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Summary

1. Networks are being increasingly used to quantify interaction patterns of a
broad range of social systems ranging from solitary to eusocial species. So-
cial behavior driving the complexity of interaction networks has important

consequences towards infectious disease transmission.

2. Prior studies however have been species and population specific, which high-

lights the need to develop a general theory towards the implications of social
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behavior on disease risk.

3. We used quantitative tools to review the commonalities and differences in the
structure of 666 published interaction networks from 47 non-human species
categorized into four social systems - relatively solitary, fission-fusion, social
and soctally hierarchical species. Additionally, we determined the disease

costs of sociality due to the underlying interaction network structure.

4. We found that the interaction networks of solitary species have the highest
variation in individual’s social partners, while the interaction networks of

fission-fusion species were the most fragmented.

5. Disease simulations show that the structure of interaction networks can alle-
viate the disease costs of group living for social, but not socially hierarchical

species.

6. We also find clear differences between the four social systems in terms of
behavioral plasticity of individuals towards increasing group size. Socially
hierarchical species maintained network connectivity with increasing group
size, whereas non-hierarchical social species reduced effort towards each pair-
wise interaction to offset the higher amount of energy invested in engaging

with new social partners.

7. Our findings offer new perspective on the debate about the disease costs
of group living by evaluating how social organization strategies mediate

pathogen pressures.
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Introduction

1 Animal societies are increasingly being recognised as complex, including species
> that have traditionally been considered as solitary. Over the past 20-30 years,
3 modern technology has enabled researchers to quantify the social structure in
» animal societies using tools from network analysis. Mathematically, networks de-
s scribe interactions between a set of nodes by placing edges connecting the nodes.
6 Social network approaches have been used in the literature to document animal
7 interactions in multiple different contexts, including aggressive encounters (Casey
s et al., 2015), affiliative contacts (e.g., grooming, Franz, Altmann & Alberts (2015),
o trophallaxis, Quevillon et al. (2015)), and spatial proximity (Reynolds et al., 2015).
10 Social networks quantify heterogeneity in individual behaviour, and network
1 analysis has consequently been used to examine the relationship between individ-
12 ual behaviour and its social network position (Aplin et al., 2013; Krause et al.,
13 2016). For example, gregarious or high-ranking individuals interact with a greater
12 proportion of individuals in a group and tend to occupy central positions in the
15 social network (Krause et al., 2014). Individual position within the social net-
16 work is known to be associated with several benefits such as reproductive success
v (Wey et al., 2013), access to mates (Oh & Badyaev, 2010), longevity (Silk et al.,

18 2010), defense against predators (Krause et al., 2016), increased access to resources
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1o (Aplin et al., 2012) and offspring survival (Silk et al., 2009). Higher frequency of
20 affiliative, agonistic and mating contacts, however, is also associated with elevated
21 risk of pathogen transmission (Godfrey et al., 2009).

22 The perceived difference in the costs and benefits of group living is expected to
23 modulate individual’s behavior (Kurvers et al., 2014), as well as the structure of
2o the local and global social network. However, while previous studies have focused
s on how the position within a social network affects an individual’s fitness, few have
26 explored the relationship between species sociality and network structure. Faust
27 & Skvoretz (2002) compared 42 networks across human, animal and bird species
23 and found network similarity to be dependent on the interaction type rather than
20 the taxonomic classification. A follow-up study that compared 51 human and non-
s human social networks pointed out the difficulties in comparing network structures
a1 across taxa, as most of the global network properties are constrained by network
2 size and edge density (Faust, 2006). Comparative studies of primate social net-
33 works have shown an association between neocortex size, which is linked to higher
sa social ability, with network density, connectivity, and global network efficiency
35 (Lehmann & Dunbar, 2009; Pasquaretta et al., 2014). Lusseau & Newman (2004)
36 compared the structure of dolphin social networks with known features of human
57 social networks (positive degree homophily, preferential association by age), but
;s no formal statistical comparisons were made. Other recent attempts have been
30 limited to closely related species (e.g., comparison of grevy’s zebra, Fquus grevyi
s and onager, Equus hemionus by Sundaresan et al. (2007)).

a Socially complex species with higher cognitive abilities are typically thought
.2 to live in larger groups (Dunbar, 1992; Lindenfors, 2005) and have elevated costs

s of disease transmission due to high contact rates (Loehle, 1995; Altizer et al.,
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sa 2003). While social complexity is assumed to be synonymous with higher network
s complexity, research on the interaction patterns of less social and solitary species
s have suggested that this is not necessarily true. For example, the analysis of the
a7 association data in blacktip reef sharks, Carcharhinus melanopterus (Mourier, Ver-
ss celloni & Planes, 2012), desert tortoises, Gopherus agassizii (Sah et al., 2016), and
a0 raccoons, Procyon lotor (Hirsch et al., 2013) demonstrate that individuals form
so non-random and social preferences, even though they are typically considered as
51 solitary species. The expectation of higher disease costs of sociality have also been
s weakly supported in the previous literature (Arnold & Anja, 1993; Rifkin, Nunn &
53 Garamszegi, 2012; Patterson & Ruckstuhl, 2013). It has been argued that higher
s sociality might also have selected for behavioral mechanisms, life history traits, or
ss  physiology that alleviates or even confers higher disease resistance as compared
ss to less social species (Loehle, 1995; Cremer, Armitage & Schmid-Hempel, 2007;
57 Meunier, 2015). Recent mathematical models predict that the network structure
ss itself, under certain conditions, can serve as a primary defense mechanism against
so infectious disease by lowering the risk of disease invasion and spread in socially
60 complex species, without requiring an additional increase in physiological immuno-
e1 competence or behavioral avoidance (Hock & Fefferman, 2012). However, to our
62 knowledge, there are no empirical evidences till date towards this prediction.

63 Another aspect to consider in evaluating the disease costs of social complexity
e« is how disease transmission scales across groups (i.e., of the same species) of dif-
es ferent sizes. This is important because group sizes can range over several orders
es of magnitude, even in similar environmental conditions (Sjoberg, Albrectsen &
ez Hjalten, 2000; Griesser et al., 2011). Accurate predictions of disease costs across

es spatially distinct groups can be made using the knowledge of how host interaction
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o network scales with group size (Ferrari et al., 2011). Scaling of host contacts and
70 pathogen transmission rate is ultimately determined by the behavioral plasticity
7 at the individual level. Change in group size can act as potent stressors to animals
72 because it can increase the cost of group living, but on the other hand, larger
73 group sizes may also improve group-living benefits (e.g., protection against preda-
7o tors and reproductive success). The social behaviour of an individual towards its
75 group members, therefore, changes depending on the perceived trade-off between
76 the costs and the benefits of larger group size (Vander Wal, Yip & Mclaugh-
77 lin, 2012; Cross et al., 2013; Gogarten et al., 2014; Hubbard & Blumstein, 2015).
7z The behavioral plasticity associated with group size has important implications
70 towards infectious disease spread. If the costs of larger group size surpass the
so benefits, then animals may limit their energy invested in social interaction and
a1 restrict social partners to a smaller proportion of the total group size. This, under
&2 constant spatial area conditions, is analogous to the frequency-dependent model
s3  of disease transmission, where contact rate saturates with increasing host density.
ga  On the other hand, when there are higher perceived benefits of larger groups, then
g5 individuals may invest more energy interacting with larger proportion of group
ss members. An increase in association rates with an increase in group-size may re-
gz sult in increased disease transmission from infected to susceptible host members,
ss  which is analogous to density-dependent scaling of disease transmission. Most
so empirical studies on the subject however have been species-specific and document
o specific interaction type, making it difficult to infer the relationship between group
o1 size and pathogen scaling across different social systems.

92 In this study, we conduct a quantitative analysis of 666 interaction networks

o3 across 47 non-human species to investigate the relationship between social organi-
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oa zation, network complexity, and the costs of disease transmission. This is achieved
os in three steps. First, we use phylogenetically-controlled Bayesian MCMC models
o6 to identify the differences in network structures associated with different social
o7 systems. Second, disease simulations are performed to determine the role of var-
os ious network measures in curbing the invasion of a novel pathogen and limiting
90 the spread of infectious diseases. Finally, we identify the relative costs of disease
100 transmission for each social system as mediated by their network structures. Be-
101 cause group sizes are inherently dynamic in nature, we also compare behavioral
102 plasticity of individuals towards increasing group size to determine how pathogen
103 transmission scales across groups of different social systems.

104 It is becoming increasingly clear that the disease implications of social com-
105 plexity depend on the structure of interaction networks rather than a simple de-
106 pendence on group size for social groups. Network comparisons across species
107 are however often not straightforward, especially when networks vary in size and
s connection density (James, Croft & Krause, 2009). This work, by broadening the
100 scope of network analysis from being just species-specific to a meta-analytic ap-
10 proach, provides new insights towards how the organization of interaction patterns
i1 can mediate disease costs of sociality. A better understanding of the association
112 between network structure and species sociality, in the future, can facilitate the
us  development of an index that quantifies the spectrum of sociality levels observed

114 across the taxonomic boundaries.
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s Results

1s Structure of interaction networks associated with the social

u7 Systems

us  We obtained 666 interaction networks spanning 47 non-human species and 18 tax-
1o onomic orders (Fig. 1). Edge connections of these networks summarized different
120 types of interaction between individuals, including food sharing (trophallaxis),
121 grooming, physical contact, and spatial proximity. Fig. 1 summarizes the species,
122 their phylogenetic relationships, the number of networks available for each species
123 and the type of interaction recorded. We classified the animal species in our
124 database into four broad categories of sociality - relatively solitary, fission-fusion,
s social, and socially hierarchical. Relatively solitary species were defined as the
126 species where adults infrequently interact with other adults outside the mating
127 period. Examples of relatively solitary species in the database include the desert
128 tortoise (Gopherus agassizii), raccoons (Procyon lotor), and the Australian sleepy
w20 lizard (Tiliqua rugosa). Species that change the composition of their groups by
130 the means of fission and fusion of subunits were classified as fission-fusion. Social
131 species were defined as the species where adults engage in prolonged interactions
132 with other adults outside of breeding periods. We defined socially hierarchical as
133 non fission-fusion species typically characterized by a permanent (such as ants) or
s temporary (e.g. baboons) social hierarchy (Grueter et al., 2012; de Silva, Schmid
s & Wittemyer, 2016).

136 To determine how the structure of interaction networks is different across the

137 social systems, we used a phylogeny-based, Bayesian generalized linear mixed
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133 model with the four sociality levels as the categorical response. The following net-
130 work measures were included as predictors in the model (see Table S1 in the Sup-
1o plementary Information for definitions): degree heterogeneity, degree homophily,
11 clustering coefficient, weighted clustering coefficient, transitivity, betweenness cen-
12 trality, weighted betweenness centrality, average group size, network fragmenta-
a3 tion, group cohesion, relative modularity and network diameter. We found several
s network measures to be collinear with Variance Inflation factor (VIF) value of
s more than 3. These metrics were therefore removed from the analysis, and the
16 final model consisted of five network measures - degree heterogeneity, degree ho-
17 mophily, betweenness centrality, group cohesion and network fragmentation (along
s with the number of nodes, number of edges and average edge weight to control
uo for different sampling designs) (Table 1, Fig. 2). We found that the interaction
150 networks of relatively solitary species were more likely to have the highest degree
151 heterogeneity as compared to the other three social systems (pMCMC < 0.05,
152 Table 1). The interaction networks of fission-fusion species, on the other hand,
153 tended to be more fragmented in comparison to solitary, social and socially hi-
1sa erarchical species. In addition, social species had more fragmented interaction
155 networks as compared to solitary species. No difference was detected in the aver-
156 age betweenness centrality measure between the solitary and the social systems.
157 Socially hierarchical species, however, had a higher average betweenness central-
1ss ity than the fission-fusion species, which indicates that individuals of hierarchical
150 social systems occupy more central positions within the interaction networks. No
10 difference was detected between the four social systems in terms of individuals’
11 preference to associate with socially similar others (degree homophily) or prefer-

12 ence to interact with members of own social group (group cohesion).
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s Disease implications of network structure and the social sys-

e tems

16s  Comparisons of interaction networks in our database revealed differences between
166 the network structure of relatively solitary, fission-fusion, social and socially hierar-
167 chical species. Do these differences in network measures also influence the disease
168 costs of social organization? To answer this question, we performed Susceptible-
160 Infected-Recovered disease simulations through the interaction networks in our
10 database. Three measures relevant to disease management were used to summa-
1 rize the simulations: (a) Proportion of individuals infected in the network (out-
2 break size) that estimates the total burden of mortality (or morbidity), (b) the
73 duration of infectious disease spread (outbreak duration), which estimates how
174 quickly the infection spreads through the network and therefore the time duration
175 within which disease control/management interventions have to be employed, and
s (c) epidemic probability, that measures the likelihood of an infectious disease in-
177 vasion turning into a large outbreak (viz., outbreaks that infect at least 15% of
s the individuals in the network).

179 In Fig. 3 we consider the disease costs of social organization for low, moderate
180 and highly transmissible pathogen (see Fig. S1 in Supporting Information for
11 the results on an extended range of pathogen transmissibility values). Disease
182 simulations show that socially hierarchical species experience the largest disease
183 outbreaks as compared to the other social systems, and have longer outbreaks of
18« low transmissible infections. Social species, on the other hand, experience the
185 lowest outbreak size from low and moderately transmissible pathogens, although

186 the outbreak sizes were not significantly smaller than the outbreaks in fission-

10
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187 fusion species. The risk of disease outbreaks turning into epidemics was lowest in
188 relatively solitary and social species for moderately transmissible infections. For
180 highly transmissible infections, however, only solitary species demonstrate a low
100 epidemic probability as compared to the other social systems.

101 The differences in the disease costs observed across the four social systems can
102 be explained in terms of the organization of their underlying network structure,
103 and its role in influencing disease transmission (Fig. 4, Fig. S2). Interaction net-
104 works of socially hierarchical species have lower degree heterogeneity as compared
105 to solitary species, and lower fragmentation as compared to fission-fusion species
ws (Table 1). Our disease simulations show that low degree heterogeneity and less
107 subdivided networks cause larger outbreaks for most levels of pathogen contagious-
ws ness (Fig. 4). Highly fragmented networks of fission-fusion species, and highly
100 degree-heterogeneous interaction networks of solitary species, therefore, tend to ex-
200 perience smaller outbreaks than socially hierarchical species. Interaction networks
21 of social species are more subdivided than solitary species; disease outbreaks in
202 these species, therefore, tend to be smaller as compared to socially hierarchical
203 species. Interestingly, outbreaks of highly transmissible infection in highly frag-
200 mented networks are more likely to turn into epidemics (Fig. 4). This, along with
205 the negative association between degree heterogeneity and epidemic probability
206 explains why outbreaks of highly transmissible pathogen in networks of solitary
207 species (that are less fragmented than social and fission-fusion species, and are
208 highly degree heterogeneous) are less likely to turn into epidemics as compared to

200 the other social systems.

11
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20 Behavioral plasticity of individuals in different social systems

.u towards increasing group size

212 Since interaction networks are inherently dynamic in nature and pathogen trans-
213 mission rate can vary with group size, we next examined how individuals of dif-
214 ferent social groups modulate their interactions with increasing group size. We
215 identified social groups within each interaction network using the community de-
216 tection algorithm as described by Blondel et al. (2008). Only those interaction
217 networks in our database that showed strong modular subdivisions (relative mod-
218 ularity, (,.;>0.3) were considered for the analysis. For each network, we calculated
210 the four following measures of behavioral response towards increasing group size -
20 average individual degree, average individual strength, average pairwise strength
221 and group connectivity (see Table S1 for definitions).

22 Social plasticity of individuals towards increasing group size showed clear dif-
223 ferences between the four social systems (Fig. 5). Individuals of all social systems
224 interacted with more group members as the group size increased, but the largest
25 increase in the number of social partners was observed in socially hierarchical
226 species (Average individual degree, Figure 5). Solitary species, on the other hand,
227 demonstrated the largest increase in average individual strength with larger group
228 sizes, followed by fission-fusion and socially hierarchical species (Average individ-
220 ual strength, Figure 5B), which indicates that solitary individuals invest a higher
230 amount of energy towards social interaction with members of larger groups as
21 compared to other social systems. On a dyadic level, pairwise interaction strength
232 decreased for social species, suggesting that the individuals reduce effort towards

233 each pairwise interactions in order to offset the increase in energy spent engaging

12
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23¢  with new social partners in larger groups. In contrast, the amount of energy in-
235 vested on pairwise interactions in solitary, fission species and socially hierarchical
236 species did not change with increasing group size. Overall, group connectivity of
237 socially hierarchical species remained unchanged in larger groups (Group connec-
238 tivity, Figure 5). Larger group sizes, however, led to a decrease in connectivity for

230 solitary, fission-fusion and social species.

2 1J1scussion

21 Comparative studies are a powerful approach for testing ecological and evolution-
202 ary hypotheses. Network comparisons, however, are not straight-forward, as sev-
223 eral topological measures depend on network size and edge density (James, Croft &
2ea Krause, 2009). Different data-collection methodology, sampling scheme, and edge
205 weighting criteria can also create biases while comparing social networks (Castles
26 et al., 2014). Beyond the differences in data sampling method and network size,
247 comparing local network features is challenging as several metrics are correlated
228 to each other (Farine & Whitehead, 2015). It is therefore not surprising that few
220 studies have attempted to compare networks across different taxonomic groups and
250 sampling schemes. This study, to our knowledge, is the first attempt to utilize an
251 extensive database of non-human social networks to understand the disease costs
252 of species sociality due to the underlying network structure. We demonstrate how
253 comparative studies can be performed by accounting for variation in group sizes,
254 network connectivity and edge weighting criteria.

255 Social systems and the structure of the interaction networks. So-

256 cial organization of species can be highly variable, ranging from solitary to highly

13
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257 structured social societies. Species are generally categorized into social systems
s based on qualitative observations of life history traits (but see Aviles & Harwood
250 (2012); Silk, Cheney & Seyfarth (2013)). The degree of social complexity of many
260 species has, however been recently debated based on the structure of their in-
261 teraction networks (Mourier, Vercelloni & Planes, 2012; Sah et al., 2016). Since
262 interaction patterns are key to assessing the social complexity, can the structure
263 of interaction networks be used to quantify the differences among the different
264 social systems? To answer this question, we compared the structural character-
265 istics associated with the interaction networks of species typically characterized
266 as solitary, fission-fusion, social and socially hierarchical. The evidence that we
267 present here suggests that, at the least, solitary, fission-fusion, and higher social
s Organizations can be distinguished from each other based on (a) degree of variation
260 among social partners, (b) the extent to which the interaction network is divided
270 into cohesive social groups (i.e., the level of network fragmentation) and (c) the
on proportion of individuals that occupy socially central positions in the interaction
22 networks (i.e, the average betweenness centrality of the network). Remarkably,
73 these differences exist between the social systems in spite of differences in the data
a7a - collection methodology, type of interaction recorded and the interaction weighting
275 criterion.

276 Social and fission-fusion species are typically considered to have large degree
217 heterogeneity (e.g. bottlenose dolphins Lusseau et al. (2003), wire-tailed manakins
s Ryder et al. (2008)). Our results, however, show that the degree heterogeneity in
279 relatively solitary species is much higher than the other social systems. Large vari-
280 ation in the nodal degree in solitary species indicates that a small proportion of

2s1  individuals interact with a large number of conspecifics, which could arise simply

14
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22 due to a high variation in spatial behavior as compared to other social species
23 (Pinter-Wollman, 2015; Sah et al., 2016). Our results also show that the interac-
234 tion networks of fission-fusion species are the most fragmented followed by social
g5 species. Networks of relatively solitary and socially hierarchical species, on the
g6 other hand, were the least subdivided. Interaction networks of animal societies
27 are ubiquitously divided into socially-cohesive groups (Sah et al., 2014; Griffin &
28 Nunn, 2011). Presence of many small, socially cohesive groups within interac-
280 tion networks of fission-fusion species can be explained based on the behavioral
200 tendency to frequently switch affiliative partners; as a result, individuals form con-
201 sistent social bonds with a small number of individuals (Rubenstein et al., 2015).
202 Social species often form groups based on sex/age class, kinship and functional
203 roles (Kanngiesser et al., 2011), and modular subdivisions has been shown in the-
20a oretical models to promote behavioural diversity and cooperation (Whitehead &
205 Lusseau, 2012; Gianetto & Heydari, 2015). Social species may therefore limit
206 group size to maximize benefits of cooperation, making their interaction networks

207 fragmented (Marcoux & Lusseau, 2013).

s Disease implications of network structure and the social sys-

200 tEems

300 Social complexity is expected to have major implications towards infectious disease
s spread, and social species living in large groups are assumed to experience larger
502 disease costs than other social systems (Altizer et al., 2003). However, our study
;03 demonstrates that the disease implications of social organization extend beyond a

s« simple dependence on group size, and organization of interactions within groups

15
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305 has important implications towards the disease costs of social complexity. Our
306 results demonstrate that species with temporary or permanent hierarchical social
so7 organization experience larger outbreaks, and are vulnerable to outbreaks turning
308 into epidemics as compared to other social systems. This is because interaction
300 networks of socially hierarchical species are less fragmented, and individuals tend
310 to have a similar number of social partners (i.e., low degree heterogeneity). In
s contrast, non-hierarchical social species and fission-fusion species experience lower
;12 disease costs because their interaction networks are highly fragmented. Disease
s1i3 burden in relatively solitary species is also lower than socially hierarchical species
a4 owing to the high variation in the number of social partners among individuals.

315 Our analysis of the role of network structure in disease transmission revealed
s16  that the networks with high degree heterogeneity have lower outbreak sizes, shorter
a1z outbreak duration and have a lower risk of turning into epidemics (Figure 4). This
s1s 1S because heterogeneous degree networks have a larger proportion of low degree
a0 individuals as compared to homogeneous networks, and have a minority of large-
10 degree superspreaders. As the proportion of higher degree individuals is rare, an
a1 infectious disease outbreak rapidly depletes these super-spreaders and must infect
32 lower-degree individuals in order to propagate through the entire network, where
323 the risk of stochastic extinction is higher. Typical disease outbreaks therefore die
324 sooner in degree heterogeneous networks after infecting a small proportion of in-
35 dividuals. In contrast, homogeneous networks with the same edge density have a
326 higher proportion high degree nodes, and therefore local depletion of highly con-
327 nected nodes occurs more slowly, leading to larger and longer disease outbreaks
228 (Meyers et al., 2005; Kiss, Green & Kao, 2006). Our disease simulations also show

120 that network fragmentation lowers the duration of disease outbreaks and epidemic

16
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330 probability of low, but not of moderately and highly transmissible infectious dis-
s eases. A recent study has shown that network fragmentation is one of the two
332 mechanistic features that drive modular subdivisions in animal social networks
;3 (Sah, P, unpublished data). High network fragmentation limits the global spread
33 of infectious diseases by localizing infections to a small portion within the interac-
335 tion networks (structural trapping), but can also enhance local transmission and
136 cause structural delay of infection spread (Sah, P, unpublished data). Our results
;37 suggest that the infectious diseases from low transmissible pathogens experience
;38 strong structural trapping in fragmented networks, and therefore experience rapid
330 extinction after infecting a local pocket of individuals in the network. In contrast,
a0 pathogens that are at least moderately transmissible avoid stochastic extinction by
s reaching the "bridge" nodes within the subdivided network, but experience delay
32 in transmission due to the presence of structural bottlenecks.

343 Behavioral plasticity of individuals in different social systems towards
344 increasing group size

345 Although living in groups confers several benefits to group members, change
a6 I group size can act as a potent stressor. Increase in group size, on one hand,
a7 can elevate the cost of group living, including higher resource competition, but on
ss  the other may also increase group-living benefits (e.g., better protection against
a0 predators and improved chances of winning between-group competition). Our
0 study demonstrates that all species, irrespective of social complexity, can adjust
351 their social behavior in response to the changes in their social environment. This
32 behavioral plasticity is expected to depend on perceived costs and benefits of
33 group living and species sociality (Gogarten et al., 2014; Hubbard & Blumstein,
s 2015; Maldonado-Chaparro, Hubbard & Blumstein, 2015). Our results show that
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355 individuals in socially hierarchical societies increase the number of social partners
36 proportionate to the group size in order to maintain the overall group connectivity,
357 probably due to higher perceived benefits of group living. Solitary and fission-
18 fusion species, on the other hand, may perceive higher costs with larger groups
350 and therefore reduce group connectivity with increasing group size. Interestingly,
0 group connectivity of social species also reduces in larger groups, which suggests
31 that many social species experience constraints on sociality (Maldonado-Chaparro,
sz Hubbard & Blumstein, 2015).

363 The knowledge of how group connectivity scales with group size is critical to
34 make valid predictions about pathogen transmission rates across different pop-
s ulations. In theory, density- and frequency-dependent models of infectious dis-
36 case spread have been popularly based on two distinct assumptions about how
37 transmission scales with the host group size (McCallum, Barlow & Hone, 2001).
s Frequency-dependent model of disease transmission assumes that the connectivity
ss0 Of hosts is constant across group sizes, and therefore per capita transmission rate
so  declines with increasing host group size. In contrast, density-dependent trans-
s mission models assume linear scaling of group connectivity with group size and
sz constant per capita transmission rate across host groups (Ferrari et al., 2011).
sz Density-dependent transmission is typically assumed as a valid model for social
sza hosts (Anderson & May, 1978), although species specific empirical evidences have
a5 been conflicted (Vander Wal, Yip & Mclaughlin, 2012; Cross et al., 2013). Our re-
sre  sults demonstrate that the density-dependent transmission model may be valid for
sz socially hierarchical irrespective of pathogen transmission mode, but not for other
sre social or solitary species. We did not find evidence for frequency-dependent trans-

379 mission, as individual in all the social systems did increase their social partners
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30 With increasing group size.

- Conclusions

32 Despite the current challenges of comparing networks, our study revealed striking
sg3  differences in the interaction networks of species categorized into four broad social
384 Systems - relatively solitary, fission-fusion, social and socially hierarchical. At the
s least, the social organization of these social systems differs in terms of (a) degree
;s heterogeneity among social partners, (b) extent of network fragmentation and (c)
ss7  the tendency of individuals to occupy central positions within the interaction net-
ass work. Disease simulations show that, contrary to the expectation of higher disease
380 costs of group living for social species, the organization of interaction networks can
300 act as a first-line of defense for social and fission-fusion species. We also show that
s1  the individual’s behavioral response to larger groups can be different depending
32 on the social organization of the species, probably due to the perceived trade-off
303 between benefits and costs of living in larger groups. These findings shed new light
304 on the association between group living and disease transmission, and evolution
305 of social strategies to alleviate the disease costs of group living. In conclusion,
a6 we note that there is an enormous potential of adopting a comparative approach
307 to study the commonalities and differences in the interaction networks across a
a0 wide range of across taxonomic groups and social systems. Although we limit our
300 discussion to the disease implications of animal sociality and social network struc-
a0 ture, comparative network approaches can be used to quantitatively test several
a1 other evolutionary and ecological hypotheses, including the ones on group living,

a2 social complexity, information transfer, and resilience to population stressors.
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« Materials and methods

w0s Dataset

a5 We first conducted electronic searches in Google Scholar and popular data reposi-
a6 tories, including Dryad Digital Repository and figshare for relevant network dataset
a7 associated with peer-reviewed publications. We used the following terms to per-
as form our search: social network, social structure, contact network, interaction
a0 network, network behavior, animal network, behavior heterogeneity and social or-
a0 ganization. Only studies on non-human species were considered in our primary
aun search. Studies reporting non-interaction networks (such as biological networks,
a2 food-web networks) were excluded. By reviewing the quality of published net-
a3 works datasets, we selected 666 social networks spanning 47 animal species and 18
a2 taxonomic order. Edge connections of these networks summarized several differ-
a5 ent types of interaction between animals, including dominance, grooming, physical
a6 contact, spatial proximity, food-sharing (trophallaxis), foraging, and interactions
a7 based on the asynchronous use of a shared resource. Fig. 1 summarizes the species,
a1 the number of networks and the reported interaction types contributed by each

410 taxonomic order represented in the study.

20 Structure of interaction networks associated with the social

21 Systems

422 To examine the structure of networks associated with the four social systems,
a3 we used a Bayesian mixed-model approach using the MCMCglmm package in R

«2a  (Hadfield, 2010), with four response sociality levels - relatively solitary, fission-
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a5 fusion, social and socially hierarchical. As fixed effects within our model we in-
a6 cluded the following network measures (Table S1): degree heterogeneity, degree
a2z homophily, clustering coefficient, weighted clustering coefficient, transitivity, be-
28 tweenness centrality, weighted betweenness centrality, average group size, network
a0 fragmentation, group cohesion, relative modularity and network diameter. Com-
430 munity structure, or the number and composition of groups within each animal
a1 interaction network was estimated using the Louvain method (Blondel et al., 2008).
a2 We also included the number of nodes and edges in the network to provide a sta-
a3z tistical control for any variability in the sampling effort, and average edge weight
a3 was included to control for different edge weighting criteria. All continuous fixed-
a5 effects were centered (by subtracting their averages) and scaled to unit variances
a6 (by dividing by their standard deviation) to assign each continuous predictor with
.37 the same prior importance in the analysis (Schielzeth, 2010).

438 Traditional random-effect models assume that each data-point is independent.
430 However, in meta-analysis involving multiple taxonomic groups, it is necessary to
as0 control for non-independence arising from shared evolutionary histories of species.
a1 We therefore controlled for phylogenetic relationships in the analyses by including
a2 a correlation matrix derived from phylogeny as a random factor. The phylogenetic
a3 relationship of all species in the database was estimated from the NCBI taxonomy
e database using phyloT (http://phylot.biobyte.de). We also controlled for repeated
a5 measurements within groups and the type of interaction recorded by including
as  group and interaction type as random effects in the analysis.

247 We avoid model selection and present the results of the full model, so that
ws the fitted estimates are conditional on the values of all predictors and the esti-

ae mated confidence interval are more robust (Harrell, 2002). A potential drawback
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a0 of including all predictors in the model is the presence of multicollinearity between
a1 different network measures. We therefore estimated Variance inflation factor (VIF)
a2 for each covariate in the fitted model, and covariates with VIF greater than 3 were
as3 sequentially removed to obtain the final model formulation. We used a weakly
asa  informative Gelman prior for fixed effects and parameter-expanded priors for the
a5 random effects to improve mixing and decrease the autocorrelation among itera-
e tions (Gelman, 2006). Specifically, a x? distribution with 1 degree of freedom was
a7 used as suggested by Hadfield (2014). We ran three MCMC chains for 15 million
ass iterations, with a thinning interval of 1000 after burn-in of 50,000. Convergence
w0 of chains was assessed using the Gelman-Rubin diagnostic statistic (Gelman &

a0  Rubin, 1992) in the coda package (Plummer et al., 2006).

w1 Disease implications of network structure and the social sys-

62 tems
43 Disease simulations

s6a  We performed Monte-Carlo simulations of discrete-time susceptible-infected-recovered
a5 (SIR) model of disease spread through each network in our database. For dis-
a6 ease simulations, we ignored the weights assigned to social interactions between
w7 individuals, because the impact of weight (whether they represent contact dura-
w8 tion, frequency or intensity) is generally unclear and is usually context-dependent.
a0 Transmissiblity of the simulated pathogen was defined as the probability of infec-
a0 tion transmission from an infected to susceptible host during the infectious period
ann of the host. Assuming the individual’s recovery and infection transmission to be

a2 a Poisson process, pathogen transmissiblity can be calculated as T' = where

B
B+’
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a1z 3 and 7 is the infection and recovery probability parameter, respectively. Each
a7a  disease simulation was initiated by infecting a randomly chosen individual in the
a5 social group. At subsequent time steps every infected individual(s) in the pop-
aze ulation could either transmit infection to a susceptible neighbor with probability
a7z parameter [ or recover with probability 7. The disease simulation were terminated
azs when there were no remaining infected individuals in the network. We performed
aro  disease simulations of pathogens with a wide range of trasmissibility (0.001 to 0.5).
a0 Disease simulations for each value of pathogen transmissibility and social network
a1 were summarized using three measures: (a) Epidemic probability, measured as
a2 the proportion of simulations that ended up infecting at least 15% of individuals
as3 present in the interaction network, (b) outbreak size, or the average proportion
asa  of individuals infected and (c) outbreak duration, measured as the time interval
a5 between the beginning of an outbreak and the time the last infected individual in

w6 the interaction network recovers.

a7 Statistical analysis

as We used multivariate Bayesian-MCMC framework to establish disease costs of
a0 network measures and species sociality. Epidemic probabilities across different
a0 pathogen transmissibility were entered as the (multivariate) response variables.
a1 To evaluate the role of network structure on the probability of large outbreaks,
a2 network measures identified in the final model of the previous analysis were in-
203 cluded as predictors. We repeated the analysis with species sociality as predictor
a0s to directly estimate the vulnerability of different social systems towards disease
a0s transmission. In both the models, number of nodes and number of edges were in-

a6 cluded as predictors to control for variability in sampling effort and edge weighting
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a7 criteria. (Average edge weights were not included because disease simulations were
s performed over unweighted networks). Phylogenetic correlations, group identifica-
200 tion and the interaction type were included as the random effects in the analysis.
s0 Similar models were used to estimate the implications of network structure and
s social system towards the size and duration of outbreaks by replacing epidemic
so2 probability with outbreak size and duration as (multivariate) response terms, re-

s03  spectively.

s« Behavioral plasticity of individuals in different social systems

ss towards increasing group size

sos  We first identified group size and composition within each interaction network
so7 in the database using the Louvain algorithm (Blondel et al., 2008) that showed
sos  strong modular subdivisions (relative modularity, @, >0.3). For each social group,
soo  the following four network measures that are related to disease transmission were
s10  estimated - average individual degree, average individual strength, average pairwise
su  strength and group connectivity (Table S1). To assess how individuals of different
s12 social systems respond to increase in group size we used a linear mixed model
513 implemented in the Ime4 package in R (version 3.2.3; R Development Core Team
s 2015). Four separate models were run, each with one of the four network measures
s15 as the response variable, and group size interacted with species sociality (relatively
s16  solitary, fission-fusion, social and socially hierarchical) as the fixed effect. The
517 interaction network nested within species and type of interaction recorded was
si8  included as a random effect to control for repeated measurements within species

s10  and variation in data-collection methods.
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=~ Table captions

75 Table 1. Effect size estimates of the generalized linear mixed models (by MCM-
716 Cglmm) examining the characteristics of interaction network structure for different
nz  social systems. Shown are the posterior means of the expected change in log-odds
718 of being in focal social system (column headers), as compared to the base social
719 system (row headers), with one-unit increase in the network measure. The 95%
720 confidence intervals are included in brackets. Significant terms with pMCMC <
71 0.05 are indicated in bold, where pMCMC is the proportion of MCMC samples

722 that cross zero.
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= Flgure captions

72 Figure 1. Phylogenetic distribution of non-human species represented in the in-
725 teraction network dataset used in this study. Numbers next to the inner ring
726 denote the total networks available for the particular species. The inner and the
72z middle ring is color coded according to the taxonomic class and the social system
728 of the species. The colors in the outer ring indicates the type of interaction repre-
729 sented in the network

730

721 Figure 2. A stylized illustration of the network measures used (in the final model)
732 to characterize the differences in the interaction networks species categorized into
733 four social-systems: relatively solitary, fission-fusion, soctal and socially hierar-
73 chical. (A) Degree heterogeneity, measured as the coefficient of variation (CV)
735 of the degree distribution. Shown is the frequency distribution of nodal degrees
736 for a network with homogeneous degree distribution (CV <« 1), and a network
7w with an exponential degree distribution (CV = 1). (B) Degree homophily (p), or
738 the tendency of social partners to have a similar degree. Shown is an example
730 of a disassortative network, where high degree individuals tend to associate with
720 low degree individuals (p < 0), and assortative degree networks, where high de-
701 gree individuals tend to form social bonds with each other (p > 0). (C) Average
722 betweenness centrality, that measures the tendency of nodes to occupy central
743 position within the interaction network. Shown is an example of a network with
724 low average betweenness centrality and a network with high average betweenness
745 centrality. Node colors represent the betweenness centrality values - nodes with

76 darker colors occupy more central positions within the network. (D) Group cohe-
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747 sion measures the tendency of individuals to interact with members of own group.
78 The network to the left has three low cohesive social groups, while the network to
720 the right has highly cohesive social groups where most of the interactions occur
750 within (rather than between) groups. (E) Network fragmentation, measured as the
751 log-number of the social groups (modules) present within an interaction network.
72 Shown is an example of low (left) and highly (right) fragmented network

753

s Figure 3. Disease costs of social organization due to interaction network struc-
75 ture. Disease cost has been quantified in terms of outbreak size (proportion of
756 individuals infected in the interaction network), outbreak duration (time to dis-
757 ease extinction) and epidemic probability (likelihood of large outbreaks infecting
758 at least 15% of individuals in the network) for low (=0.1), moderate (=0.25) and
750 highly (=0.5) transmissible pathogen. Error bars represent standard errors, and
70 different letters above the bars denote a significant difference between the means
o1 (P < 0.05)

762

3 Figure 4. Role of network structures in influencing disease transmission. The
76a three network measures shown are the ones that were found to differ between
765 the four social systems (Table 1). Error bars represent 95% confidence intervals.
766 Confidence intervals that do not include zero suggest significant association with
77 disease transmission (red = significant effect, black = non-significant effect)

768

0 Figure 5. Change in individual social behavior and group connectivity with
770 change in social group size across the four social systems. Group size and com-

1 position was determined using the community detection algorithm described in
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72 Blondel et al. (2008). Only those interaction networks that showed strong modu-
773 lar subdivisions (@, > 0.3) were included in this analysis. Error bars represent
772 95% confidence intervals, and different letters above the points denote a significant
77 difference between the means (P < 0.05). Confidence intervals that do not include
776 zero suggest significant association with group size (red = significant effect, black

777 = non-significant effect)

38


https://doi.org/10.1101/106633
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/106633; this version posted February 7, 2017. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Table 1:
Degree heterogeneity Base Focal Solitary  Fission-fusion Social Socially hierarchical
Solitary -4.15 [-7.97, -0.34] -4.37 [-8.03, -1.22] -4.47 [-8.74, -0.50]
Fission-fusion -0.4 [-4.04, 3.38] -0.81 [-4.54, 2.79]
Social -0.99 [-4.57, 2.63]
Degree homophily Base Focal Solitary  Fission-fusion Social Socially hierarchical
Solitary -0.29 [-1.91, 1.32] -0.54 [-1.90, 0.87] -0.71 [-2.36, 0.96]
Fission-fusion -0.23 [-1.80, 1.39] -0.44 [-2.06, 1.17]
Social -0.43 [1.88, 1.02]
Betweenness centrality Base Focal Solitary  Fission-fusion Social Socially hierarchical
Solitary -3.95 [-8.88, 0.59] 0.41 [-2.29, 3.32] 1.80 [-1.31, 4.87|
Fission-fusion 2.87 [-0.84, 7.09] 4.67 [0.87, 8.94]
Social 1.58 [-0.73, 4.04]
Group cohesion Base Focal Solitary  Fission-fusion Social Socially hierarchical
Solitary -1.42 [-3.77, 0.79] 0.32 [-2.27, 1.64] -0.79 [-3.15, 1.55]
Fission-fusion 1.04 [-0.83, 2.90] 0.38 [-1.80, 2.48]
Social -0.21 [-2.08, 1.53]
Network fragmentation Base Focal Solitary  Fission-fusion Social Socially hierarchical
Solitary 6.41 [2.86, 10.00] 2.62 [-0.13, 5.52]  0.51 [-2.94, 3.78|
Fission-fusion -2.96 [-5.69, -0.25] -4.79[-7.82, -1.84]
Social -1.50 [-3.95, 1.02]
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Figure 1: Phylogenetic distribution of non-human species represented in the inter-
action network dataset used in this study. Numbers next to the inner ring denote
the total networks available for the particular species. The inner and the middle
ring is color coded according to the taxonomic class and the social system of the
species. The colors in the outer ring indicates the type of interaction represented
in the network
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