV � 1), and a network736

with an exponential degree distribution (CV = 1). (B) Degree homophily (ρ), or737

the tendency of social partners to have a similar degree. Shown is an example738

of a disassortative network, where high degree individuals tend to associate with739

low degree individuals (ρ < 0), and assortative degree networks, where high de-740

gree individuals tend to form social bonds with each other (ρ > 0). (C) Average741

betweenness centrality, that measures the tendency of nodes to occupy central742

position within the interaction network. Shown is an example of a network with743

low average betweenness centrality and a network with high average betweenness744

centrality. Node colors represent the betweenness centrality values - nodes with745

darker colors occupy more central positions within the network. (D) Group cohe-746
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sion measures the tendency of individuals to interact with members of own group.747

The network to the left has three low cohesive social groups, while the network to748

the right has highly cohesive social groups where most of the interactions occur749

within (rather than between) groups. (E) Network fragmentation, measured as the750

log-number of the social groups (modules) present within an interaction network.751

Shown is an example of low (left) and highly (right) fragmented network752

753

Figure 3. Disease costs of social organization due to interaction network struc-754

ture. Disease cost has been quantified in terms of outbreak size (proportion of755

individuals infected in the interaction network), outbreak duration (time to dis-756

ease extinction) and epidemic probability (likelihood of large outbreaks infecting757

at least 15% of individuals in the network) for low (=0.1), moderate (=0.25) and758

highly (=0.5) transmissible pathogen. Error bars represent standard errors, and759

different letters above the bars denote a significant difference between the means760

(P < 0.05)761

762

Figure 4. Role of network structures in influencing disease transmission. The763

three network measures shown are the ones that were found to differ between764

the four social systems (Table 1). Error bars represent 95% confidence intervals.765

Confidence intervals that do not include zero suggest significant association with766

disease transmission (red = significant effect, black = non-significant effect)767

768

Figure 5. Change in individual social behavior and group connectivity with769

change in social group size across the four social systems. Group size and com-770

position was determined using the community detection algorithm described in771
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Blondel et al. (2008). Only those interaction networks that showed strong modu-772

lar subdivisions (Qrel > 0.3) were included in this analysis. Error bars represent773

95% confidence intervals, and different letters above the points denote a significant774

difference between the means (P < 0.05). Confidence intervals that do not include775

zero suggest significant association with group size (red = significant effect, black776

= non-significant effect)777
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Table 1:
Degree heterogeneity Base

Focal Solitary Fission-fusion Social Socially hierarchical

Solitary -4.15 [-7.97, -0.34] -4.37 [-8.03, -1.22] -4.47 [-8.74, -0.50]
Fission-fusion -0.4 [-4.04, 3.38] -0.81 [-4.54, 2.79]
Social -0.99 [-4.57, 2.63]

Degree homophily Base
Focal Solitary Fission-fusion Social Socially hierarchical

Solitary -0.29 [-1.91, 1.32] -0.54 [-1.90, 0.87] -0.71 [-2.36, 0.96]
Fission-fusion -0.23 [-1.80, 1.39] -0.44 [-2.06, 1.17]
Social -0.43 [-1.88, 1.02]

Betweenness centrality Base
Focal Solitary Fission-fusion Social Socially hierarchical

Solitary -3.95 [-8.88, 0.59] 0.41 [-2.29, 3.32] 1.80 [-1.31, 4.87]
Fission-fusion 2.87 [-0.84, 7.09] 4.67 [0.87, 8.94]
Social 1.58 [-0.73, 4.04]

Group cohesion Base
Focal Solitary Fission-fusion Social Socially hierarchical

Solitary -1.42 [-3.77, 0.79] 0.32 [-2.27, 1.64] -0.79 [-3.15, 1.55]
Fission-fusion 1.04 [-0.83, 2.90] 0.38 [-1.80, 2.48]
Social -0.21 [-2.08, 1.53]

Network fragmentation Base
Focal Solitary Fission-fusion Social Socially hierarchical

Solitary 6.41 [2.86, 10.00] 2.62 [-0.13, 5.52] 0.51 [-2.94, 3.78]
Fission-fusion -2.96 [-5.69, -0.25] -4.79[-7.82, -1.84]
Social -1.50 [-3.95, 1.02]
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Figure 1: Phylogenetic distribution of non-human species represented in the inter-
action network dataset used in this study. Numbers next to the inner ring denote
the total networks available for the particular species. The inner and the middle
ring is color coded according to the taxonomic class and the social system of the
species. The colors in the outer ring indicates the type of interaction represented
in the network
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Figure 2:

(A) (B) (C)

(D) (E)

Degree heterogeneity Degree homophily Betweenness centrality

Network fragmentationGroup cohesion

Homogenous Heterogeneous Disassortative Assortative Low centrality High centrality

Low cohesive Highly cohesive Low fragmentation High fragmentation
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Figure 3:
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Figure 4:

Network fragmentation
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Figure 5:
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