Small molecule-mediated reprogramming of the epithelial-mesenchymal transition prevents fibrosis

Running title: Reversion of fibrosis by chromones

Han-Soo Kim,^{1,2*} Jun-Hwan Kim,^{1,3*} Ji Yong Lee,² Young-Min Yoon,³ Ik-Hwan Kim,⁴ Ho-Sup Yoon⁵ and Byung-Soo Youn^{3#}

¹Institute for BioMedical Convergence, Catholic Kwandong University-International St. Mary's Hospital, Incheon 22711, Republic of Korea , ²Department of Biomedical Sciences, Catholic Kwandong University College of Medicine, Gangneung-si, Gangwon-do 25601, Republic of Korea. ³#705 Ace High-end Tower 9th 233,Gasandigital-1-ro, Geumcheongu, Seoul, 08501, Republic of Korea, ⁴Department of Biotechnology, Korea University. Seoul 02841and ⁵Department of Genetic Engineering, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 446-701, Republic of Korea and ⁵School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore

*These contributes equally to this work.

[#]Corresponding author:

Byung-Soo Youn, PhD, OsteoNeuroGen, Inc. Ace High-end Tower 9th 233, Gasandigital-1-ro, Geumcheon-gu, Seoul, 08501, Republic of Korea

Email: byung4jc@gmail.com, Tel) 822- 6267 2737 Fax) 822-6267-2740

Abstract

Fibrosis is an intractable human disease for which no curative drugs have yet been developed. Recent work revealed that renal fibrosis is a manifestation of the epithelial-mesenchymal transition (EMT). Chromones and chromone derivatives (CDs) are compounds based on a chemical scaffold found ubiquitously throughout the plant kingdom. We recently showed that eupatilin, a CD from an Artemisia species, efficiently shuts down osteoclastogenesis, concomitant with global downregulation of EMT-associated genes. For this study, we established the mouse hepatic stellate cell (HSC) line ONGHEPA1.Real-time imaging revealed that upon stimulation with TGFB, ONGHEPA1 cells uniformly differentiated into myofibroblasts, but fibrosis was completely inhibited by 50 µM eupatilin. Concomitant with these anti-fibrotic effects, multiple EMT-inducible genes, such as *Coll1a1*, *periostin* and *Slit3*, were significantly downregulated. Although pretreatment with eupatilin did not affect the antifibrotic effect by TGFB, stimulation with eupatilin following pretreatment with TGFB completely blocked fibrosis, suggesting that the anti-fibrotic capacity of eupatilin is tightly coupled to TGF^β signaling components or TGF^β-inducible molecules. This observation led us to hypothesize that eupatilin could reverse fibrosis in ONGHEPA1 cells by reprogramming the EMT. When ONGHEPA1 cells were sequentially stimulated and differentiated into fibroblasts with TGF β and eupatilin or selected CDs, we observed dramatic morphological changes along with reversal of the EMT. RNA-Seq analyses and interactome studies revealed that multiple genes involved in the EMT were induced by $TGF\beta$, but repressed by eupatilin. We identified 103 genes whose expression reached the highest levels following stimulation with TGFB, but dropped to basal levels in cells treated with eupatilin. The majority of these genes were EMTassociated. A defined set of 34 CDs was tested in the fibrosis assay, leading to the

identification of two additional CDs capable of blocking the EMT as effectively as eupatilin. The methoxy residue at the sixth carbon (C6) on the chromone scaffold is essential for antifibrotic effects, and the hydroxy residue at C7 is also important. However, the presence of any functional groups at C2 significantly decreased anti-fibrotic activity. Replacement of the chemical residues of the remaining carbons (C1, C3, and C4) with methoxy groups led to toxicity or apoptosis. To evaluate the suitability of eupatilin for treating human idiopathic pulmonary fibrosis (IPF), we used a mouse model of bleomycin-induced lung fibrosis. From a histopathological perspective, eupatilin significantly decreased disease severity, reducing infiltration of lymphocytes as well as the extent of extracellular matrix deposits. Taken together, our findings reveal a novel and potent EMT-inhibitory activity associated with the chromone scaffold, which is capable of reversing fulminant fibrosis to the normal state.

Introduction

Fibrosis is a complex disease state in which elevated proliferation of myofibroblasts is accompanied by overproduction of extracellular matrix (ECM) components, resulting in cellular stiffness (Bonnans et al. 2014). The cellular players in this process are diverse, and the identities of key cell types depend on tissue context (Murray 2016). Idiopathic pulmonary fibrosis (IPF) and liver fibrosis affect many people around the world, representing an urgent medical need. To date, however, no curative drugs have become available to treat these conditions (Fallowfield 2015, Sgalla et al. 2016). Two small-molecule anti-fibrotic drugs, pirfenidone (Esbriet) and nintedanib (Ofev), have been recently adopted for IPF (King and Nathan 2015), but their efficacies and side effects must be improved to successfully treat this disease. Moreover, the underlying molecular and cellular mechanisms through which these drugs exert their anti-fibrotic activities against IPF need to be more completely elucidated. Although liver fibrosis afflicts more people than IPF around the world (Poynard et al. 2010), no drugs are currently available to treat this disorder.

Liver fibrosis is an inflammatory disease elicited by type 2 immunity, and is associated with massive proliferation of fibroblasts and differentiation of stem cell–like hepatic stellate cells (HSCs) into myofibroblasts (Yin et al 2013). Recent work showed that renal fibrosis is mediated by EMT, a well-defined cellular program that plays a major role in promoting tumor metastasis (Lamouille et al. 2014). A set of *Twist* or *Snail*-regulating genes contributes to renal fibrosis and other types of fibrotic disorders (Lovisa et al. 2015), suggesting that downstream genes of *Twist* or *Snail*, such as collagens and adhesion molecules, promote fibrosis. Hence, the EMT has been recognized as a central program driving diverse cellular dysfunctions, and

thus represents a promising molecular therapeutic target for many intractable human diseases that decrease the quality of life, including fibrotic disorders.

Flavones or isoflavones are members of the polyphenol family, a group of >10,000 compounds that are predominantly found in the plant kingdom (Dixon and Pasinetti 2010). Among other functions, these phytochemicals protect plants from radiation damage (Stapleton and Walbot 1994). Due to their anti-oxidant and anti-inflammatory potential, flavones have long been used to treat inflammatory diseases such as arthritis or asthma (Leyva-López et al. 2016). Chromone (1,4-benzopyrone-4-one) is a chemical scaffold present in a large number of flavones (Emami and Ghanbarimasir 2015), and the chromone derivatives (CDs) are a diverse family based on this core chemical framework (Gacche et al. 2015). We recently reported that eupatilin, a CD from an *Artemisia* species, dramatically inhibited osteoclastogenesis (Kim et al. 2015) and downregulated multiple genes associated with the EMT, as revealed by RNA-Seq analysis (*Supplementary figure. 1A*). This observation prompted us to hypothesize that eupatilin might prevent fibrosis.

Here, we show that selected CDs can reprogram EMT, thereby ameliorating fibrosis. Because these new compounds could be used in combination with existing drugs for IPF, potentially achieving synergistic effects, the observation opens the door to a powerful new therapeutic modality for treating generalized fibrosis.

Results & Discussion

CDs inhibit fibrosis by reversing changes in cell morphology

To test this hypothesis, we established the HSC line ONGHEPA1 as an *in vitro* model of mouse liver fibrosis. HSCs are widely appreciated for their roles in initiation and perpetuation of liver fibrosis (Gabele et al. 2003). ONGHEPA1 cells, which have a mesenchymal morphology (*Supplementary figure*. *1B*), expressed GATA4 but not cytokeratin 18 (*Supplementary figure*. *1C*), strongly indicating that they have an endodermal origin and are not related to epithelial cells. No albumin was detected (data not shown).

When ONGHEPA1 cells were stimulated with TGF β , significant morphological changes occurred 6–8 h after stimulation, and full commitment to myofibroblasts occurred by 24–48 h (*Supplementary figure 2*). Eupatilin, produced in a seven-step synthesis and purified to homogeneity at GLP levels (*Supplementary figure 3*), completely inhibited TGF β -induced fibrosis at a concentration of 50 µM (Figure 1A). Immunocellularchemistry (ICC) experiments clearly demonstrated that immune-reactivity to α smooth muscle actin after TGF β stimulation was significantly decreased by eupatlin. PDGF also contributes to fibrosis (Andrae et al. 2008). As shown in *Supplementary figure 4, ONGHEPA*1 exhibited an earlier response to PDGF than TGF β , but the resultant pattern of fibrosis was not significantly different. Eupatilin also completely inhibited PDGF-induced fibrosis as well as immune-reactivity to α smooth muscle actin (Figure 1B).

To avoid potentially confounding effects of serum on differentiation, differentiation of HSC into fibroblasts by TGF β treatment was conducted in serum-free medium in which proliferation was inhibited, confirming the anti-fibrotic effect of eupatilin (Figure 1C).

Finally, we investigated whether fibrosis induced by TGF^β or PDGF could be inhibited by CDs including eupatilin in normal human lung fibroblasts (NHLFs), major cellular players associated with IPF (Huang et al. 2014). Since responsiveness of NHLFs to TGF^β stimulation is a little different from that of the fibroblasts differentiated from ONGHEPA1 cells PDGFmediated fibrosis in NHLF cells is to be mainly described. Eupatilin and two CDs called ONGE200 and ONGA300 markedly prevented fibrosis induced by PDGF in these cells (Figure 2A). CD-treated NHLFs exhibited retarded growth rate and gross change in morphology. ONGE200 seemed to be a little toxic, which is contrasted to the anti-fibrotic effect of ONGE200 on ONGHEPA1 cells. The similar cytotoxicity was seen from stimulation of NHLFs with TGFB (Supplementary figure 5A). Immnuocellularchemistry (ICC) experiments demonstrated that the immune-reactivity to α smooth muscle actin after PDGF stimulation was significantly diminished by eupatlin (Figure 2B). Real-time PCR showed that $coll11\alpha l$, vimenin, or periostin expression was decreased by eupatilin, suggesting the EMT is significantly inhibited by eupatilin (Figure 2C). The immunoreactivity to α smooth muscle actin in the NHLFs stimulated by TGFB was increased and markedly deceased by eupatilin (Supplementary figure 5B). However, we consistently observed that the gene expression of $coll \alpha l$ and vimentin was upregulated by eupatilin but periostin was far downregulated (Supplementary figure 5C), suggesting that regulation of EMT components by small molecules might be diverse or would rather be flexible depending cellular contexts. Real-time imaging experiments conducted for 24 h confirmed that TGF^β significantly induced fibrosis whereas eupatilin completely inhibited it (Supplementary figure 6).

Specific carbons of the chromone scaffold and chemical residues are critical for antifibrotic effects

Next, we selected 34 CDs with chemical similarity to eupatilin and evaluated their anti-fibrotic effects (Supplementary figure 7). We identified three CDs as active: eupatilin itself, ONGE200 (also known as hispidulin), and ONGA300 (also known as jaceosidin). The latter two compounds were the most closely chemically related to eupatilin among CDs tested. Chemical differences are highlighted in Figure 3. The eight conserved CD carbons are represented in colored letters, whereas differences in the phenyl residues connected to the chromone scaffold are indicated by blue boxes. In rats, ONGA300 has been identified as a plasma metabolite generated by decarboxylation of eupatilin, and was also detected along with eupatilin in an Artemisia extract (Ji et al. 2010). The anti-fibrotic effects of eupatilin and ONGE200 were concentration dependent (Figure 3A and Figure 3B); ONGA300 was cytotoxic at 50 µM, but exerted clear anti-fibrotic effects at a much lower concentration, 10 µM (Figure 3C). To explore the importance of the eight carbons of the chromone scaffold in terms of structure-function relationship, we compared the three active CDs with the other compounds in the test set. When the dimethoxy residues of eupatilin were replaced with dihydroxy groups, as seen in ONGI300, the anti-fibrotic effect was eliminated (Figure 3D4D). However, hemireplacement of the dimethoxy residues with a hydroxy group, as in ONGA300 (jaceosidin), preserved the anti-fibrotic effect at 10 µM. Together, these observations suggest that the functional residues of the phenyl group bonded to the chromone scaffold play important roles in inhibiting fibrosis.

We further characterized the importance of the eight carbons by profiling CDs. In comparison with ONGE200, ONGI200 (also known as apigenin) lacks only the methoxy group

bonded to the C6th carbon (C6). However, ONGI200 exerted no anti-fibrotic effects, suggesting that C6 is an important constituent of the chromone scaffold, and that attachment of a methoxy residue to C6 is necessary for prevention of fibrosis (Figure 3E). We also noticed that ONGC200, in which the hydroxy residue of ONGE200 is replaced with a methoxy group, completely lost the anti-fibrotic effect, suggesting the C7 is also a critical component of chromone scaffold (denoted by a blue circle in *Supplementary figure 8-1*). In addition, methoxylation of C2 of ONGA300, generating a compound equivalent to ONGH300, abolished anti-fibrotic capacity, suggesting that the presence of a bulky group at C2 affects anti-fibrotic potential (Figure 3F). The same held true for ONGD400, a highly cytotoxic stereoisomer of ONGH300, as denoted by the blue arrow and figure in *Supplementary figure 8-2*. Taken together, our data confirm that substitutions on the chromone scaffold were only tolerated in specific cases, indicating a stringent structure–activity relationship (SAR) in regard to chromones' anti-fibrotic effects (Figure 4).

The anti-fibrotic capacity of selected CDs requires stimulation with TGF β and is mediated by reprogramming EMT

To determine whether receptor(s) or a binding protein(s) for the CDs identified in the previous section exist, and if so, whether these factors mediate the anti-fibrotic effect, we pretreated ONGHEPA1 with eupatilin at various time points for up to 6 hr, the time at which pretreatment of BMM with eupatilin completely blocks osteoclastogenesis (Kim, et al. 2015). Figure 5A shows that, compared with control treatments, eupatilin had clear anti-fibrotic activity. In contrast to the effect on osteoclastogenesis, pretreatment of ONGHEPA1 cells with eupatilin did not prevent fibrosis (Figure 5B); however, pretreatment of ONGHEPA1 cells

with TGF β followed by eupatilin treatment completely inhibited fibrosis, suggesting that the effect of eupatilin depends on TGF β pathway components or TGF β -inducible proteins (Figure 5C).

We previously observed that fibrogenesis in ONGHEPA1 cells occurred 6 hr after TGFβ stimulation (Supplementary figure 2). Therefore, we hypothesized that the selected CDs could reverse preexisting fibrosis. To test this hypotheses, we treated ONGHEPA1 cells sequentially with TGFB for 24 hr, leading to 100% conversion into fibroblasts; washed them with PBS, and then finally re-stimulated with TGFB or PDGF plus selected CDs for 24 hr. Under these conditions, fibroblasts were converted into ONGHEPA1-like cells, as shown in Figure 6A and 6B. This morphological reversion was highly correlated with downregulation of certain EMT-related genes, including Colllal (collagen 11a1), Slit3 (Slit homolog 3), Axl (receptor tyrosine kinase), Postn (periostin), Fn1 (fibronectin 1), and Aurka (Aurora kinase). Axl (a receptor kinase) expression differed in response to TGFβ and PDGF (Figure 6C and 6D), but the reason for this difference remains unknown. We extensively confirmed the anti-fibrotic capacities of eupatilin, ONGE200, and ONGA300 in simultaneous or sequential stimulation conditions, as shown in Figure 7A, 7B, and 7C, respectively. The data clearly demonstrated that these selected CDs were capable of preventing the establishment of fibrosis, as well as reversing fibrosis that already existed. Sequential stimulation experiments with TGF β or PDGF were also conducted using the remaining 31 CDs in the test set (Supplementary figures 9-1. 9-2, 10-1 and 10-2). None of these compounds exhibited reversion activity, and some were cytotoxic, again confirming that eupatilin, ONGE200, and ONGA300 were the only CD members capable of reversing fibrosis. Finally, real-time imaging revealed the morphological reversal of fibroblasts into ONGHEPA1-like cells (Supplementary figure 11).

Reprogramming EMT by the selected CD members is responsible for anti-fibrosis

We next asked whether eupatilin could inhibit EMT induced by TGFB with simultaneous stimulation or committed EMT via sequential stimulation. To demonstrate the former, we stimulated ONGHEPA1 cells with TGFB or TGFB plus eupatilin, and then conducted global gene expression analyses using RNA-Seq. A 60 Gb sequence was generated, which showed clear Volcano plots as shown in Supplementary figure 12A. A total of 10,020 transcripts were read and compared. When ONGHEPA1 cells were stimulated with TGFB, 826 genes were induced. Treatment of TGFB-treated ONGHEPA1 cells with eupatilin specifically induced 150 genes, (Supplementary figure 12B). While the identity of the genes with altered expression between TGF\beta-treated ONGHEPA1 cells and TGFβ plus eupatilin-treated ONGHEPA1 cells via simultaneous stimulation (Supplementary table 1) was 85.4%. identity was 81.0% between TGFβ-treated ONGHEPA1 cells and ONGHEPA1 cells sequentially treated with a combination of TGF β and eupatilin (Supplementary table 2). In the case of sequential stimulation, although the reversion to a normal ONGHEPA1-like morphology was evident, the identity of genes with altered expression between TGF_β-treated and TGF_β plus eupatilin-treated ONGHEPA1 cells was 81%. RNA-Seq analysis under the sequential stimulation condition was conducted by using highly confluent cells, which could have affected changes in gene expression induced by eupatilin. Gene Ontology analysis revealed that under both stimulation conditions, the genes with the largest changes in expression encoded proteins classified as cellular components (7% and 20.5%, respectively), suggesting that eupatilin's mode of action is related to its ability to induce morphological changes via its effects on cytoskeletal protein expression. Using bioinformatics, we constructed an unbiased interactome

(Figure 8), revealing several notable hubs, including the collagen gene family ($Coll1\alpha l$) and the cytoskeletal gene family (Actin a smooth muscle aorta, Troponin 1 and 2, Tropomyosin 2, Myosin-heavy chain 1 and Myosin-light chain 9, and Laminin 4). Notably, integrin αl and *integrin* β 3 played pivotal roles in connecting these two gene hubs. Expression of *Slug*, *Zeb1*, and *Gli1*, major transcription factors deeply involved in the EMT, was inhibited by eupatilin. Several receptor-encoding genes, such as the semaphorin receptor family, a cholesterol receptor (Vldr), and CD44, formed significant hubs one notable signaling molecule associated with eupatilin-mediated reprogramming EMT was adenylate cyclase 9 (Adcy9), which might be triggered by cell-associated small-molecule ligand(s), leading to small G-protein activation (Supplementary table 3). To identify the most critical genes involved in reprogramming EMT by eupatilin, we identified a gene set that was maximally induced by TGF β and maximally repressed by eupatilin; the resultant set of 103 genes is listed in Supplementary table 4. The vast majority of these genes are involved in promoting the EMT. For an instance, follistatinlike 1 (Fstl1) plays a pivotal role in pulmonary fibrosis (Dong et al. 2015), and deficiency of *Fstl*1 completely protects mice from bleomycin-induced lung fibrosis, consistent with the downregulation of Fstl1 by eupatilin. These eupatilin-repressible genes could be new molecular targets for fibrosis.

In summary, the data presented in this section indicate that selected CDs (eupatilin, ONGE200, and ONGA300) reprogram the EMT, curbing fibrosis in a cell culture model.

Eupatilin significantly improves bleomycin-induced lung fibrosis

Finally, to assess the ability of eupatilin to inhibit fibrosis in vivo, we used a mouse

model of bleomycin-induced lung fibrosis. Each test group consisted of five 5-week-old male C57BL/6J mice, as summarized in *Supplementary table 5*. Three mice per test group were selected, and their lung tissues were excised. Pulmonary fibrosis was induced by intratracheal administration of bleomycin for 12 days, followed by administration of 1–40 µg of eupatilin via the nose. Pulmonary fibrosis was more effectively inhibited by 20 µg or 40 µg of eupatilin, and the animals receiving these doses exhibited significant clearance of ECM, as revealed by Masson's trichrome staining (Figure 9A). Concomitant with inhibition of lung fibrosis by eupatilin, infiltration of lymphocytes was significantly inhibited, but monocytes were not affected (Figure 9B), consistent with the observation that type 2 immunity is related to severity of bleomycin-induced lung fibrosis (Brodeur et al. 2015). Taken together, these findings suggest that eupatilin could be useful as an effective therapeutic agent against fibrosis, especially IPF.

Acknowledgements

This study was supported by an intramural fund from OsteoNeuroGen. B-S Y and H-S Kim conceived the idea. H-S Yoon contributed to determining the structure-function relationship and I-H Kim coordinated the experiments and helped with writing the manuscript. J-H Kim was largely involved in executing major experiments, J Y Lee contributed to real-time imaging, and Y-M Yoon took part in high through-put screening and the EMT assay. Mice were taken care by the IACUC associated with Woojungbsc Co under IRB 13023.

Competing financial interests: H-S Kim, I-K Kim, HS Yoon, and B-S Youn retain shares of OsteoNeuroGen, and J-H Kim and Y-M Yoon are employed by OsteoNeuroGen. The antifibrosis capability of Chromones is the subject of a Korea patent, an international PCT, and a US patent.

Materials and Methods

Establishment of the murine HSC line ONGHEPA1

Animal experiments were approved and conducted in accordance with the guidelines of the Institutional Animal Care and Use Committee at Catholic Kwandong University (IACUC No. CKU01-2015-014). C57BL/6 mice at 8 weeks of age were purchased from Charles River Orient (Seoul, Korea). The animals were housed under a 12 hr light/dark cycle at $21 \pm 2^{\circ}$ C and $50 \pm 5\%$ humidity in an environment-controlled room.

HSCs were isolated from 8-week-old C57BL/6 mice using a standard protocol for liver perfusion (Geerts et al. 2001) with minor modifications. Briefly, the liver was pre-perfused through the portal vein with PBS (Invitrogen, Carlsbad, CA, USA) containing 50 mM glucose, 100 U/ml penicillin, 100 µg/ml streptomycin, and 0.01% collagenase type IV (Sigma Chem, St. Louis, MO, USA). After excision from the body, livers were homogenized and digested for 30 min at 37°C with 0.01% collagenase type I (Sigma). The resultant cells were resuspended in ice-cold PBS containing 10% fetal bovine serum (FBS; Hyclone, Logan, UT, USA) and filtered through a 100-µm cell strainer (Sigma), followed by centrifugation at $300 \times g$ for 7 min. Subsequently, the cells were resuspended in PBS with 1% FBS, and then subjected to discontinuous Percoll (GE Healthcare, Piscataway, NJ, USA) gradient centrifugation at 1200 ×g for 30 min. Isolated cells were cultured on a tissue culture plate in DMEM with high glucose (Invitrogen) supplemented with 10% FBS and antibiotics at 37°C and 5% CO₂. After incubation, the plates were washed extensively with PBS to remove contaminating cells, and the medium was changed every 3 days. When the cells reached 70% confluence, they were passaged at a ratio of 1:3–1:5. The resultant cells, which exhibited stable morphology and doubling time even after 35 passages, were designated ONGHEPA1. Cells at passage 3–10 were used for experiments.

Cell culture and reagents

Recombinant human TGF^β and PDGF were obtained from Peprotech (Rocky Hill, CT, USA) and used at a final concentration of 5 ng/ml. Chemically synthesized eupatilin was obtained from Syngene International Ltd. (Bangalore, India), dissolved at a stock concentration of 50 mM in DMSO, and stored in aliquots at -20°C. DMSO at 0.1% (v/v) was used as a control. ONGE200 (hispidulin) and ONGA300 (jaceosidin) were purchased from AK Scientific (Union City, CA, USA). The remaining 31 CDs in the test set purchased from Analyticon (Berlin, Germany). For simultaneous treatment, ONGHEPA1 cells were seeded in 1 ml of DMEM-high glucose supplemented with 10% FBS, 100 units/ml penicillin, and 0.1 mg/ml streptomycin in 24-well plates (5.5×10^4 cells/well). After 24 hr, the wells were washed with D-PBS (Lonza), and the medium was replaced with DMEM containing 5 ng/ml TGF β to induce fibrosis. For simultaneous treatment, eupatilin (50 µM) was added to the medium, and the samples were incubated for 24 hr. For sequential treatment, the cells were seeded in 1 ml of DMEM/10% FBS in 24-well plates (5.5×10^4 cells/well). After 24 hr, the wells were washed with PBS, and the medium was replaced with DMEM containing 5 ng/ml TGF_β. Following incubation at 37°C and 5% CO₂ for 24 hr, the medium was replaced with to DMEM containing 5 ng/ml TGFβ and 50 µM ONG2 and incubated for an additional 24 hr. The anti-fibrotic effect of eupatilin was examined under a microscope (EVO, Life Technologies).

Flow cytometry

Cell pellets were suspended in PBS supplemented with 1% FBS and stained with antibodies against the following proteins: CD29, CD44, CD45, CD71, CD90, CD106, and CD117. All antibodies were obtained from BD Biosciences (San Jose, CA, USA) and conjugated with either R-PE or FITC. After incubation for 20 min at 4°C in the dark, the cells were washed, and pellets were resuspended in PBS containing 1% paraformaldehyde (BioSesang, Seongnam, Korea). Labeled cells were analyzed on a flow cytometer (Cytomics Flow cytometer, Beckman Coulter, Fullerton, CA, USA)

Cell viability assay

ONGHEPA1 cells (10^6 cells/well) were seeded in 96-well microtiter plates and incubated overnight. Cells were treated with TGF β and the indicated concentrations of eupatilin or other CDs for 24 hr. Cell viability was measured using the CCK-8 kit (Dojindo Molecular Technologies, Japan).

Immunostaining

For immunofluorescence staining, ONGHEPA1 cells were grown on 8-well glass chamber slides (LabTek II, Thermo Fisher, Rochester, NY, USA) and fixed with methanol at -80°C for 2 hr. After washing with PBS, cells were blocked and permeabilized by incubation at room temperature for 2 hr in PBS/5% FBS with 0.1% Triton X-100. After incubation with primary antibodies at 4°C overnight, cells were washed, stained with dye-conjugated secondary antibodies, and incubated at room temperature for 2 hr. GATA4 (Santa Cruz Biotechnology, Dallas, TX, USA) and cytokeratin 18 (Santa Cruz Biotechnology) were used as markers of endoderm and endothelial cells, respectively. Nuclei were counterstained with DAPI.

Live-cell imaging

ONGHEPA1 cells were seeded in DMEM supplemented with 10% FBS and 1% penicillin/streptomycin in 35-mm culture dishes (BD) at a concentration of 5×10^4 cells/well. After overnight culture, cells were washed with PBS, and the medium was replaced with serum-free DMEM medium with recombinant TGF β (5 ng/ml, Peprotech) or ONG2 (50 μ M). Immediately thereafter, cells with clear morphology were identified by observation in the differential interference contrast channel, and analysis was performed in an insulated chamber (TC-L-10; incubator system, Korea) maintained at 37°C, 5% CO₂. A series of bright-field images was collected every 5 min over 24 hr period on an Olympus IX73 inverted microscope using a 10× objective. Image stacks were converted to AVI formats using cellSens imaging software (Olympus).

Reverse transcriptase PCR and real-time PCR

Cells cultured in 24-well plates were harvested with Trypsin-EDTA solution (Welgene, Seoul, Korea). Specifically, the wells were washed once with DPBS, and then 1× Trypsin-EDTA solution was added to each well and incubated for 2–3 minutes. Trypsin-EDTA solution was inactivated by DMEM containing 10% of FBS. The resultant cell suspensions were transferred to 1.5-ml cap tubes, which were centrifuged for 5 minutes at 800×g. After centrifugation, the supernatant was removed, and the pellets were washed once with DPBS. Total RNA was purified from the pellets using the RNeasy mini Kit (Qiagen). The concentration of purified RNA was measured using a Multiskan GO and µDrop plate (Thermo). RNA was reverse-transcribed using the cDNA Synthesis Kit (PCRBio). Reverse transcriptase was activated by incubation at 42°C for 30 minutes, and then denatured at 85°C for 10 minutes. Synthesized cDNA was amplified with StepOne Plus (Applied Biosystems) and 2× qPCRBio Probe Mix

Hi-ROX (PCRBio). PCR conditions were as follows: by polymerase activation for 2 minutes at 95°C, followed by 40 cycles of denaturation at 95°C for 5 seconds and annealing/extension at 62°C for 25 seconds. Comparisons between mRNA levels genes were performed using the $\Delta\Delta$ Ct method, with *Gapdh* as the internal control.

RNA-Seq processing, differential gene expression analysis, and interactome analysis

For preprocessing of total sequencing reads, adapter trimming was performed using cutadapt with default parameters, and quality trimming (Q30) was performed using FastQC with default parameters. Processed reads were mapped to the Mus musculus reference genome (Ensembl 77) using tophat and cufflink with default parameters (Trapnell et al. 2012). Differential analysis was performed using Cuffdiff (Trapnell et al. 2012) using default parameters. Further, the FPKM values from Cuffdiff were normalized and quantitated using the R Package Tag Count Comparison (TCC) (Sun et al. 2013) to determine statistical significance (e.g., P values) and differential expression (e.g., fold changes). Gene expression values were plotted in various ways (i.e., Scatter, MA, and Volcano plots), using fold-change values, with an R script developed in-house. To compare individuals and combinations of samples, unique regulated subjected genes were Venn diagram analysis to (http://bioinformatics.psb.ugent.be/webtools/Venn/). The protein interaction transfer procedure was performed by the STRING database (Szklarczyk et al. 2011) with the differentially expressed genes. The highest-confidence interaction score (0.9) was applied from the Mus musculus species, and information about interacts were obtained based on text mining, experiments, and databases (http://www.string-db.org/).

Evaluation of effect on fibrosis of lung tissue induced by bleomycin

Five-week-old male C57BL/6J mice (body weight: 18.2-20.5 g) (KOATECH, Korea) were

used for experiments, and each test group was composed of five animals, as summarized in Table 1. The mice were housed in breeding boxes with dimensions of $369 (L) \times 156 \text{ mm} (W)$ × 132 mm (H) (EU, USA, UK GL compliance) made of a polysulfone material in a SPF (Specific Pathogen–Free) and BSL (Bio Safety Level) 2 grade facility. Two or three animals were present in each breeding box during the period of quarantine and acclimatization, as well as during the testing period, and the conditions were set to a temperature of 22 ± 2 °C, a relative humidity of $50.0 \pm 15.0\%$, a ventilation cycle of 10-20 times/hr, a light/dark cycle (photoperiod) of 12 hr/day (07:00 to 19:00), and illumination intensity of 150-300 Lux during the light phase. Pulmonary fibrosis was induced by directly injecting bleomycin solution into the lungs according to the intratracheal instillation (IT) method of Kremer, Laxer and Berkman et al. Briefly, C57BL/6J mice were anesthetized by inhalation of 70% N₂O and 30% O₂ gas containing 1.5% isoflurane; the skin of the anterior neck thereof was excised, and the tissues under the muscle were exposed and carefully incised using ophthalmic surgical scissors. Fifty microliters of bleomycin solution in distilled water was directly injected into the lungs all at once via the aperture created by excision of tissue using a 1-ml syringe fitted with a 19-gauge injection needle with a blunt tip. Immediately after injection, the incised skin of the anterior neck was sutured, and the mice were allowed to recover from the anesthetic, transferred into a general breeding cage, and then bred. Bleomycin-HCl (40 μ g/50 μ l) was administered once using a visual instillobot. Eupatilin was dissolved in DPBS buffer (containing 1% DMSO), and 1 ml/kg was administered based on the most recent body weight. Twelve days after the administration of bleomycin, eupatilin was forcibly nasally administered via a micropipette, once a day (five times a week) for 1 week. For 2 to 3 days after the administration of eupatilin, mice were monitored for toxic symptoms or death, but no abnormal symptoms were observed. Three mice per test group were selected, and their lung tissues were excised. The lung tissues were stained with Masson's trichrome and observed under a microscope. Results were demonstrated by mean values and standard deviations. Controls and eupatilin-treated mice data were subjected to ANOVA analysis. Statistic meaning was considered positive when 5% differences between samples were pronounced. Fisher's PLSD was conducted for confirmation of statistical significane.

REFERENCES

Andrae J, Gallini R, Betsholtz C. 2008. Role of platelet-derived growth factors in physiology and medicine. Genes Dev.22:1276-1312.

Bonnans C, Chou J, Werb Z. 2014. Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol.15:786-801.

Brodeur TY, Robidoux TE, Weinstein JS, Craft J, Swain SL, Marshak-Rothstein A. 2015. IL-

21 Promotes Pulmonary Fibrosis through the Induction of Profibrotic CD8+ T Cells. J Immunol.195:5251-5260.

Dixon RA, Pasinetti GM. 2010. Flavonoids and isoflavonoids: From plant biology to agriculture and neuroscience. Plant Physiol.154:453-457.

Dong Y, Geng Y, Li L, Li X, Yan X, Fang Y, Li X, Dong S, Liu X, Li X, et al. 2015. Blocking follistatin-like 1 attenuates bleomycin-induced pulmonary fibrosis in mice. J Exp Med 212:235-252.

Emami S, Ghanbarimasir Z. 2015. Recent advances of chroman-4-one derivatives: synthetic approaches and bioactivities. Eur J Med Chem 93:539-563.

Fallowfield JA. 2015. Future mechanistic strategies for tackling fibrosis--an unmet need in liver disease. Clin Med (Lond).15 Suppl.:s83-s87.

Gabele E, Brenner DA, Rippe RA. 2003. Liver fibrosis: signals leading to the amplification of the fibrogenic hepatic stellate cell. Front Biosci.8:d69-d77.

Gacche RN, Meshram RJ, Shegokar HD, Gond DS, Kamble SS, Dhabadge VN, Utage BG, Patil KK, More RA. 2015. Flavonoids as a scaffold for development of novel anti-angiogenic agents: An experimental and computational enquiry. Arch Biochem Biophys 577-578:35=48. Geerts A, Eliasson C, Niki T, Wielant A, Vaeyens F, Pekny M. 2001. Formation of normal desmin intermediate filaments in mouse hepatic stellate cells requires vimentin. Hepatol.33:177-188.

Huang SK, Scruggs AM, McEachin RC, White ES, Peters-Golden M. 2014. Lung fibroblasts from patients with idiopathic pulmonary fibrosis exhibit genome-wide differences in DNA methylation compared to fibroblasts from nonfibrotic lung. PLoS One.12:e107055.

Ji HY, Kim SY, Kim DK, Jeong JH, Lee HS. 2010. Effects of eupatilin and jaceosidin on cytochrome p450 enzyme activities in human liver microsomes. Molecules.15:6466-6475.

Kim JY, Lee MS, Bae JM, Park J, Youn BS, J O. 2015. Massive elimination of multinucleated osteoclasts by eupatilin is due to dual inhibition of transcription and cytoskeletal rearrangement. Bone Rep.3:83-94.

King CS, Nathan SD. 2015. Practical considerations in the pharmacologic treatment of idiopathic pulmonary fibrosis. Curr Opin Pulm Med 21:479-489.

Lamouille S, Xu J, Derynck R. 2014. (Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol.15:178-196.

Leyva-López N, Gutierrez-Grijalva EP, Ambriz-Perez DL, Heredia JB. 2016. Flavonoids as cytokine modulators: A possible therapy for inflammation-related diseases. Int J Mol Sci 17:921.

Lovisa S, LeBleu VS, Tampe B, Sugimoto H, Vadnagara K, Carstens JL, Wu CC, Hagos Y, Burckhardt BC, Pentcheva-Hoang T, et al. 2015. Epithelial-to-mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis. Nat Med.21:998-1009.

Murray LA. 2016. The cell types of fibrosis. Front Pharmacol.6:311.

Poynard T, Lebray P, Ingiliz P, Varaut A, Varsat B, Ngo Y, Norha P, Munteanu M, Drane F, Messous D, et al. 2010. Prevalence of liver fibrosis and risk factors in a general population using non-invasive biomarkers (FibroTest). BMC Gastroenterol.10:40.

Sgalla G, Cocconcelli E, Tonelli R, Richeldi L. 2016. Novel drug targets for idiopathic pulmonary fibrosis. Expert Rev Respir Med.26:1-13.

Stapleton AE, Walbot V. 1994. Flavonoids can protect maize DNA from the induction of ultraviolet radiation damage. Plant Physiol.105:881-889.

Sun J, Nishiyama T, Shimizu K, Kadota K. 2013. TCC: an R package for comparing tag count data with robust normalization strategies. BMC Bioinformatics.14:219.

Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P, Doerks T, Stark M,

Muller J, Bork P, et al. 2011. The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 39:D561-568.

Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L. 2012. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc.7:562-578.

Figure Legends

Figure 1. Inhibition of TGFβ- or PDGF-induced fibrosis by eupatilin

A) ONGHEPA1 cells were stimulated with TGF β (5 ng/ml) or TGF β plus eupatilin (50 μ M) for 24 hr, and morphological changes were monitored under a light microscope. ICC was performed using anti-mouse α smooth muscle actin B) ONGHEPA1 cells were stimulated with PDGF (5 ng/ml) or PDGF plus eupatilin (50 μ M) for 24 hr, and morphological changes were monitored under a light microscope. ICC was conducted as described above. C) ONGHEPA1 cells were grown to confluence, washed, and maintained overnight in serum-free medium. The cells were then treated with TGF β or TGF β plus eupatilin for the indicated times, and fibrosis was monitored.

Figure 2. Inhibition of fibrogenesis of normal human lung fibroblasts (NHLF) by CDs

NHLF cells (5X10⁶) were seeded in fibroblast growth medium (FBM), grown overnight, and then stimulated with controls or CDs for 48 hr or 72hr.

- A) NHLF cells were simultaneously stimulated with TGFβ or TGFβ plus eupatilin (50µM), ONGE200 (50µM), or ONGA300 (10µM). Anti-fibrosis was assessed by light microscopy.
- B) Total RNAs were isolated from NHLF cell stimulated with FBM, TGFβ, or TGFβ plus eupatilin for 48 hr or 72 hr and were subjected to real-time PCR analysis. Standard deviations were calculated from the results of three independent PCRs.

Figure 3. Differential effects of chemical moieties of the chromone scaffold on the antifibrotic capacity of CDs

A and C) Chromone scaffold and chemical moieties of eupatilin and ONGI300. The sole difference in the chemical moieties of these CDs is marked by a blue box. ONGHEPA1 cells were simultaneously stimulated with TGF β , TGF β plus eupatilin, or TGF β plus ONGI300 at the indicated doses. Anti-fibrotic capacities were observed by light microscopy.

B and E) Chromone scaffold and chemical moieties of ONGE200 (hispidulin) and ONGI200 (apigenin). C6, which is methoxylated, is indicated by a red letter. Hydroxy groups shared between these CDs are represented by a red box. ONGHEPA1 cells were simultaneously stimulated with TGF β , TGF β plus ONGE200, or TGF β plus ONGI300 at the indicated doses. Anti-fibrotic capacities were observed by light microscopy.

C and F) Chromone scaffold and chemical moieties of ONGA300 (jaceosidin) and ONGH300. The exclusively difference, methoxylation at C2, is indicated by a yellow letter. Methoxy and hydroxy groups shared between these CD members are represented by purple boxes. ONGHEPA1 cells were simultaneously stimulated with TGFβ, TGFβ plus ONGA300 or TGFβ plus ONGH200 at the indicated doses. Anti-fibrotic capacities were observed by light microscopy.

Figure 4. Structure-activity relationship of a selected group of chromone derivatives (CDs).

The structure-activity relationships of chromone compounds with similar chemical structures

are summarized. To determine their biological effects, ONGHEPA1 cells were treated with TGF β for 24 hr in the absence or presence of the indicated compounds. Anti-fibrotic activities were monitored by light microscopy. Three chromones (eupatilin, ONGE200, and ONGA300) exhibited anti-fibrotic activities. R1 and R2 are common in most chromones. Substitutions of R3 and R4 exhibit little toleration for their anti-fibrotic activities, suggesting that the functional groups are important for the anti-fibrotic effects mediated by chromone compounds. OMe, Methoxy group.

Figure 5. TGF^β stimulation is essential for the anti-fibrotic activity of selected CDs

- A) ONGHEPA1 cells were differentiated into myofibroblasts in the presence of medium, DMSO, eupatilin alone, TGFβ alone, or TGFβ plus eupatilin. Anti-fibrotic capacities were assessed by light microscopy.
- B) ONGHEPA1 cells were pre-stimulated with eupatilin for 2, 4, or 6 hr, washed, and then stimulated with TGFβ for 24 hr.
- C) ONGHEPA1 cells were stimulated for the indicated times with TGFβ, washed, and then stimulated with TGFβ plus eupatilin for 24 hr.

Figure 6. Reversal of fibrosis by selected CDs correlates with inhibition of EMT

 A) ONGHEPA1 cells were stimulated with TGFβ for 24 hr to achieve full differentiation of the fibroblasts. The cells were then washed and re-stimulated for 24 hr with TGFβ, TGFβ plus eupatilin, or TGFβ plus ONGE200. Morphological changes were observed by light microscopy.

B) ONGHEPA1 cells were stimulated with PDGF for 24 hr, washed, and re-stimulated for 24 hr with PDGF, PDGF plus eupatilin, or PDGF plus ONGE200.

C-D) Real-time PCR experiments were conducted using a set of TaqMan primers corresponding to *Coll1a1*, *Slit3* (slit homolog 3 Drosophila), *Axl* (receptor tyrosine kinase), *Postn* (periostin), *Fn1* (fibronectin 1) and *Aurka* (Aurora kinase). Standard deviations were calculated from the results of three independent PCRs.

Figure 7. Comparison of anti-fibrotic features between simultaneous and sequential stimulation with selected CDs

- A) Chromone scaffold and the dimethoxy residues of eupatilin are depicted by carbon numbers and a blue box, respectively. ONGHEPA1 cells were simultaneously stimulated for 24 hr with TGFβ or PDGF in the presence of eupatilin. Reversal of fibroblast morphology was observed under light microscope. ONGHEPA1 cells were sequentially stimulated for 24 hr with TGFβ, followed by re-stimulation for 24 hr with TGFβ or TGFβ plus eupatilin. Morphological changes were observed by light microscopy.
- B and C) ONGE200 and ONGA300 were employed for simultaneous and sequential stimulation described above for eupatilin.

Figure 8. An interactome generated by simultaneous stimulation of ONGHEPA1 cells

with TGF β and eupatilin reveals an EMT-related pathway

Total RNAs were isolated from TGF β -treated or TGF β plus eupatilin–treated ONGHEPA1 cells. One microgram of RNA from each ample was subjected to RNA-Seq, yielding a total of 60Gb of sequence, and gene interactions were established as described in Materials and Methods. Regulated genes were selected below p<0.05. Eight hubs are represented by colored boxes or ovals, and critical nodes are depicted as purple ovals.

Figure 9. Administration of eupatilin to bleomycin-treated mice significantly improves lung fibrosis

Bleomycin, vehicle, or various concentrations of eupatilin (5–40 μ g) were intratracheally injected into C57BL/6J mice for 12 days. Bleomycin injection gave a rise to fulminant fibrosis in all mice receiving the drug. Eupatilin was dissolved in DPBS buffer (containing 1% DMSO) and administered nasally for 6 days. Three mice per test group were selected, and their lung tissues were excised. The lung tissues were stained with Masson's trichrome and observed under a microscope. Blood leukocytes were isolated and counted.

Supplementary Figure Legends

Suppl. Fig. 1. (A) Lists of downregulated genes associated with EMT in eupatilin-treated osteoclasts. (B) Morphology of the mouse HSC line, ONGHEPA1. (phase-contrast microscopy; ×40 magnification, scale bars = 200 μ m). (C) Immunophenotype of ONGHEPA1. Immunofluorescence staining of GATA4 and Cytokeratin 18. Nuclei were counterstained with DAPI. (×200 magnification; scale bar = 500 μ m).

Suppl. Fig. 2. Phenotypic changes in ONGHEPA1 cells treated with TGFβ

Phase-contrast images of TGF β -treated ONGHEPA1 cells taken at the indicated time points during a 48-hr culture (×100 magnification).

Suppl. Fig. 3. Chemical synthesis of eupatilin

Eupatilin was synthesized in a seven-step synthesis and purified to homogeneity according to GLP standards. Selective benzylation of chrysin (1) followed by methylation gave protected chrysin (2). Base-mediated fragmentation of (2) yielded the acetophenone (3). The hydroxyl group was introduced by Elbs persulfate oxidation followed by methylation, and aldol condensation with 3,4-dimethoxybenzaldehyde afforded the chalcone (6). Cyclization of (6) using SeO₂ in refluxing isoamyl alcohol provided the flavone derivative (7), which upon deprotection of the benzyl group, followed by de-methylation, yielded eupatilin.

Suppl. Fig. 4. Phenotypic changes in ONGHEPA1 cells treated with PDGF

Phase-contrast images of PDGF-treated ONGHEPA1 cells, taken at the indicated time points during 24-hr culture (×100 magnification).

Suppl. Fig. 5 Inhibition of fibrogenesis of normal human lung fibroblasts (NHLF) by CDs.

NHLF cells (5X10⁶) were seeded in fibroblast growth medium (FBM), grown overnight, and stimulated with CDs or corresponding controls for 48 hr or 72hr

- A) NHLF cells were simultaneously stimulated with TGF β or TGF β plus eupatilin and were subjected to ICC using anti-human α smooth muscle actin.
- B) NHLF cells were simultaneously stimulated with PDGF or PDGF plus eupatilin (50μM), ONGE200 (50μM), or ONGA300 (10μM). Anti-fibrosis was assessed by light microscopy.
- C) Total RNAs were isolated from NHLF cell stimulated with FBM, PDGF or PDGF plus eupatilin for 48 hr or 72 hr and were subjected to real-time PCR analysis. Standard deviations were calculated from the results of three independent PCRs.
- B) **Suppl. Fig. 6** Real-time imaging of morphological changes of ONGHEPA1 cells upon stimulation with TGF β or simultaneous stimulation with TGF β plus eupatilin A) ONGHEPA1 cells were stimulated with TGF β and their differentiation was assessed by 24 hr real-time imaging. ONGHEPA1 cells were simultaneously stimulated with TGF β and eupatilin and anti-fibrosis was assessed for 24 hr. Frames were acquired

every 5 minutes for 24 hr using live-cell imaging.

Suppl. Fig. 7. Representation of the 34 CDs used in the anti-fibrotic assay

Groupings were established based on chemical moieties bonded to the chromone scaffold or linked to the adjacent phenyl group. Generic names are indicated by blue letters.

Suppl. Fig. 8-1 and 8-2. Representation of anti-fibrotic capacity exhibited by the 34 CDs

ONGHEPA1 cells were simultaneously stimulated with TGFβ or TGFβ plus each CD, and inhibition of fibrosis was assessed by phase-contrast microscopy. A blue circle represents ONGC200, which contains a methoxy group at C7. Concentration-dependent anti-fibrotic assay was conducted with ONGD400, which has a methoxy group at C2 and exhibits strong cytotoxicity. ONGH300 and ONGD400 are stereoisomers that differ by a hydroxy group and a methoxy group coupled to the phenyl group.

Suppl. Fig. 9-1 and 9-2, Anti-fibrotic capacities of the 34 CDs upon sequential stimulation of ONGHEPA1 cells with TGFβ+CDs

ONGHEPA1 were stimulated with TGF β for 24 hr, washed, and re-stimulated with the indicated CDs. Anti-fibrotic capacities were observed by light microscopy. Generic CDs are denoted by blue letters.

Suppl. Fig. 10-1 and 10-2. Anti-fibrotic capacities of the 34 CDs upon sequential stimulation of ONGHEPA1 with PDGF+CDs

ONGHEPA1 were stimulated with PDGF for 24 hr, washed, and re-stimulated with CDs. Antifibrotic capacities were observed by light microscopy. Generic CDs are denoted by blue letters.

Suppl. Fig. 11 Real-time imaging of morphological reversion of TGFβ-treated ONGHEPA1 cells after sequential stimulation with TGFβ and eupatilin

A) ONGHEPA1 cells were stimulated with TGF β for 48 hr and their differentiation was assessed by real-time imaging

B) ONGHEPA1 cells were stimulated with TGFβ for full differentiation into myofibroblasts for 24 hr, washed with PBS, and restimulated with TGFβ plus eupatilin for 24 hr. Anti-fibrosis was assessed with real-time imaging. Frames were acquired every 5 minutes for 24 hr using live-cell imaging.

Suppl. Fig. 12. Global gene expression changes between cells treated with TGF β and those treated with TGF β plus eupatilin

- A) Volcano plot. The x-axis represents fold change (log₂), and the y-axis depicts p-value.
- B) RNA-Seq analysis revealed that the total number of transcripts in unstimulated ONGHEPA1, TGFβ-stimulated ONGHEPA1, and TGFβ plus eupatilin–stimulated

ONGHEPA1 were 10,020, 10,030, and 10,028, respectively. TGF β -inducible and eupatilin-repressible genes are represented by a Venn diagram.

Suppl. Table 1. Changes in global gene expression and molecular targets upon simultaneous stimulation with TGFβ and eupatilin

ONGHEPA1 cells were simultaneously stimulated for 24 hr with TGF β or TGF β plus eupatilin. Total RNA was isolated and subjected to RNA-Seq. Sample correlation and Gene Ontology analyses were performed.

Suppl. Table 2. Changes in global gene expression and molecular targets upon sequential stimulation with TGFβ, followed by eupatilin

ONGHEPA1 cells were sequentially stimulated with TGF β for 24 hr, or TGF β for 24 hr followed by eupatilin for 24 hr. Total RNAs were isolated and subjected to RNA-Seq. Sample correlation and Gene Ontology analyses were performed.

Suppl. Table 3. TGFβ/eupatilin-regulated protein interactome

Eight major interactome hubs and major protein nodes are represented.

Suppl. Table 4. The 103 genes most strongly repressed by eupatilin treatment

The genes exhibiting maximal upregulation by TGF β but maximal downregulation by eupatilin are shown.

Suppl. Table 5. Experimental setup for the treatment of mice with bleomycin or bleomycin

bioRxiv preprint doi: https://doi.org/10.1101/106591; this version posted February 16, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

plus increasing amounts of eupatilin

2-(3,4-dimethoxyphenyl)-5,7-dihydroxy-6methoxy-4H-chromen-4-one (**Eupatilin**)

Non- treated	TGF-β	50μΜ	25μΜ	10µM

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-6-m ethoxy-4H-chromen-4-one (**ONGI300**)

Non- treated	TGF-β	50μΜ	25μΜ	10μΜ

B)

E)

5,7-dihydroxy-2-(4-hydroxyphenyl)-6-methoxy -4H-chromen-4-one (ONGE200) (Hispidulin)

Non- treated	TGF-β	50μΜ	25μΜ	10μΜ
		•		

5,7-dihydroxy-2-(4-hydroxyphenyl)-4H-chromen-4one (**ONGI200**)(**Apigenin**)

	· · ·		15 /	
Non- treated	TGF-β	50μΜ	25μΜ	10µM

c)

5,7-dihydroxy-2-(4-hydroxy-3-methoxyphenyl)-6-methoxy-4H-chromen-4-one

Non-	(ΟΝG)	\300)(Jace	osidin)	10μΜ
treated	TGF-β	50µМ	25µM	

3,6-dimethoxy-4H-chromen-4-one 5,7-dihydroxy-2-(4-hydroxy-3-methoxyphenyl (**ONGH300**)

Non- treated	TGF-β	50μΜ	25μΜ	10μΜ

		Compound	R1	R2	R3	R4	R5	R6	R7	Anti- Fibrosis
		Eupatilin	OH	OH	OMe	Н	Н	OMe	OMe	++++
		- ONGE200	OH	OH	OMe	Н	Н	OH	Н	+++
	Group A	ONGA300	OH	OH	OMe	Н	Н	OH	OMe	++
		- ONGI300	OH	OH	OMe	Н	OH	OH	Н	-
Rr	Г	- ONGG200	OH	OH	Н	Н	Н	Н	Н	-
		ONGF300	OH	OH	OMe	OMe	Н	Н	Н	-
		ONGH300	OH	OH	OMe	OMe	Н	OH	OMe	-
\sim R_6	Group P	ONGB400	OH	OH	OMe	Н	Н	OMe	Н	-
	Стопр в	ONGD400	OH	OH	OMe	OMe	Н	OMe	OH	-
		ONGA100	OH	OH	Н	OMe	Н	Н	Н	-
$R_1 C_7 $		ONGG100	OH	OH	Н	OH	Н	OH	OH	-
		ONGC300	OMe	OMe	OMe	Н	Н	OMe	Н	-
		ONGG300	OMe	OH	OMe	OMe	Н	OH	OH	-
		- ONGH100	OMe	ОН	ОН	Н	Н	Н	Н	-
$R_3 C_5 T_3 R_1$		ONGC200	OMe	ОН	OMe	Н	Н	ОН	Н	-
	Group C	ONGD200	OH	ОН	ОН	Н	Н	OMe	Н	-
R_2	Group C	ONGH200	OMe	ОН	OMe	Н	ОН	ОН	Н	-
, _		ONGE400	OMe	ОН	OMe	Н	Н	Н	Н	-
		- ONGG400	OMe	OMe	OMe	Н	Н	OMe	Н	-
		- ONGC100	OH	Н	Н	Н	Н	ОН	Н	-
		ONGE100	Н	OMe	ОН	Н	Н	Н	Н	-
		ONGF200	Н	Н	OMe	Н	Н	Н	Н	-
		ONGB300	OH	н	н	н	ОН	ОН	н	_
		ONGD300	Н	н	н	н	н	н	н	_
	Group D	ONGA400	OH	н	н	н	н	н	н	-
		ONGF400	н	ОН	н	н	н	н	н	_
		ONGE300	ОН	ОН	н	н	н	ОН	ОН	_
		ONGH400	н	н	н	н	н	OMe	н	_
		- Anigenin	ОН	ОН	н	н	н	ОН	н	
		- ONGR100	OH	OH	н	н	н	н	н	
		ONGR200	OH	OH	н	OMe	н	ОН	н	_
		ONGA200	OMe	OH	н	OMe	OMe	OMe	ОН	_
	Group E	ONGD100	OH	OH	н	OH	OH	OH	OH	
		ONGE100	OH	아버	н	OH	н	04	н	_
		ONCC400	OMa	OMa	н ц	UI U	н ц	OMa	014	-
		- UNGC400	Owle	Owle	п	п	п	Owie	Owie	-

B) Eupatilin -2hr TGFβ

Eupatilin -4hr TGF β

Eupatilin-6hr TGFβ

C)

TGF β -1hr Eupatilin

TGF β -3hr Eupatilin

TGFβ -6hr Eupatilin

TGF β -9hr Eupatilin

TGF β -12hr Eupatilin

A)

No.	Description (Abbreviation)	Log2fc	p-value
1	Myosin IB (Myo1b)	-4.73	0.00005
2	Sphingosine kinase 1 (Sphk1)	-inf	0.00005
3	Myosin ID (Myo1d)	-6.27	0.00005
4	Jun dimerization protein 2 (Jdp2)	-4.23	0.00005
5	Scinderin (Scin)		0.00005
6	Matrix metallopeptidase 14		0.00005
7	Collagen Tripe helix repeat containing 1 (Cthrc1)	-inf	0.00005
8	Mesothelin (Msln)	-inf	0.00005
9	Desmoglein2 (Dsg2)	-inf	0.00005
10	Very Low Density Lipoprotein receptor (VIdIr)	-inf	no
11	Rous sarcoma oncogene (Src)	-5.04	0.00005
12	RAS guanyl releasing protein 1 (Rasgrp1)	-5.92	0.00005
13	Tropomyosin2 (Tpm2)	-inf	0.00005
14	Basic helix-loop-helix family, member e40 (Bhlhe40)	-3.25	0.00005
15	Integrin beta 3 (Itgb3)	-4.36	0.0001
16	Adhesin G protein-coupled receptor V1 (Adgrv1)	-inf	0.0001
17	Claudin 11 (Cldn11)	-inf	0.0001
18	Fos-like antigen2 (Fosl2)	-3.85	0.0002
19	PR domain containing 1, with ZNF domain (Prdm1)	-4.52	0.00025
20	Syndecan 1 (Sdc1)	-2.87	0.00035
21	Growth hormone receptor (Ghr)	-5.36	0.00035
22	Cadherin, EGF LAG seven-pass G-type receptor 1 (Celsr1)	-inf	0.00035
23	Spinster homolog 2 (Spns2)	-5.95	0.00045
24	CD74 antigen (invariant polypeptide of major histocompatibility comp les, class II antigen-associated, Cd74)	-3.71	0.00045

B)

C)

GATA4/DAPI

Cytokeratin18/DAPI

Simultaneous stimulation with TGF β and CD members 24hrs

Name	Structure	TGF treat 전	TGF treat 24 hr	Name	Structure	TGF treat 전	TGF treat 24 hr
2-(3,4-dimethoxyphenyl)-5,7-d ihydroxy-6- methoxy-4H-chromen-4-one (ONG2)(Eupatilin)				5-hydroxy-2-(3-hydroxy-4,5- dimethoxyphenyl)-3,7- dimethoxy-4H-chromen-4-one (ONGA200)			
5,7-dihydroxy-3,8-dimethoxy- 2-phenyl-4H-chromen-4-one (ONGA100)				5,7-dihydroxy-2-(4- hydroxyphenyl)-3-methoxy- 4H-chromen-4-one (ONGB200)	H H H H H H H		
5,7-dihydroxy-8-methoxy-2- phenyl-4H-chromen-4-one (ONGB100)(Wogonin)	H O O O O O O O O O O O O O O O O O O O			5-hydroxy-2-(4- hydroxyphenyl)-6,7- dimethoxy-4H-chromen-4-one (ONGC200)	o o o o o o o o o o o o o o o o o o o		
7-hydroxy-2-(4- hydroxyphenyl)-4H-chromen- 4-one (ONGC100)	H O U U U U U U U U U U U U U U U U U U			5,6,7-trihydroxy-2-(4- methoxyphenyl)-4H-chromen- 4-one (ONGD200)	H ^O , O, O		
3,5,7-trihydroxy-2-(3,4,5- trihydroxyphenyl)-4H- chromen-4-one (ONGD100)(Myricetin)				5,7-dihydroxy-2-(4- hydroxyphenyl)-6-methoxy- 4H-chromen-4-one (ONGE200) (Hispidulin)	H ^O OOO		
6-hydroxy-5-methoxy-2- phenyl-4H-chromen-4-one (ONGE100)	H-0-0-0			6-methoxy-2-phenyl-4H- chromen-4-one (ONGF200)			
3,5,7-trihydroxy-2-(4- hydroxyphenyl)-4H-chromen- 4-one (ONGF100)				5,7,8-trihydroxy-2-phenyl-4H- chromen-4-one (ONGG200)	H~0 H~0		
2-(3,4-dihydroxyphenyl)-3,5,7- trihydroxy-6-methyl-4H- chromen-4-one (ONGG100)(Quercetin-like)	H,OO H H,OO H			2-(3,4-dihydroxyphenyl)-5- hydroxy-6,7-dimethoxy-4H- chromen-4-one (ONGH200)	о н ^о н ^о		
5,6-dihydroxy-7-methoxy-2- phenyl-4H-chromen-4-one (ONGH100)				5,7-dihydroxy-2-(4-hydroxy-3- methoxyphenyl)- 6-methoxy-4H-chromen-4-one (ONGA300)(Jaceosidin)			

Simultaneous stimulation with TGF β and CD members 24hrs

Name	Structure	TGF treat 전	TGF treat 24 hr	Name	Structure	TGF treat 전	TGF treat 24 hr
2-(3,4-dihydroxyphenyl)-5,7- dihydroxy-6-methoxy-4H- chromen-4-one (ONGI300)				7-hydroxy-2-phenyl-4H- chromen-4-one (ONGA400)	H ^O CO		
2-(3,4-dihydroxyphenyl)-7- hydroxy-4H-chromen-4-one (ONGB300)(Luteolin-like)	H ^Q C C C C C C C C C C C C C C C C C C C			5,7-dihydroxy-6,8-dimethoxy- 2-(4-methoxyphenyl)-4H- chromen-4-one (ONGB400)			
5,6,7,8-tetramethoxy-2-(4- methoxyphenyl)-4H-chromen- 4-one (ONGC300)				2-(3,4-dimethoxyphenyl)- 5,7,8-trimethoxy-4H-chromen- 4-one (ONGC400)			
2-(2-methoxyphenyl)-4H- chromen-4-one (ONGD300)				5,7-dihydroxy-2-(3-hydroxy-4- methoxyphenyl)-3,6- dimethoxy-4H-chromen-4-one (ONGD400)	н. ⁰ , 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,		
5,7-dihydroxy-2-(2,3,4- trihydroxyphenyl)-4H- chromen-4-one (ONGE300)				5-hydroxy-6,7-dimethoxy-2- phenyl-4H-chromen-4-one (ONGE400)			
5,7-dihydroxy-3,6-dimethoxy- 2-phenyl-4H-chromen-4-one (ONGF300)	H ^O O			5-hydroxy-2-phenyl-4H- chromen-4-one (ONGF400)			
2-(3,4-dihydroxyphenyl)-5- hydroxy-3,6,7-trimethoxy-4H- chromen-4-one (ONGG300)	NO OF OF			5,6,7-trimethoxy-2-(4- methoxyphenyl)-4H-chromen- 4-one (ONGG400)			
5,7-dihydroxy-2-(4-hydroxy-3- methoxyphenyl)-3,6- dimethoxy-4H-chromen-4-one (ONGH300)	H ^O O O			2-(4-methoxyphenyl)-4H- chromen-4-one (ONGH400)			
DMEM only				TGF-b only			

5,7-dihydroxy-2-(3-hydroxy-4-methoxyphenyl)-3,6-dimethoxy-4H-chromen-4-one (**ONGD400**)

Non- treated	TGF-β	50μΜ	25μΜ	10μΜ

sequential stimulation with TGF β and CD members

Name	Structure	TGF-b treat 전	TGF-b treat 24 hr	Analogue treat 24 hr	Name	Structure	TGF-b treat 전	TGF-b treat 24 hr	Analogue treat 24 hr
2-(3,4-dimethoxyphenyl)-5,7-d ihydroxy-6- methoxy-4H-chromen-4-one (ONG2)(Eupatilin)	H ⁰ O				5-hydroxy-2-(3-hydroxy-4,5- dimethoxyphenyl)-3,7- dimethoxy-4H-chromen-4-one (ONGA200)				
5,7-dihydroxy-3,8-dimethoxy- 2-phenyl-4H-chromen-4-one (ONGA100)					5,7-dihydroxy-2-(4- hydroxyphenyl)-3-methoxy- 4H-chromen-4-one (ONGB200)	H-0 C C C C C C C C C C C C C C C C C C C			
5,7-dihydroxy-8-methoxy-2- phenyl-4H-chromen-4-one (ONGB100)(Wogonin)					5-hydroxy-2-(4- hydroxyphenyl)-6,7- dimethoxy-4H-chromen-4-one (ONGC200)	e e e e e e e e e e e e e e e e e e e			
7-hydroxy-2-(4- hydroxyphenyl)-4H-chromen- 4-one (ONGC100)	Ч сстороти о				5,6,7-trihydroxy-2-(4- methoxyphenyl)-4H-chromen- 4-one (ONGD200)	H ^O HO HO HO HO HO HO HO HO HO HO HO HO HO H			
3,5,7-trihydroxy-2-(3,4,5- trihydroxyphenyl)-4H- chromen-4-one (ONGD100)(Myricetin)					5,7-dihydroxy-2-(4- hydroxyphenyl)-6-methoxy- 4H-chromen-4-one (ONGE200) (Hispidulin)	H ^O O H ^O O H ^O O			
6-hydroxy-5-methoxy-2- phenyl-4H-chromen-4-one (ONGE100)	H _{vo} C V				6-methoxy-2-phenyl-4H- chromen-4-one (ONGF200)				
3,5,7-trihydroxy-2-(4- hydroxyphenyl)-4H-chromen- 4-one (ONGF100)	H-0 0 H				5,7,8-trihydroxy-2-phenyl-4H- chromen-4-one (ONGG200)	H-0 - H H-0 - H H-0 0			
2-(3,4-dihydroxyphenyl)-3,5,7- trihydroxy-6-methyl-4H- chromen-4-one (ONGG100)(Quercetin-like)					2-(3,4-dihydroxyphenyl)-5- hydroxy-6,7-dimethoxy-4H- chromen-4-one (ONGH200)				
5,6-dihydroxy-7-methoxy-2- phenyl-4H-chromen-4-one (ONGH100)					5,7-dihydroxy-2-(4-hydroxy-3- methoxyphenyl)- 6-methoxy-4H-chromen-4-one (ONGA300)(Jaceosidin)	H P H H O H O O H			Suppl

sequential stimulation with TGFβ and CD members

Name	Structure	TGF-b treat 전	TGF-b treat 24 hr	Analogue treat 24 hr	Name	Structure	TGF-b treat 전	TGF-b treat 24 hr	Analogue treat 24 hr	
2-(3,4-dihydroxyphenyl)-5,7- dihydroxy-6-methoxy-4H- chromen-4-one (ONGI300)	H ^O OO				7-hydroxy-2-phenyl-4H- chromen-4-one (ONGA400)	H O O				
2-(3,4-dihydroxyphenyl)-7- hydroxy-4H-chromen-4-one (ONGB300)(Luteolin-like)					5,7-dihydroxy-6,8-dimethoxy- 2-(4-methoxyphenyl)-4H- chromen-4-one (ONGB400)					
5,6,7,8-tetramethoxy-2-(4- methoxyphenyl)-4H-chromen- 4-one (ONGC300)					2-(3,4-dimethoxyphenyl)- 5,7,8-trimethoxy-4H-chromen- 4-one (ONGC400)					
2-(2-methoxyphenyl)-4H- chromen-4-one (ONGD300)					5,7-dihydroxy-2-(3-hydroxy-4- methoxyphenyl)-3,6- dimethoxy-4H-chromen-4-one (ONGD400)	H-0-0-0-0- H-0-0-0-0-0- H-0-0-0-0-0-0-0-				
5,7-dihydroxy-2-(2,3,4- trihydroxyphenyl)-4H- chromen-4-one (ONGE300)	H ^Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q				5-hydroxy-6,7-dimethoxy-2- phenyl-4H-chromen-4-one (ONGE400)					
5,7-dihydroxy-3,6-dimethoxy- 2-phenyl-4H-chromen-4-one (ONGF300)	H ^O H ^O H ^O O				5-hydroxy-2-phenyl-4H- chromen-4-one (ONGF400)					
2-(3,4-dihydroxyphenyl)-5- hydroxy-3,6,7-trimethoxy-4H- chromen-4-one (ONGG300)		e			5,6,7-trimethoxy-2-(4- methoxyphenyl)-4H-chromen- 4-one (ONGG400)					
5,7-dihydroxy-2-(4-hydroxy-3- methoxyphenyl)-3,6- dimethoxy-4H-chromen-4-one (ONGH300)	H ^O O O O				2-(4-methoxyphenyl)-4H- chromen-4-one (ONGH400)					
DMEM only					TGF-b only			A CAR	Suppl	ementary Fi

sequential stimulation with PDGF and CD members

Name	Structure	PDGF treat 전	PDGF treat 24 hr	Analogue treat 24 hr	Name	Structure	PDGF treat 전	PDGF treat 24 hr	Analogue treat 24 hr
2-(3,4-dimethoxyphenyl)-5,7-d ihydroxy-6- methoxy-4H-chromen-4-one (ONG2)(Eupatilin)					5-hydroxy-2-(3-hydroxy-4,5- dimethoxyphenyl)-3,7- dimethoxy-4H-chromen-4-one (ONGA200)	H H H			
5,7-dihydroxy-8-methoxy-2- phenyl-4H-chromen-4-one (ONGB100)(Wogonin)					5,7-dihydroxy-2-(4- hydroxyphenyl)-3-methoxy- 4H-chromen-4-one (ONGB200)	H-0 H-0 H-0 H-0 H			
7-hydroxy-2-(4- hydroxyphenyl)-4H-chromen- 4-one (ONGC100)					5-hydroxy-2-(4- hydroxyphenyl)-6,7- dimethoxy-4H-chromen-4-one (ONGC200)				
3,5,7-trihydroxy-2-(3,4,5- trihydroxyphenyl)-4H- chromen-4-one (ONGD100)(Myricetin)					5,6,7-trihydroxy-2-(4- methoxyphenyl)-4H-chromen- 4-one (ONGD200)	H ^O HO HO H ^O O			
6-hydroxy-5-methoxy-2- phenyl-4H-chromen-4-one (ONGE100)	H _{NO}				5,7-dihydroxy-2-(4- hydroxyphenyl)-6-methoxy- 4H-chromen-4-one (ONGE200) (Hispidulin)	H ^O H ^O H ^O H ^O O			
3,5,7-trihydroxy-2-(4- hydroxyphenyl)-4H-chromen- 4-one (ONGF100)					6-methoxy-2-phenyl-4H- chromen-4-one (ONGF200)				
2-(3,4-dihydroxyphenyl)-3,5,7- trihydroxy-6-methyl-4H- chromen-4-one (ONGG100)(Quercetin-like)	H, O, O, H H, O, O, H H, O, O, H				5,7,8-trihydroxy-2-phenyl-4H- chromen-4-one (ONGG200)	н, о, , , , , , , , , , , , , , , , , ,			
5,6-dihydroxy-7-methoxy-2- phenyl-4H-chromen-4-one (ONGH100)					2-(3,4-dihydroxyphenyl)-5- hydroxy-6,7-dimethoxy-4H- chromen-4-one (ONGH200)				
					5,7-dihydroxy-2-(4-hydroxy-3- methoxyphenyl)- 6-methoxy-4H-chromen-4-one (ONGA300)(Jaceosidin)				Supple

sequential stimulation with PDGF and CD members

Name	Structure	PDGF treat 전	PDGF treat 24 hr	Analogue treat 24 hr	Name	Structure	PDGF treat 전	PDGF treat 24 hr	Analogue treat 24 hr	
2-(3,4-dihydroxyphenyl)-5,7- dihydroxy-6-methoxy-4H- chromen-4-one (ONGI300)	H ^O O				7-hydroxy-2-phenyl-4H- chromen-4-one (ONGA400)	носос				
2-(3,4-dihydroxyphenyl)-7- hydroxy-4H-chromen-4-one (ONGB300)(Luteolin-like)					5,7-dihydroxy-6,8-dimethoxy- 2-(4-methoxyphenyl)-4H- chromen-4-one (ONGB400)	H O O				
5,6,7,8-tetramethoxy-2-(4- methoxyphenyl)-4H-chromen- 4-one (ONGC300)					2-(3,4-dimethoxyphenyl)- 5,7,8-trimethoxy-4H-chromen- 4-one (ONGC400)					
2-(2-methoxyphenyl)-4H- chromen-4-one (ONGD300)					5,7-dihydroxy-2-(3-hydroxy-4- methoxyphenyl)-3,6- dimethoxy-4H-chromen-4-one (ONGD400)	H-0 H-0 H-0 H-0 H-0 H-0 H-0 H-0 H-0 H-0			s	
5,7-dihydroxy-2-(2,3,4- trihydroxyphenyl)-4H- chromen-4-one (ONGE300)	H ^A A A A A A A A A A A A A A A A A A A				5-hydroxy-6,7-dimethoxy-2- phenyl-4H-chromen-4-one (ONGE400)	, о , , о , , , , , , , , , , , , , , ,				
5,7-dihydroxy-3,6-dimethoxy- 2-phenyl-4H-chromen-4-one (ONGF300)	H ^O O H ^O O				5-hydroxy-2-phenyl-4H- chromen-4-one (ONGF400)					
2-(3,4-dihydroxyphenyl)-5- hydroxy-3,6,7-trimethoxy-4H- chromen-4-one (ONGG300)	Ho C C C C C C C C C C C C C C C C C C C				5,6,7-trimethoxy-2-(4- methoxyphenyl)-4H-chromen- 4-one (ONGG400)					
5,7-dihydroxy-2-(4-hydroxy-3- methoxyphenyl)-3,6- dimethoxy-4H-chromen-4-one (ONGH300)	HO O O O				2-(4-methoxyphenyl)-4H- chromen-4-one (ONGH400)					
DMEM only					PDGF only				Supplementa	ry Figure.

$TGF\beta 24h$

$TGF\beta$ 24h + Eupatilin 24h

A)

B)

Simultaneous stimulation

	Non treated control	TGF-β	Euptilin
Non treated control	-	0.805	0.854
TGF-β	0.805	-	0.901
Eupatilin	0.854	0.901	-

A) Sample correlation

B) GO (Gene Ontology) enrichment

No.	Name	# DEG	# GO	Molecular function	Biological function	Cellular component
1	Non treated control vs TGF- β	1886	7427	57 / 1208 (4.7 %)	228 / 5589 (4.8 %)	42 / 630 (6.7 %)
2	TGF-β vs Eupatilin	1952	7301	56 / 11161 (4.8 %)	160 / 5481 (2.9 %)	46 / 659 (7.0 %)
3	Eupatilin vs Non treated control	800	6424	22 / 987 (2.2 %)	263 / 4939 (5.3 %)	24 / 498 (4.8 %)

Sequential stimulation

A) Sample correlation

	Non treated control		TGF-β	Eupatilin
Non treated control	-		0.977	0.810
TGF-β	0.977		-	0.865
Eupatilin	0.810	0.854		-

B) GO (Gene Ontology) enrichment

No.	Name	# DEG	# GO	Molecular function	Biological function	Cellular component
1	Non treated control vs TGF- β	563	5628	31 / 751 (4.1 %)	436 / 4444 (9.8 %)	34 / 433 (7.9 %)
2	TGF-β vs Eupatilin	1244	5936	84 / 964 (8.7 %)	431 / 4431 (9.7 %)	111 / 541 (20.5 %)
3	Eupatilin vs Non treated control	1281	6039	79 / 962 (8.2 %)	378 / 4483 (8.4 %)	109 / 594 (18.4 %)

NO.	Function	Genes	NO.	Function	Genes
I.	Cytoskeletal proteins Hub	TNNI1 & TNNI2 Tm2 TAGLN ACTA2 MYH9 & MYH11 LMOD1 ACTG2 LAMA4	v .	CD44 relation proteins Hub	Cd44 Hyou1 Ncam CALR Irgm1 Parp4 Parp9 Pdia4 & Pdia6
Ш.	Collagen proteins Hub	COL4A5 & COL4A6 COL5A1 & COL5A3 COL6A3 COL8A1 & COL8A5 Col11a1 COL12A1 COL15A1	VI.	Fibrillin proteins Hub	Efemp2 Fbn5 Fbn2 Ein Fbn1
III .	Cell cycle proteins Hub-1	CCNB1 Gadd45a CCNF ASPM Nek2 OPTN	VII.	Transforming Growth Factor Beta 2 proteins Hub	Rora Npas2 Serpine1 Tgfb2 Figf
IV.	Cell cycle proteins Hub-2	CCND1 CDK14 C-Fos Junb CCL2 CCL7	VIII.	Semaphorin & Vldr acceptor proteins hub	PLXND1 SEMA3E SEMA3A NRP1 LDLR Ngf

Major network nods of TGFβ-Eupatilin Interactome Genes

NO.	Genes
1	Integrin β3
2	Integrin a1
3	Integrin β4
4	Protein kinase Ca
5	Lef1
6	Slug
7	Cadherin1 (=E-Cadherin)
8	Adenylate cyclase 9
9	Spp1 (= Osteopointin)
10	Fibrilin1
11	Dedicator of cytokinesis 1 (Dock1)
12	Syk2
13	Notch4

Eupatilin-repressible genes

NO.	Description (Abbreviation)	Log2fc	p-value
1	Actin, gamma2 (Actg2)	-5.83	0.00005
2	Periostin (Postn)	-4.92	0.00005
3	Collagen, type XI, alpha 1 (Col11a1)	-3.11	0.00005
4	Fibronectin 1 (Fn1)	- infinite	0.0002
5	Thrombospondin, type I domain containing 7A (Thsd7a)	-5.06	0.0002
6	TraB domain containing 2B (Trabd2b)	-2.75	0.0003
7	Collagen type XV, alpha 1 (Col5a1)	-2.26	0.00055
8	Slit homolog 3 (Slit3)	-3.65	0.00065
9	Cell migration inducing protein, hyaluronan biding (Cemip)	-2.75	0.00095
10	Inhibition beta-A (Inhba)	-2.19	0.0015
11	Spectrin alpha, erythrocytic 1 (Spta1)	-4.01	0.00165
12	Exocyst complex component 4 (Exoc4)	-2.9	0.0019
13	A disintegrin-like and metallopeptidase with thrombospondin type 1 motif 12 (Adamts12)	-2.09	0.0025
14	Ephrin B2 (Efnb2)	-1.92	0.0038
15	c-fos induced growth factor (Figf)	-2.49	0.0044
16	Elastin (Eln)	-3.28	0.00555
17	Heparan sulfate 6-O-sulfotransferase 2 (Hs6st2)	-3.26	0.0056
18	Perlecan (Heparan sulfate proteoglycan2) (Hspg2)	- infinite	0.0057
19	Tubulin-specific chaperone d (Tbcd)	-2.11	0.00595
20	Natriuretic peptide receptor 3 (Npr3)	-2.82	0.00675
21	Serin (or cysteine) peptidase inhibitor, clade F, member 1 (Serpinf1)	-1.99	0.00685
22	TLC domain-containing protein 2 (Tlcd2)	- infinite	0.0074
23	Fras 1 related extracellular matrix protein 1 (Frem1)	-2.36	0.0075
24	Caldesmon 1 (Cald1)	- infinite	0.0074
25	Lysyl oxidase-like 2 (LoxI2)	-1.93	0.0078
26	Tissue inhibitor of metalloproteinase 3 (Timp3)	- infinite	0.00785
27	Collagen, type III, alpha 1 (Col3a1)	- infinite	0.0083
28	Protein disulfide isomerase associated 6 (Pdia6)	-1.85	0.00835
29	Pleiotrophin (Ptn)	-2.06	0.00875
30	Prostate androgen-regulated mucin-like protein 1 (Parm1)	-1.57	0.01225
31	Dihydropyrimidinase-like 3 (Dpysl3)	- infinite	0.0138
32	Collagen, type XII, alpha 1 (Col12a1)	-2.02	0.01435
33	Crystallin, zeta (quinone reductase)-like 1 (Cryzl1)	- infinite	0.01475
34	Calumenin (Calu)	- infinite	0.015
35	Follistatin-like 1 (Fstl1)	- infinite	0.0156
36	Vinculin (Vcl)	- infinite	0.01575
37	Cyclin D2 (Cend2)	-2.29	0.01585
38	A disintegrin-like and metallopeptidase (reprolysin type) with thrombospondin type 1 motif 2	-2.08	0.1685
39	Dysferlin (Dysf)	-2.06	0.01765
40	Olfactomedin 2 (Olfm2)	-1.9	0.01845
41	Ubiquitin-like modifier activating enzyme 1 (Uba1)	- infinite	0.01855
42	Leprecan 1 (Lepre1)	-1.75	0.01865
43	Prosaposin (Psap)	- infinite	0.01875
44	Latent transforming growth factor beta binding protein 1 (Ltbp1)	-3.32	0.01985
45	Spectrin beta, non-erythrocytic 1 (Sptbn1)	- infinite	0.02
40	Palladin, cytoskeietai associated protein (Palld)	- infinite	0.02005
4/	Protein FAM 53B (Fam53D)	- infinite	0.02015
40	Laveoin 1, Laveoiae protein (Lav1)	-1./0	0.02025
45	NISCIIATIII (NISCII)	A 75	0.02075
51	Tenerus y e in domain containing 1 (Fide1)	-1./5	0.02105
57	Purchaser fin like kinese (10/1/4)	- minite	0.02145
32	Doublecorun-like killase 1 (DCik1)	-1.54	0.025

53 Actin alpha 4 (Actn4) - infinite 0.0255 54 Colony stimulating factor 1 (macrophage) (Csff) -2.15 0.0255 55 Tenascin C (Thc) -5.1 0.0255 56 Intersectin 1 (SH3 domain protein 1A) (Itsn1) - infinite 0.0263 57 Transforming, acidic colled-coll containing protein 2 (Tacc2) - infinite 0.0275 59 C-terrminal-binding protein 2 (Cbp2) - infinite 0.0277 59 Extrastinal social domain containing 19 (Pad3) - infinite 0.0276 50 Extrastinal growth factor-containing fibulin-like extracellular matrix protein 2 (Efemp2) - infinite 0.0306 50 Ext-domain containing 2 (Ehd2) - infinite 0.0304 54 Coatomer protein complex, subunit gamma 1 (Cogp1) - infinite 0.0334 56 Unregrin beta 5 (tlgbb) - 2.05 0.0311 57 Interleakin 47 receptor accessory protein (IfRap) - 4.64 0.0334 58 Unregrin beta 5 (tlgbb) - infinite 0.03376 59 Collagen tysin al, cocalutarate 5-dioxygenase 2 (Tink2) - infinite 0.03376 50 Millama A,	NO.	Description (Abbreviation)	Log2fc	p-value
54 Colony stimulating factor 1 (macrophage) (Cs11) -2.16 0.02575 55 Transforming, acidic colled-col containing protein 2 (Tacc2) -infinite 0.02675 57 Transforming, acidic colled-col containing protein 2 (Tacc2) -infinite 0.02675 58 Pleckstrin and sec? domain containing 16001 -infinite 0.02675 59 C-terminal-binding protein 2 (Cbp2) -infinite 0.02776 60 Heat shock protein 20 (Cbp2) -infinite 0.0276 61 Septing (Sept2) -infinite 0.03025 62 Epidermal growth factor-containing fibulin-like extracellular matrix protein 2 (Efemp2) -i.66 0.03025 63 Bt-domain containing 2 (Ebd2) -i.66 0.03025 64 Coatomer protein complex, subunit gamma 1 (Copg1) -infinite 0.0331 65 V-myc myelocytomatosis vira related oncogene, neuroblastoma derived (Mycn) -2.05 0.0311 66 Coatomer derion comosome reion 17 homolog (Wbscr17) -2.85 0.0332 67 Interleukin 40 reception accessory protein (If48rap) -infinite 0.0332 68 Collagen type 1 alpha 1 (Col141) -infinite 0.0332	53	Actin alpha 4 (Actn4)	- infinite	0.0241
65 Tenascin C (Tnc) -5.1 0.02757 65 Intersectin 1 (SiX domain protein 1A) (Itsn1) -infinite 0.0283 75 Transforming, acidic colled-coll containing protein 2 (Tacc) -infinite 0.0285 76 Picekstrin and sec7 domain containing 3 (Psd3) -4.43 0.0276 76 Heat shock protein 90, alpha (cytosolic), class A member 1(Hsp90as1) -infinite 0.02975 77 Heat shock protein 90, alpha (cytosolic), class A member 1(Hsp90as1) -infinite 0.02975 76 Eth-domain containing 7 (End2) -infinite 0.02975 76 Eth-domain containing 2 (End2) -infinite 0.03025 76 Collagen type (alpha (cytosocy protein (IItSrap) -infinite 0.03025 76 Collagen type (alpha (cytosocy protein (IItSrap) -infinite 0.0332 76 Vertice my collocatacte 5 - doxygen euroblastoma derived (Mycn) -2.05 0.0314 77 Tankyrase, TBF1-interacting ankyrin-related ADP-rebose polymerase 2 (Tinks2) -infinite 0.0332 77 Intergin beta 5 (Itg95) -infinite 0.0345 0.0355 78 Procollagen-tyreine. 2-axoglutarate 5-dioxygenase 2 (Tinks2)<	54	Colony stimulating factor 1 (macrophage) (Csf1)	-2.15	0.02535
56 Intersectin 1 (SN3 domain protein 1A) (Itsn1) - infinite 0.0267 57 Transforming, acidic solide-coli containing 3 (Psd3) - 4.43 0.0276 59 C-terminal-binding protein 2 (ICbp2) - infinite 0.0277 16 as abock protein 30, alpha (cytosolic), class A member 1(Hsp90as1) - infinite 0.0275 51 Epidermal growth factor-containing fibulin-like extracellular matrix protein 2 (Efemp2) - 1.66 0.03005 52 Epidermal growth factor-containing 2 (Ehd2) - infinite 0.0305 54 Coatomer protein complex, subunit gamma 1 (Copg1) - infinite 0.0305 56 Lethal giant larxe homolog 1 (Lig11) - infinite 0.0314 67 Interleukin 18 receptor accessory protein (1187ap) - 4.68 0.0332 68 Willians-Beuren syndrome chromosome rein 17 homolog (Wbscr17) - 2.83 0.0335 71 Intergrowtha 1 (Colta1) - infinite 0.0342 72 Tankyrase, TRF1-interacting ankyrin-related ADP-rebose polymerase 2 (Tnks2) - infinite 0.0342 73 Integrowthas 5 (Rtgb5) - infinite 0.0342 74 Tankyrase, TRF1-internactrifion factor-associated (Bta	55	Tenascin C (Tnc)	-5.1	0.02575
97 Transforming, acidic colled-coil containing protein 2 (Tacc2) -infinite 0.0275 98 PiceKstrin and sec7 domain containing 3 (Psd3) -i.4.3 0.0275 90 C-terminal-binding protein 2 (Ctbp2) -infinite 0.0276 91 Beta thock protein 90, alpha (cytosolic), class A member 1(Hsp90aa1) -infinite 0.0296 92 Epidemail growth factor-containing fibulin-like extracellular matrix protein 2 (Efemp2) -1.66 0.03005 92 Echdomain containing 2 (Ehd2) -infinite 0.03265 93 Echdomain containing 2 (Ehd2) -infinite 0.03025 94 Echadomain containing 2 (Ehd2) -infinite 0.03025 94 Echadomain containing 2 (Ehd2) -infinite 0.03025 94 Interleakin 18 receptora accessory protein (Ilf3rap) -infinite 0.0332 95 Collagen type 1 alpha 1 (Colf31) -1.64 0.0332 96 Willians-Beuren syndrome chromosome reion 17 homolog (Wbscr17) -2.83 0.0332 97 Intergin beta 5 (tfb5) -infinite 0.0334 97 Procollagen-Lynic-Zooglutarate 6-doxygenase 2 (Toks2) -infinite 0.0355 <tr< td=""><td>56</td><td>Intersectin 1 (SH3 domain protein 1A) (Itsn1)</td><td>- infinite</td><td>0.0263</td></tr<>	56	Intersectin 1 (SH3 domain protein 1A) (Itsn1)	- infinite	0.0263
58 Pleckstrin and sec7 domain containing 3 (Pad3) -infinite 0.0275 59 C-terminal-binding protein 3 (Ctbp2) -infinite 0.0276 61 Septin2 (Sept2) -infinite 0.0276 62 Epidermal growth factor-containing fibulin-like extracellular matrix protein 2 (Efemp2) -infinite 0.02976 63 EP-domain containing 2 (Ehd2) -infinite 0.03025 64 Coatomer protein complex, subunit gamma 1 (Copg1) -infinite 0.03025 65 Coatomer protein complex, subunit gamma 1 (Copg1) -infinite 0.03025 66 Lethal giant larxee homolog 1 (Lig11) -infinite 0.03325 67 Interleukin 18 receptor accessory protein (IftSrap) -i.63 0.03325 68 Collagen type 1 alpha 1 (Col141) -infinite 0.0332 71 Intergrin beta 5 (ttgb5) -infinite 0.0342 72 Tankyrase, TRF1-interacting ankrin-related ADP-rebose polymerase 2 (Tnks2) -infinite 0.0325 73 BTAF1 RNA polymerase I, B-TRID transcription factor-associated (Btaf1) -infinite 0.0325 74 BTAF1 RNA polymerase I, B-TRID transcription factor-associated (Btaf1) -infinite<	57	Transforming, acidic coiled-coil containing protein 2 (Tacc2)	- infinite	0.0267
59 C-terminal-binding protein 2 (Ctbp2) -infinite 0.0277 64 Septin2 (Sept2) -infinite 0.0277 62 Epidermal growth factor-containing fibulin-like extracellular matrix protein 2 (Efemp2) -infinite 0.0277 63 End-Gmain containing 2 (End2) -infinite 0.0276 64 Coatomer protein complex, subunit gamma 1 (Copg1) -infinite 0.03045 65 V-myc myelocytomatosis viral related oncogene, neuroblastoma derived (Mycn) -2.05 0.031 66 Lethal giant larvae homolog 1 (Ligi1) -infinite 0.0322 67 Willians-Beuren syndrome chromosome reion 17 homolog (Wbscr17) -2.83 0.03325 68 Willians-Beuren syndrome chromosome reion 17 homolog (Wbscr17) -1.64 0.0334 70 Synaptopodin (Synpo) -infinite 0.0325 71 Integrin beta 1 (Colta1) -infinite 0.0342 72 Tankyrase, TRR-1-Interacting ankyrin-related ADP-rebose polymerase 2 (Tnks2) -infinite 0.0352 74 Integrin beta 3 (ftgb5) -infinite 0.0356 034 055 74 BTAF1 RIA polymerese II, B-FTBI Otarsoriptin factor-as sociated (Btaf1)	58	Pleckstrin and sec7 domain containing 3 (Psd3)	-1.43	0.0275
60 Heat shock protein 90, ajpha (cytosolic), class A member 1(Hsp90as1) -infinite 0.029 61 Septior (Sept2) -infinite 0.0296 62 EH-domain containing fibulin-like extracellular matrix protein 2 (Efemp2) -infinite 0.0306 63 EH-domain containing 2 (Ehd2) -infinite 0.0306 64 Coatomer protein complex, subunit gamma 1 (Copg1) -infinite 0.0306 65 V-myc myelocytomatosis viral related oncogene, neuroblastoma derived (Mycn) -2.05 0.0317 66 Lethal giant larvae homolog 1 (Lig1) -infinite 0.0332 67 Interleukin 18 receptor accessory protein (It8rap) -infinite 0.0332 68 Collagen type 1 alpha 1 (Col14) -infinite 0.0332 70 Integrin beta 5 (Itgb5) -infinite 0.0342 71 Integrin beta 5 (Itgb5) -infinite 0.0342 72 Tankyrase, TRF1-interacting ankyrin-related ADP-rebose polymerase 2 (Tnks2) -infinite 0.0356 74 BTAF RNA polymerase II, B-TFIID transcription factor-associated (Btaf1) -infinite 0.0356 74 BTAF RNA polymerase II, B-TFIID transcription factor-associated (Btaf1) <	59	C-terminal-binding protein 2 (Ctbp2)	- infinite	0.0277
64 Septin2 (Sept2) -infinite 0.03905 63 EH-domain containing 2 (Ehd2) -infinite 0.03005 64 Coatomer protein complex, subunit gamma 1 (Copg1) -infinite 0.03015 64 Coatomer protein complex, subunit gamma 1 (Copg1) -infinite 0.0314 65 Verwy reylcocytomatosis viral related oncogene, neuroblastoma derived (Mycn) -2.05 0.031 66 Verwy reylcocytomatosis viral related oncogene, neuroblastoma derived (Mycn) -2.05 0.0314 67 Interleukin 18 receptor accessory protein (IIt8rap) -1.689 0.0332 68 Willians-Beuren syndrome chromosome reion 17 homolog (Wbscr17) -2.83 0.03325 70 Synaptopodin (Synpo) -infinite 0.0349 71 Integrin beta 5 (Hg65) -infinite 0.0349 72 Tankyrase, TRF1-interacting ankyrin-related ADP-rebose polymerase 2 (Tnks2) -infinite 0.0349 72 Tankyrase, TRF1-interacting ankyrin-related ADP-rebose polymerase 2 (Tnks2) -infinite 0.0356 73 BTAET RNA polymerase I, B-TFID transcription factor-associated (Btaf1) -infinite 0.0356 74 BTAET RNA polymerase I, B-TRID transcrip	60	Heat shock protein 90, alpha (cytosolic), class A member 1(Hsp90aa1)	- infinite	0.029
62 Epidermial growth factor-containing fibulin-like extracellular matrix protein 2 (Efemp2) -1.66 0.03065 63 EH-domain containing 2 (Ehd2) -infinite 0.03045 64 Coatomer protein complex, subunit gamma 1 (Copg1) -infinite 0.03045 64 Coatomer protein complex, subunit gamma 1 (Copg1) -infinite 0.0314 64 Lethal giant larva homolog 1 (Ligi1) -infinite 0.0314 64 Lethal giant larva homolog 1 (Ligi1) -infinite 0.0332 68 Collagen type 1 alpha 1 (Col1a1) -1.64 0.0334 70 Synaptopodin (Synpo) -infinite 0.0327 71 Integrin beta 5 (tigb5) -infinite 0.0327 72 Tankyrase, TRF1-interacting ankyrin-related ADP-rebose polymerase 2 (Tnks2) -infinite 0.0356 74 BTAF1 RNA polymerase 1 (Bynch1) -infinite 0.0356 74 BTAF1 RNA polymerase 1 (Wnk1) -infinite 0.0356 75 Forcollagen-hysine, 2-oxoglutarate 5-dioxygenase (proline 4-hydroxylase), alpha 1 polypeptide (P4ha1) -1.61 74 BTAF1 RNA polymerase 1 (Wnk1) -infinite 0.0355 76 A	61	Septin2 (Sept2)	- infinite	0.02975
63 EH-domain containing 2 (EH2) - infinite 0.0304 64 Coatomer protein complex, subunit gamma 1 (Copg1) - infinite 0.0304 65 v-my: myelocytomatosis viral related oncogene, neuroblastoma derived (Mycn) -2.05 0.031 66 Lethal giant larvae homolog 1 (Light) - infinite 0.0326 67 Millians-Beuren syndrome chromosome reion 17 homolog (Wbscr17) -2.83 0.03326 68 Willians-Beuren syndrome chromosome reion 17 homolog (Wbscr17) -2.83 0.03326 70 Synaptopodin (Synpo) - infinite 0.03376 71 Integrin beta 5 (ftgb5) - infinite 0.0327 72 Tankyrase, TRF1-interacting ankyrin-related ADP-rebose polymerase 2 (Tnks2) - infinite 0.0356 72 Tankyrase, TRF1-interacting ankyrin-related ADP-rebose polymerase 2 (Tnks2) - infinite 0.0356 74 Tankyrase, TRF1-interacting ankyrin-related ADP-rebose polymerase 2 (Tnks2) - infinite 0.0356 74 Tankyrase, TRF1-interacting ankyrin-related ADP-rebose polymerase 2 (Tnks2) - infinite 0.0356 75 Dynein cytoplasmic 1 heavy chain 1 (Dync1h1) - infinite 0.0356 76 <	62	Epidermal growth factor-containing fibulin-like extracellular matrix protein 2 (Efemp2)	-1.66	0.03005
64 Coatomer protein complex, subunit gamma 1 (Copq1) - infinite 0.0341 65 V-myc myclocytomatosis viral related oncogene, neuroblastoma derived (Mycn) -2.05 0.031 66 Lethal giant larvae homolog 1 (Ligit) - infinite 0.0314 67 Interleukin 18 receptor accessory protein (IIt8rap) - 4.69 0.0325 68 Collagen type 1 alpha 1 (Coltat) - 4.64 0.0327 74 Integrin beta 5 (Itgb5) - infinite 0.0375 74 Integrin beta 5 (Itgb5) - infinite 0.0375 75 Procollagen-tysine, 2-oxoglutarate 5-dioxygenase 3 (Plod3) -2.01 0.0385 76 BTAFT RNA polymerase II, B-TFID Transcription factor-associated (Btaf1) - infinite 0.0375 76 Bury Kysine deficient protein kinase 1 (Wnk1) - infinite 0.0375 77 Wilk Kysine deficient protein kinase 1 (Wnk1) - infinite 0.0376 77 Procolagen-proline, 2-oxoglutarate 4-dioxygenase (proline 4-hydroxylase), alpha 1 polypeptide (Phah1) -infinite 0.0375 78 Collagen type VII alpha1 (Col7a1) -infinite 0.0376 -infinite 0.0376 79 Procollagen-pro	63	EH-domain containing 2 (Ehd2)	- infinite	0.03025
66 v-myc myelocytomatosis viral related oncogene, neuroblastoma derived (Mycn) -2.05 0.031 66 Lethal giant larvae homolog 1 (Ligit) - infinite 0.0331 67 Willians-Beuren syndrome chromosome reion 17 homolog (Wbscr17) -2.83 0.0322 68 Willians-Beuren syndrome chromosome reion 17 homolog (Wbscr17) -2.83 0.0324 70 Synaptopodin (Synpo) -infinite 0.0341 71 Integrin beta 5 (Itgb5) -infinite 0.0342 72 Tankyrase, TRF1-Interacting ankyrin-related ADP-rebose polymerase 2 (Tnks2) - infinite 0.0349 72 Tankyrase, TRF1-Interacting ankyrin-related ADP-rebose polymerase 2 (Tnks2) - infinite 0.0349 74 BTAFT RNA polymerase II, 8-TFIID transcription factor-associated (Btaf1) - infinite 0.0355 74 BTAFT RNA polymerase II, 8-TFIID transcription factor-associated (Btaf4) - infinite 0.0356 75 Dynein cytoplasmic 1 heavy chain 1 (Dync1h1) - infinite 0.0356 76 Aurora - 4.5.3 0.03715 -5.2 0.03715 77 Whik lysine deficient protein kinase 1 (Wnk1) - infinite 0.0356 -16.21 0.03765<	64	Coatomer protein complex, subunit gamma 1 (Copg1)	- infinite	0.03045
66 Lethal giant larvae homolog 1 (Ligit) -infinite 0.0332 67 Interleukin 18 receptor accessory protein (Ilf8rap) -1.6.9 0.0332 68 Collagen type 1 alpha 1 (Colfat) -2.6.3 0.0332 74 Integrin beta 5 (ltgbb) -infinite 0.0332 77 Integrin beta 5 (ltgbb) -infinite 0.0342 78 Procollagen-Lysine, 2-oxoglutarate 5-dioxygenase 3 (Plod3) -2.01 0.0355 74 BTAFT RNA polymerase II, B-TFIID transcription factor-associated (Btaff) -infinite 0.0349 79 Procollagen-Lysine, 2-oxoglutarate 5-dioxygenase 3 (Plod3) -2.01 0.0355 74 BTAFT RNA polymerase II, B-TFIID transcription factor-associated (Btaff) -infinite 0.0356 76 Aurora kinase A (Aurka) -15.3 0.03525 77 WNK lysine deficient protein kinase 1 (Wnk1) -infinite 0.0356 78 Collagen type VI alpha1 (Colfat) -dinfinite 0.0375 79 Procollagen type VI alpha1 (Colfat) -dinfinite 0.0376 70 Spectrin repeat containing nuclear envelope 2 (sync2) -infinite 0.03765 71 <t< td=""><td>65</td><td>v-myc myelocytomatosis viral related oncogene, neuroblastoma derived (Mycn)</td><td>-2.05</td><td>0.031</td></t<>	65	v-myc myelocytomatosis viral related oncogene, neuroblastoma derived (Mycn)	-2.05	0.031
67 Interleukin 18 receptor accessory protein (II18rap) -1.69 0.0332 68 Willians-Beuren syndrome chromosome reion 17 homolog (Wbscr17) -2.83 0.03326 69 Collagen type 1 alpha 1 (Coltat) -1.64 0.0334 70 Synaptopodin (Synpo) -infinite 0.03375 71 Integrin beta 5 (Itgb5) -infinite 0.0334 72 Tankyrase, TRF1-interacting ankyrin-related ADP-rebose polymerase 2 (Tnks2) -infinite 0.0356 73 Procollagen-lysine, 2-oxoglutarate 5-dioxygenase 3 (Plod3) -2.01 0.0356 74 BTAF1 RNA polymerase II, B-TFIID transcription factor-associated (Btaf1) -infinite 0.0326 75 Dynein cytoplasmic 1 heavy chain 1 (Dyncth1) -infinite 0.0356 76 Aurora kinase A (Aurka) -infinite 0.0366 79 Procollagen-proline, 2-oxoglutarate 4-dioxygenase (proline 4-hydroxylase), alpha 1 polypeptide (P4ha1) -1.81 0.0376 79 Procollagen-proline, 2-oxoglutarate 4-dioxygenase 2 (Pol2) -infinite 0.0386 70 Cell Cycle associated protein 1 (Map4) -infinite 0.0387 79 Procollagen-yinein (Calr) -infinite	66	Lethal giant larvae homolog 1 (LIgi1)	- infinite	0.0331
68 Willians-Beuren syndrome chromosome reion 17 homolog (Wbscr17) -2.83 0.03225 69 Collagen type 1 alpha 1 (Coltat) -1.64 0.0334 7 Synaptopodin (Synpo) -infinite 0.0342 71 Integrin beta 5 (ttgb5) -infinite 0.0342 72 Tankyrase, TRF1-interacting ankyrin-related ADP-rebose polymerase 2 (Tnks2) -infinite 0.0342 73 Procollagen-lysine, 2-oxoglutarate 5-dioxygenase 3 (Plod3) -2.01 0.0355 74 BTAF1 RNA polymerase II, B-TFIID transcription factor-associated (Btaf1) -infinite 0.0356 76 Dynein cytoplasmic 1 heavy chain 1 (Dyncth1) -infinite 0.03555 76 Collagen type VII alpha1 (Col7a1) -16.2 0.03716 70 VIKK lysine deficient protein kinase 1 (Wnk1) -infinite 0.0376 70 Spectrin repeat containing nuclear envelope 2 (Syne2) -infinite 0.0378 71 Cell cycle associated protein 1 (Caprin1) -infinite 0.0382 72 Calreticlin (Calr) -infinite 0.0382 73 TeAbra Quaine nucleotide exchange factor (GEF) 2 (Arhgef2) -infinite 0.03885	67	Interleukin 18 receptor accessory protein (II18rap)	-1.69	0.0332
69 Collagen type 1 alpha 1 (Col1a1) -1.64 0.03375 70 Synaptopodin (Synpo) - infinite 0.03375 71 Integrin beta 5 (ltgb5) - infinite 0.0342 72 Tankyrase, TRF1-interacting ankyrin-related ADP-rebose polymerase 2 (Tnks2) - infinite 0.0355 73 Procollagen-lysine, 2-oxoglutarate 5-dioxygenase 3 (Plod3) - 2.01 0.0355 74 BTAF1 RNA polymerase II, B-TFIID transcription factor-associated (Btaf1) - infinite 0.0355 74 Byraer kinase A (Aurka) - 165.3 0.03595 77 WHK lysine deficient protein kinase 1 (Wnk1) - infinite 0.03585 78 Collagen-type VII alpha1 (Col7a1) - 165.3 0.03765 79 Procollagen-proline, 2-oxoglutarate 4-dioxygenase (proline 4-hydroxylase), alpha 1 polypeptide (P4ha1) - 1.81 0.0376 79 Collagen-type VII alpha1 (Col7a1) - 1.67 0.03845 78 Coclagen-type VII alpha1 (Col7a1) - 1.74 0.03845 79 Procollagen-type VII alpha1 (Col7a1) - 1.74 0.03845 71 Cell cycle associated protein 1 (Capri1) - 1.74 0.03845 72<	68	Willians-Beuren syndrome chromosome reion 17 homolog (Wbscr17)	-2.83	0.03325
70 Synaptopodin (Synpo) - infinite 0.03375 71 Integrin beta 5 (tigb5) - infinite 0.0346 72 Tankyrase, TRF1-interacting ankyrin-related ADP-rebose polymerase 2 (Tnks2) - infinite 0.0355 74 BTAF1 RINA polymerase II, B-TFIID transcription factor-associated (Btaf1) - infinite 0.0356 74 BTAF1 RINA polymerase II, B-TFIID transcription factor-associated (Btaf1) - infinite 0.03565 75 Dynein cytoplasmic 1 heavy chain 1 (Dyncth1) - infinite 0.03565 76 Aurora kinase A (Aurka) - 16.3 0.03685 77 WINK lysine deficient protein kinase 1 (Whx1) - infinite 0.03685 76 Dynein cytoplasmic 1 heavy chain 1 (Dyncth1) - infinite 0.03685 71 WINK lysine deficient protein kinase 1 (Whx1) - infinite 0.03685 77 WINK lysine deficient protein kinase 1 (Whx1) - infinite 0.03715 79 Procollagen-tyroline, 2-oxoglutarate 4-dioxygenase (proline 4-hydroxylase), alpha 1 polypeptide (P4ha1) -1.81 0.03765 78 Cell cycle associated protein 1 (Caprin1) - infinite 0.0385 71 Cell cycle associated protein	69	Collagen type 1 alpha 1 (Col1a1)	-1.64	0.0334
71 Integrin beta 5 (itgb5) - infinite 0.0342 72 Tankyrase, TRF1-interacting ankyrin-related ADP-rebose polymerase 2 (Tnks2) - infinite 0.0356 73 Procollagen-Hysine, 2-oxoglutarate 5-dioxygenase 3 (Plod3) - 2.01 0.0356 74 BTAF1 RNA polymerase II, B-TFIID transcription factor-associated (Btaf1) - infinite 0.0356 75 Dynein cytoplasmic 1 heavy chain 1 (Dync1h1) - infinite 0.03565 76 Aurora kinase A (Aurka) - 15.3 0.03595 77 WIK lysine deficient protein kinase 1 (Wnk1) - infinite 0.03575 79 Procollagen-type VII alphat (Col7a1) -15.2 0.03715 70 Spectrin repeat containing nuclear envelope 2 (Syne2) - infinite 0.0375 80 Spectrin repeat containing nuclear envelope 2 (Syne2) - infinite 0.03895 81 Calreticlin (Calr) - 1.74 0.03385 82 Calreticlin (Calr) - infinite 0.03985 84 Microtubule-associated protein 4 (Map4) - infinite 0.03985 85 ThcDomain Transcription factor 1 (TEAD1) - infinite 0.03985 86	70	Synaptopodin (Synpo)	- infinite	0.03375
72 Tankyrase, TRF1-interacting ankyrin-related ADP-rebose polymerase 2 (Tnks2) - infinite 0.0355 73 Procollagen-lysine, 2-oxoglutarate 5-dioxygenase 3 (Plod3) - 2.01 0.0355 74 BTAF1 RNA polymerase II, B-TEIID transcription factor-associated (Btaf1) - infinite 0.0356 74 BTAF1 RNA polymerase II, B-TEIID transcription factor-associated (Btaf1) - infinite 0.03565 76 Aurora kinase A (Aurka) - 15.3 0.03595 77 WIKI kysine deficient protein kinase 1 (Wnk1) - infinite 0.03565 78 Collagen type VII alphat (Col7at) - 15.2 0.03715 79 Procollagen-proline, 2-oxoglutarate 4-dioxygenase (proline 4-hydroxylase), alpha 1 polypeptide (P4ha1) - 1.81 0.0376 80 Spectrin repeat containing nuclear envelope 2 (Syne2) - infinite 0.03885 81 Cell cycle associated protein 1 (Caprin1) - infinite 0.03895 82 Calareticlin (Calr) - infinite 0.03895 83 Endoglin (Eng) - infinite 0.03895 84 Microtubule-associated protein 4 (Map4) - infinite 0.03915 85 rhorac guanne nucleotide exchange factor (GEF	71	Integrin beta 5 (Itgb5)	- infinite	0.0342
73 Procollagen-lysine, 2-oxoglutarate 5-dioxygenase 3 (Plod3) -2.01 0.0355 74 BTAF1 RNA polymerase II, B-TFIID transcription factor-associated (Btaf1) - infinite 0.0356 75 Dynein cytoplasmic 1 heavy chain 1 (Dync1h1) - infinite 0.03565 76 Aurora kinase A (Aurka) -15.3 0.03585 77 WNK hysine deficient protein kinase 1 (Wnk1) - infinite 0.03685 78 Collagen type VII alpha1 (Col7a1) -15.2 0.03715 79 Procollagen-proline, 2-oxoglutarate 4-dioxygenase (proline 4-hydroxylase), alpha 1 polypeptide (P4ha1) -1.81 0.0375 80 Spectrin repeat containing nuclear envelope 2 (Syne2) - infinite 0.03845 81 Cell cycle associated protein 1 (Caprin1) - infinite 0.03845 82 Calreticlin (Calr) -1.74 0.03845 83 Endoglin (Eng) - infinite 0.03915 84 Microtubule-associated protein 4 (Map4) - infinite 0.03935 85 rholrac guanine nucleotide exchange factor (GEF) 2 (Arhgef2) - infinite 0.0416 87 TEA Domain Transcription factor 1 (TEAD1) - infinite 0.0413	72	Tankyrase, TRF1-interacting ankyrin-related ADP-rebose polymerase 2 (Tnks2)	- infinite	0.0349
74 BTAF1 RNA polymerase II, B-TFIID transcription factor-associated (Btaf1) - infinite 0.0356 75 Dynein cytoplasmic 1 heavy chain 1 (Dync1h1) - infinite 0.03656 76 Aurora kinase A (Aurka) - infinite 0.03665 77 WNK lysine deficient protein kinase 1 (Wnk1) - infinite 0.03665 78 Collagen type VII alpha1 (Col7a1) - infinite 0.03765 97 Procollagen-proline, 2-oxoglutarate 4-dioxygenase (proline 4-hydroxylase), alpha 1 polypeptide (P4ha1) -15.2 0.0376 80 Spectrin repeat containing nuclear envelope 2 (Syne2) - infinite 0.0376 81 Cell cycle associated protein 1 (Caprin1) - infinite 0.0382 82 Calreticlini (Calr) - infinite 0.03885 83 Endoglin (Eng) - infinite 0.03885 84 Microtubule-associated protein 4 (Map4) - infinite 0.03985 85 rhoira guanine nucleotide exchange factor (GEF) 2 (Arhgef2) - infinite 0.03985 86 Incocllagen hysine, 2-oxoglutarate 5-dioxygenase 2 (Plod2) -1.4.4 0.04005 87 Framily with sequence similarity 175, member B (Fam175b) - infinite<	73	Procollagen-lysine, 2-oxoglutarate 5-dioxygenase 3 (Plod3)	-2.01	0.0355
75 Dynein cytoplasmic 1 heavy chain 1 (Dync1h1) - infinite 0.03565 76 Aurora kinase A (Aurka) - infinite 0.03565 77 WINK lysine deficient protein kinase 1 (Wnk1) - infinite 0.03585 78 Collagen type VII alpha1 (Col7a1) - infinite 0.03715 79 Procollagen-proline, 2-oxoglutarate 4-dioxygenase (proline 4-hydroxylase), alpha 1 polypeptide (P4ha1) -1.81 0.0376 80 Spectrin repeat containing nuclear envelope 2 (Syne2) - infinite 0.0385 81 Cell cycle associated protein 1 (Caprin1) - infinite 0.0385 82 Endoglin (Eng) - infinite 0.0385 84 Microtubule-associated protein 4 (Map4) - infinite 0.0385 85 Inositol hexakisphosphate kinase 1 (Ip6k1) - infinite 0.0395 86 Procollagen lysine, 2-oxoglutarate 5-dioxygenase 2 (Plod2) -1.48 0.0402 87 Family with sequence similarity 175, member 8 (Fam175b) - infinite 0.0413 90 ArfGAP with S13 domain, ankyrin repeat and PH domain 1 (Asap1) - infinite 0.0414 91 Laminin, alpha 4 (Lama4) - infinite 0.0413	74	BTAF1 RNA polymerase II, B-TFIID transcription factor-associated (Btaf1)	- infinite	0.0356
76 Aurora kinase A (Aurka) -15.3 0.03595 77 WNK lysine deficient protein kinase 1 (Wnk1) -infinite 0.03595 78 Collagen type VII alphat (Col7at) -15.2 0.03715 79 Procollagen-proline, 2-oxoglutarate 4-dioxygenase (proline 4-hydroxylase), alpha 1 polypeptide (P4hat) -1.81 0.0376 80 Spectrin repeat containing nuclear envelope 2 (Syne2) -infinite 0.03845 81 Cell cycle associated protein 1 (Caprin1) -infinite 0.03845 82 Calreticlin (Calr) -i.1.74 0.03845 83 Endoglin (Eng) -infinite 0.03915 84 Microtubule-associated protein 4 (Map4) -infinite 0.03845 85 rhorac guanine nucleotide exchange factor (GEF) 2 (Arhgef2) -infinite 0.03915 86 Inositol hexakisphosphate kinase 1 (Ip6k1) - infinite 0.03985 87 TEA Domain Transcription factor 1 (TEAD1) - infinite 0.0402 88 Procollagen lysine, 2-oxoglutarate 5-dioxygenase 2 (Plod2) -1.4.8 0.0413 90 ArfGAP with SH3 domain, ankyrin repeat and PH domain 1 (Asap1) - infinite 0.04145	75	Dynein cytoplasmic 1 heavy chain 1 (Dync1h1)	- infinite	0.03565
77 WNK lysine deficient protein kinase 1 (Wnk1) - infinite 0.03685 78 Collagen type VII alphat (Col7a1) -15.2 0.03715 79 Procollagen-proline, 2-oxoglutarate 4-dioxygenase (proline 4-hydroxylase), alpha 1 polypeptide (P4ha1) -1.81 0.0376 80 Spectrin repeat containing nuclear envelope 2 (Syne2) - infinite 0.0376 81 Cell cycle associated protein 1 (Caprin1) - infinite 0.03845 82 Calreticlin (Calr) - 1.74 0.03845 83 Endoglin (Eng) - infinite 0.0395 84 Microtubule-associated protein 4 (Map4) - infinite 0.0395 85 rhoirac guanine nucleotide exchange factor (GEF) 2 (Arhgef2) - infinite 0.03985 87 TEA Domain Transcription factor 1 (TEAD1) - infinite 0.04005 88 Procollagen lysine, 2-oxoglutarate 5-dioxygenase 2 (Plod2) -1.48 0.04005 87 TEA Domain Transcription factor 1 (TEAD1) - infinite 0.0413 90 ArfGAP with SH3 domain, ankyrin repeat and PH domain 1 (Asap1) - infinite 0.0414 91 Laminin, alpha 4 (Lama4) - 1.28 0.04149	76	Aurora kinase A (Aurka)	-15.3	0.03595
78 Collagen type VII alpha1 (Col7a1) -15.2 0.03715 79 Procollagen-proline, 2-oxoglutarate 4-dioxygenase (proline 4-hydroxylase), alpha 1 polypeptide (P4ha1) -1.81 0.0375 80 Spectrin repeat containing nuclear envelope 2 (Syne2) - infinite 0.0376 81 Cell cycle associated protein 1 (Caprin1) - infinite 0.03845 82 Calreticlin (Calr) - 1.74 0.03895 84 Microtubule-associated protein 4 (Map4) - infinite 0.03915 85 Inositol hexakisphosphate kinase 1 (Ip6k1) - infinite 0.03985 87 TeA Domain Transcription factor 1 (TEAD1) - infinite 0.04005 88 Procollagen hysine, 2-oxoglutarate 5-dioxygenase 2 (Plod2) -1.4.8 0.04005 89 Family with sequence similarity 175, member 8 (Fam175b) - infinite 0.0414 90 ArfGAP with SH3 domain, ankyrin repeat and PH domain 1 (Asap1) - infinite 0.0414 91 Lamain, alpha 4 (Lama4) -1.29 0.04145 92 Serine (or cysteine) peptidase inhibitor, clade E, member 1 (Serpine 1) -1.7.8 0.0414 93 Importin-4 (Ipo4) - infinite 0.0433	77	WNK lysine deficient protein kinase 1 (Wnk1)	- infinite	0.03685
79 Procollagen-proline, 2-oxoglutarate 4-dioxygenase (proline 4-hydroxylase), alpha 1 polypeptide (P4ha1) -1.81 0.0375 80 Spectrin repeat containing nuclear envelope 2 (Syne2) - infinite 0.0376 81 Cell cycle associated protein 1 (Caprin1) - infinite 0.0382 82 Calreticlin (Calr) -1.74 0.03845 83 Endoglin (Eng) - infinite 0.0395 84 Microtubule-associated protein 4 (Map4) - infinite 0.03915 85 rho/rac guanine nucleotide exchange factor (GEF) 2 (Arhgef2) - infinite 0.03915 86 Inositol hexakisphosphate kinase 1 (Ip6k1) - infinite 0.03915 87 TEA Domain Transcription factor 1 (TEAD1) - infinite 0.04005 88 Procollagen lysine, 2-oxoglutarate 5-dioxygenase 2 (Plod2) -1.48 0.04012 90 ArtGAP with St3 domain, ankyrin repeat and PH domain 1 (Asap1) - infinite 0.0414 91 Laminn, alpha 4 (Lama4) -1.29 0.04145 92 Serine (or cysteine) peptidase inhibitor, clade E, member 1 (Serpine 1) -1.78 0.0419 93 Importin-4 (Ipo4) - infinite 0.0413 <	78	Collagen type VII alpha1 (Col7a1)	-15.2	0.03715
80 Spectrin repeat containing nuclear envelope 2 (Syne2) - infinite - infinite 0.0376 81 Cell cycle associated protein 1 (Caprin1) - infinite 0.0382 82 Calreticlin (Calr) - 1.74 0.03845 83 Endoglin (Eng) - infinite 0.03895 84 Microtubule-associated protein 4 (Map4) - infinite 0.03985 85 rho/rac guanine nucleotide exchange factor (GEF) 2 (Arhgef2) - infinite 0.03915 86 Inositol hexakisphosphate kinase 1 (lp6k1) - infinite 0.03915 87 TEA Domain Transcription factor 1 (TEAD1) - infinite 0.04005 88 Procollagen lysine, 2-oxoglutarate 5-dioxygenase 2 (Plod2) -1.48 0.0402 89 Family with sequence similarity 175, member B (Fam175b) - infinite 0.04143 90 ArfGAP with SH3 domain, ankyrin repeat and PH domain 1 (Asap1) - infinite 0.04145 91 Laminin, alpha 4 (Lama4) -1.29 0.04145 92 Serine (or cysteine) peptidase inhibitor, clade E, member 1 (Serpine 1) -1.78 0.04145 92 Serine (or cysteine) peptidase inhibitor, clade E, member 1 (Serpine 1) -i	79	Procollagen-proline, 2-oxoglutarate 4-dioxygenase (proline 4-hydroxylase), alpha 1 polypeptide (P4ha1)	-1.81	0.0375
81 Cell cycle associated protein 1 (Caprin1) - infinite 0.0382 82 Calreticlin (Calr) -1.74 0.03845 83 Endoglin (Eng) - infinite 0.03895 84 Microtubule-associated protein 4 (Map4) - infinite 0.03915 85 rho/rac guanine nucleotide exchange factor (GEF) 2 (Arhgef2) - infinite 0.03915 86 Inositol hexakisphosphate kinase 1 (Ip6k1) - infinite 0.03985 87 TEA Domain Transcription factor 1 (TEAD1) - infinite 0.04002 88 Procollagen lysine, 2-oxoglutarate 5-dioxygenase 2 (Plod2) - infinite 0.04102 89 Family with sequence similarity 175, member B (Fam175b) - infinite 0.0413 90 ArfGAP with SH3 domain, ankyrin repeat and PH domain 1 (Asap1) - infinite 0.04145 91 Laminin, alpha 4 (Lama4) - 1.29 0.04145 92 Serine (or cysteine) peptidase inhibitor, clade E, member 1 (Serpine 1) - 1.78 0.0419 93 Importin-4 (Ipo4) - infinite 0.04235 94 Transformation/ transcription domain-associated protein (Trrap) - infinite 0.0433 <td< td=""><td>80</td><td>Spectrin repeat containing nuclear envelope 2 (Syne2)</td><td>- infinite</td><td>0.0376</td></td<>	80	Spectrin repeat containing nuclear envelope 2 (Syne2)	- infinite	0.0376
82 Calreticlin (Calr) -1.74 0.03845 83 Endoglin (Eng) - infinite 0.03995 84 Microtubule-associated protein 4 (Map4) - infinite 0.039 85 rhorac guanine nucleotide exchange factor (GEF) 2 (Arhgef2) - infinite 0.03985 86 Inositol hexakisphosphate kinase 1 (lp6k1) - infinite 0.03985 87 TEA Domain Transcription factor 1 (TEAD1) - infinite 0.04005 88 Procollagen lysine, 2-oxoglutarate 5-dioxygenase 2 (Plod2) 1.4.8 0.0400 89 Family with sequence similarity 175, member B (Fam175b) - infinite 0.0414 90 ArfGAP with SH3 domain, ankyrin repeat and PH domain 1 (Asap1) - infinite 0.0414 91 Laminin, alpha 4 (Lama4) - 1.29 0.04145 92 Serine (or cysteine) peptidase inhibitor, clade E, member 1 (Serpine 1) - 1.7.8 0.0419 93 Importin-4 (lpo4) - infinite 0.04325 94 Transformation/ transcription domain-associated protein (Trrap) - infinite 0.0445 95 Surfeit 1 (SURF1) - infinite 0.0445 97 Endoplasmic reticulum-g	81	Cell cycle associated protein 1 (Caprin1)	- infinite	0.0382
83 Endoglin (Eng) - infinite 0.03895 84 Microtubule-associated protein 4 (Map4) - infinite 0.039 85 rho/rac guanine nucleotide exchange factor (GEF) 2 (Arhgef2) - infinite 0.03915 86 Inositol hexakisphosphate kinase 1 (Ip6k1) - infinite 0.03915 87 TEA Domain Transcription factor 1 (TEAD1) - infinite 0.04005 88 Procollagen lysine, 2-oxoglutarate 5-dioxygenase 2 (Plod2) -1.48 0.0402 89 Family with sequence similarity 175, member B (Fam175b) - infinite 0.04113 90 ArfGAP with SH3 domain, ankyrin repeat and PH domain 1 (Asap1) - infinite 0.04145 92 Serine (or cysteine) peptidase inhibitor, clade E, member 1 (Serpine 1) -1.78 0.04149 93 Importin-4 (Ipo4) - infinite 0.04235 94 Transformation/ transcription domain-associated protein (Trrap) - infinite 0.0458 97 Endoplasmic reticulum-golgi intermediate compartment 1 (ERGIC1) -1.26 0.04856 98 Ring finger protein 145 (Rnf145) - infinite 0.0485 99 AXL receptor tyrosine kinase (Axl) - infinite <t< td=""><td>82</td><td>Calreticlin (Calr)</td><td>-1.74</td><td>0.03845</td></t<>	82	Calreticlin (Calr)	-1.74	0.03845
84 Microtubule-associated protein 4 (Map4) - infinite 0.039 85 rho/rac guanine nucleotide exchange factor (GEF) 2 (Arhgef2) - infinite 0.03915 86 Inositol hexakisphosphate kinase 1 (Ip6k1) - infinite 0.03985 87 TEA Domain Transcription factor 1 (TEAD1) - infinite 0.04095 88 Procollagen lysine, 2-oxoglutarate 5-dioxygenase 2 (Plod2) -1.48 0.0402 90 ArfGAP with SH3 domain, ankyrin repeat and PH domain 1 (Asap1) - infinite 0.0413 90 ArfGAP with SH3 domain, ankyrin repeat and PH domain 1 (Asap1) - infinite 0.0414 91 Laminin, alpha 4 (Lama4) - 1.29 0.04145 92 Serine (or cysteine) peptidase inhibitor, clade E, member 1 (Serpine 1) - 1.78 0.0419 93 Importin-4 (Ipo4) - infinite 0.04235 94 Transformation/ transcription domain-associated protein (Trrap) - infinite 0.0445 95 Surfeit 1 (SURF1) - infinite 0.0445 96 Oxysterol binding protein-like 9 (Osbpl9) - infinite 0.04655 97 Endoplasmic reticulum-golgi intermediate compartment 1 (ERGIC1) -1.26	83	Endoglin (Eng)	- infinite	0.03895
85 rho/rac guanine nucleotide exchange factor (GEF) 2 (Arhgef2) - infinite 0.03915 86 Inositol hexakisphosphate kinase 1 (lp6k1) - infinite 0.03985 87 TEA Domain Transcription factor 1 (TEAD1) - infinite 0.04005 88 Procollagen lysine, 2-oxoglutarate 5-dioxygenase 2 (Plod2) - 1.48 0.0402 89 Family with sequence similarity 175, member B (Fam175b) - infinite 0.0413 90 ArfGAP with SH3 domain, ankyrin repeat and PH domain 1 (Asap1) - infinite 0.0414 91 Laminin, alpha 4 (Lama4) - 1.29 0.04145 92 Serine (or cysteine) peptidase inhibitor, clade E, member 1 (Serpine 1) - 1.78 0.0419 93 Importin-4 (Ipo4) - infinite 0.04235 94 Transformation/ transcription domain-associated protein (Trrap) - infinite 0.0445 95 Surfeit 1 (SURF1) - infinite 0.04465 96 Oxysterol binding protein-like 9 (Osbpl9) - infinite 0.04655 97 Endoplasmic reticulum-golgi intermediate compartment 1 (ERGIC1) -1.26 0.04655 98 Ring finger protein 145 (Rnf145) - infinite 0.048	84	Microtubule-associated protein 4 (Map4)	- infinite	0.039
86 Inositol hexakisphosphate kinase 1 (lp6k1) - infinite 0.03985 87 TEA Domain Transcription factor 1 (TEAD1) - infinite 0.04005 88 Procollagen lysine, 2-oxoglutarate 5-dioxygenase 2 (Plod2) -1.48 0.0402 89 Family with sequence similarity 175, member B (Fam175b) - infinite 0.0414 90 ArfGAP with SH3 domain, ankyrin repeat and PH domain 1 (Asap1) - infinite 0.0414 91 Laminin, alpha 4 (Lama4) - 1.29 0.04145 92 Serine (or cysteine) peptidase inhibitor, clade E, member 1 (Serpine 1) - 1.78 0.0419 93 Importin-4 (lpo4) - infinite 0.04235 94 Transformation/ transcription domain-associated protein (Trrap) - infinite 0.0445 95 Surfeit 1 (SURF1) - infinite 0.0458 96 Oxysterol binding protein-like 9 (Osbpl9) - infinite 0.04655 97 Endoplasmic reticulum-golgi intermediate compartment 1 (ERGIC1) -1.26 0.04655 98 Ring finger protein 145 (Rnf145) - infinite 0.04484 100 Latent transforming growth factor beta binding protein 2 (Ltbp2) - infinite 0.	85	rho/rac guanine nucleotide exchange factor (GEF) 2 (Arhgef2)	- infinite	0.03915
87 TEA Domain Transcription factor 1 (TEAD1) - infinite 0.04005 88 Procollagen lysine, 2-oxoglutarate 5-dioxygenase 2 (Plod2) -1.48 0.0402 89 Family with sequence similarity 175, member B (Fam175b) - infinite 0.0413 90 ArfGAP with SH3 domain, ankyrin repeat and PH domain 1 (Asap1) - infinite 0.04145 91 Laminin, alpha 4 (Lama4) -1.29 0.04145 92 Serine (or cysteine) peptidase inhibitor, clade E, member 1 (Serpine 1) -1.78 0.0419 93 Importin-4 (Ipo4) - infinite 0.04235 94 Transformation/ transcription domain-associated protein (Trrap) - infinite 0.043 95 Surfeit 1 (SURF1) - infinite 0.0458 96 Oxysterol binding protein-like 9 (Osbpl9) - infinite 0.0465 97 Endoplasmic reticulum-golgi intermediate compartment 1 (ERGIC1) -1.26 0.0465 98 Ring finger protein 145 (Rnf145) - infinite 0.04865 98 AXL receptor tyrosine kinase (Axl) - infinite 0.04845 100 Latent transforming growth factor beta binding protein 2 (Ltbp2) - infinite 0.04845	86	Inositol hexakisphosphate kinase 1 (Ip6k1)	- infinite	0.03985
88 Procollagen lysine, 2-oxoglutarate 5-dioxygenase 2 (Plod2) -1.48 0.0402 89 Family with sequence similarity 175, member B (Fam175b) - infinite 0.0413 90 ArfGAP with SH3 domain, ankyrin repeat and PH domain 1 (Asap1) - infinite 0.0414 91 Laminin, alpha 4 (Lama4) - 1.29 0.04145 92 Serine (or cysteine) peptidase inhibitor, clade E, member 1 (Serpine 1) -1.78 0.0419 93 Importin-4 (Ipo4) - infinite 0.04235 94 Transformation/ transcription domain-associated protein (Trrap) - infinite 0.0433 95 Surfeit 1 (SURF1) - infinite 0.0445 96 Oxysterol binding protein-like 9 (Osbpl9) - infinite 0.0458 97 Endoplasmic reticulum-golgi intermediate compartment 1 (ERGIC1) -1.26 0.04655 98 Ring finger protein 145 (Rnf145) - infinite 0.04865 99 AXL receptor tyrosine kinase (Axl) - infinite 0.04845 100 Latent transforming growth factor beta binding protein 2 (Ltbp2) - infinite 0.04845 101 Latent transforming growth factor beta binding protein 4 (Ltbp4) - infinite <td>87</td> <td>TEA Domain Transcription factor 1 (TEAD1)</td> <td>- infinite</td> <td>0.04005</td>	87	TEA Domain Transcription factor 1 (TEAD1)	- infinite	0.04005
89 Family with sequence similarity 175, member B (Fam175b) - infinite 0.0413 90 ArfGAP with SH3 domain, ankyrin repeat and PH domain 1 (Asap1) - infinite 0.0414 91 Laminin, alpha 4 (Lama4) - 1.29 0.04145 92 Serine (or cysteine) peptidase inhibitor, clade E, member 1 (Serpine 1) - 1.78 0.0419 93 Importin-4 (Ipo4) - infinite 0.0423 94 Transformation/ transcription domain-associated protein (Trrap) - infinite 0.0423 95 Surfeit 1 (SURF1) - infinite 0.0445 96 Oxysterol binding protein-like 9 (Osbpl9) - infinite 0.0458 97 Endoplasmic reticulum-golgi intermediate compartment 1 (ERGIC1) -1.26 0.04655 98 Ring finger protein 145 (Rnf145) - infinite 0.04865 99 AXL receptor tyrosine kinase (Axl) - infinite 0.04845 100 Latent transforming growth factor beta binding protein 2 (Ltbp2) - infinite 0.04845 101 Latent transforming growth factor beta binding protein 4 (Ltbp4) - infinite 0.04935 102 Multiple coagulation factor deficiency 2 (Mcfd2) -1.28	88	Procollagen lysine, 2-oxoglutarate 5-dioxygenase 2 (Plod2)	-1.48	0.0402
90 ArfGAP with SH3 domain, ankyrin repeat and PH domain 1 (Asap1) - infinite 0.0414 91 Laminin, alpha 4 (Lama4) -1.29 0.04145 92 Serine (or cysteine) peptidase inhibitor, clade E, member 1 (Serpine 1) -1.78 0.0419 93 Importin-4 (Ipo4) - infinite 0.04235 94 Transformation/ transcription domain-associated protein (Trrap) - infinite 0.0423 95 Surfeit 1 (SURF1) - infinite 0.044 96 Oxysterol binding protein-like 9 (Osbpl9) - infinite 0.0458 97 Endoplasmic reticulum-golgi intermediate compartment 1 (ERGIC1) -1.26 0.04655 98 Ring finger protein 145 (Rnf145) - infinite 0.044865 99 AXL receptor tyrosine kinase (Axl) - infinite 0.04865 100 Latent transforming growth factor beta binding protein 2 (Ltbp2) - infinite 0.0482 100 Latent transforming growth factor beta binding protein 4 (Ltbp4) - infinite 0.04935 101 Latent transforming growth factor beta binding protein 4 (Ltbp4) - infinite 0.04935 103 Thymoma viral proto-oncogene 1 (Akt1) - infinite	89	Family with sequence similarity 175, member B (Fam175b)	- infinite	0.0413
91 Laminin, alpha 4 (Lama4) -1.29 0.04145 92 Serine (or cysteine) peptidase inhibitor, clade E, member 1 (Serpine 1) -1.78 0.0419 93 Importin-4 (Ipo4) - infinite 0.04235 94 Transformation/ transcription domain-associated protein (Trrap) - infinite 0.04235 95 Surfeit 1 (SURF1) - infinite 0.044 96 Oxysterol binding protein-like 9 (Osbpl9) - infinite 0.0465 97 Endoplasmic reticulum-golgi intermediate compartment 1 (ERGIC1) -1.26 0.04655 98 Ring finger protein 145 (Rnf145) - infinite 0.048 99 AXL receptor tyrosine kinase (Axl) - infinite 0.0485 100 Latent transforming growth factor beta binding protein 2 (Ltbp2) - infinite 0.04845 101 Latent transforming growth factor beta binding protein 4 (Ltbp4) - infinite 0.04935 102 Multiple coagulation factor deficiency 2 (Mcfd2) -1.28 0.04935 103 Thymoma viral proto-oncogene 1 (Akt1) - infinite 0.04935	90	ArfGAP with SH3 domain, ankyrin repeat and PH domain 1 (Asap1)	- infinite	0.0414
92 Serine (or cysteine) peptidase inhibitor, clade E, member 1 (Serpine 1) -1.78 0.0419 93 Importin-4 (Ipo4) - infinite 0.04235 94 Transformation/ transcription domain-associated protein (Trrap) - infinite 0.043 95 Surfeit 1 (SURF1) - infinite 0.0458 96 Oxysterol binding protein-like 9 (Osbpl9) - infinite 0.0465 97 Endoplasmic reticulum-golgi intermediate compartment 1 (ERGIC1) -1.26 0.0465 98 Ring finger protein 145 (Rnf145) - infinite 0.04865 99 AXL receptor tyrosine kinase (Axl) - infinite 0.04845 100 Latent transforming growth factor beta binding protein 2 (Ltbp2) - infinite 0.04845 101 Latent transforming growth factor beta binding protein 4 (Ltbp4) - infinite 0.04935 102 Multiple coagulation factor deficiency 2 (Mcfd2) -1.28 0.04935 103 Thymoma viral proto-oncogene 1 (Akt1) - infinite 0.04935	91	Laminin, alpha 4 (Lama4)	-1.29	0.04145
93 Importin-4 (Ipo4) - infinite 0.04235 94 Transformation/transcription domain-associated protein (Trrap) - infinite 0.043 95 Surfeit 1 (SURF1) - infinite 0.043 96 Oxysterol binding protein-like 9 (Osbpl9) - infinite 0.0458 97 Endoplasmic reticulum-golgi intermediate compartment 1 (ERGIC1) -1.26 0.04655 98 Ring finger protein 145 (Rnf145) - infinite 0.04665 99 AXL receptor tyrosine kinase (Axl) - infinite 0.04845 100 Latent transforming growth factor beta binding protein 2 (Ltbp2) - infinite 0.04935 101 Latent transforming growth factor beta binding protein 4 (Ltbp4) - infinite 0.04935 101 Latent transforming growth factor beta binding protein 4 (Ltbp4) - infinite 0.04935 103 Thymoma viral proto-oncogene 1 (Akt1) - infinite 0.04935	92	Serine (or cysteine) peptidase inhibitor, clade E, member 1 (Serpine 1)	-1.78	0.0419
94 Transformation/ transcription domain-associated protein (Trrap) - infinite 0.043 95 Surfeit 1 (SURF1) - infinite 0.044 96 Oxysterol binding protein-like 9 (Osbpl9) - infinite 0.0458 97 Endoplasmic reticulum-golgi intermediate compartment 1 (ERGIC1) -1.26 0.0465 98 Ring finger protein 145 (Rnf145) - infinite 0.04665 99 AXL receptor tyrosine kinase (Axl) - infinite 0.04845 100 Latent transforming growth factor beta binding protein 2 (Ltbp2) - infinite 0.0482 101 Latent transforming growth factor beta binding protein 4 (Ltbp4) - infinite 0.04935 102 Multiple coagulation factor deficiency 2 (Mcfd2) -1.28 0.04935 103 Thymoma viral proto-oncogene 1 (Akt1) - infinite 0.04935	93	Importin-4 (Ipo4)	- infinite	0.04235
95 Surfeit 1 (SURF1) - infinite 0.044 96 Oxysterol binding protein-like 9 (Osbpl9) - infinite 0.0458 97 Endoplasmic reticulum-golgi intermediate compartment 1 (ERGIC1) -1.26 0.0465 98 Ring finger protein 145 (Rnf145) - infinite 0.04665 99 AXL receptor tyrosine kinase (Axl) - infinite 0.04845 100 Latent transforming growth factor beta binding protein 2 (Ltbp2) - infinite 0.04845 101 Latent transforming growth factor beta binding protein 4 (Ltbp4) - infinite 0.04935 102 Multiple coagulation factor deficiency 2 (Mcfd2) - 1.28 0.04935 103 Thymoma viral proto-oncogene 1 (Akt1) - infinite 0.04935	94	Transformation/ transcription domain-associated protein (Trrap)	- infinite	0.043
96 Oxysterol binding protein-like 9 (Osbpl9) - infinite 0.0458 97 Endoplasmic reticulum-golgi intermediate compartment 1 (ERGIC1) -1.26 0.0465 98 Ring finger protein 145 (Rnf145) - infinite 0.04665 99 AXL receptor tyrosine kinase (Axl) - infinite 0.04865 100 Latent transforming growth factor beta binding protein 2 (Ltbp2) - infinite 0.04845 101 Latent transforming growth factor beta binding protein 4 (Ltbp4) - infinite 0.04935 102 Multiple coagulation factor deficiency 2 (Mcfd2) - 1.28 0.04935 103 Thymoma viral proto-oncogene 1 (Akt1) - infinite 0.04935	95	Surfeit 1 (SURF1)	- infinite	0.044
97 Endoplasmic reticulum-golgi intermediate compartment 1 (ERGIC1) -1.26 0.0465 98 Ring finger protein 145 (Rnf145) - infinite 0.04665 99 AXL receptor tyrosine kinase (Axl) - infinite 0.04865 100 Latent transforming growth factor beta binding protein 2 (Ltbp2) - infinite 0.04845 101 Latent transforming growth factor beta binding protein 4 (Ltbp4) - infinite 0.04935 102 Multiple coagulation factor deficiency 2 (Mcfd2) - 1.28 0.04935 103 Thymoma viral proto-oncogene 1 (Akt1) - infinite 0.04935	96	Oxysterol binding protein-like 9 (Osbpl9)	- infinite	0.0458
98 Ring finger protein 145 (Rnf145) - infinite 0.04665 99 AXL receptor tyrosine kinase (Axl) - infinite 0.048 100 Latent transforming growth factor beta binding protein 2 (Ltbp2) - infinite 0.04845 101 Latent transforming growth factor beta binding protein 4 (Ltbp4) - infinite 0.04845 102 Multiple coagulation factor deficiency 2 (Mcfd2) -1.28 0.04935 103 Thymoma viral proto-oncogene 1 (Akt1) - infinite 0.04935	97	Endoplasmic reticulum-golgi intermediate compartment 1 (ERGIC1)	-1.26	0.0465
99 AXL receptor tyrosine kinase (Axl) - infinite 0.048 100 Latent transforming growth factor beta binding protein 2 (Ltbp2) - infinite 0.04845 101 Latent transforming growth factor beta binding protein 4 (Ltbp4) - infinite 0.0492 102 Multiple coagulation factor deficiency 2 (Mcfd2) -1.28 0.04935 103 Thymoma viral proto-oncogene 1 (Akt1) - infinite 0.04985	98	Ring finger protein 145 (Rnf145)	- infinite	0.04665
100 Latent transforming growth factor beta binding protein 2 (Ltbp2) - infinite 0.04845 101 Latent transforming growth factor beta binding protein 4 (Ltbp4) - infinite 0.0492 102 Multiple coagulation factor deficiency 2 (Mcfd2) -1.28 0.04935 103 Thymoma viral proto-oncogene 1 (Akt1) - infinite 0.04985	99	AXL receptor tyrosine kinase (Axl)	- infinite	0.048
101 Latent transforming growth factor beta binding protein 4 (Ltbp4) - infinite 0.0492 102 Multiple coagulation factor deficiency 2 (Mcfd2) -1.28 0.04935 103 Thymoma viral proto-oncogene 1 (Akt1) - infinite 0.04985	100	Latent transforming growth factor beta binding protein 2 (Ltbp2)	- infinite	0.04845
102 Multiple coagulation factor deficiency 2 (Mcfd2) -1.28 0.04935 103 Thymoma viral proto-oncogene 1 (Akt1) - infinite 0.04985	101	Latent transforming growth factor beta binding protein 4 (Ltbp4)	- infinite	0.0492
103 Thymoma viral proto-oncogene 1 (Akt1) - infinite 0.04985	102	Multiple coagulation factor deficiency 2 (Mcfd2)	-1.28	0.04935
	103	Thymoma viral proto-oncogene 1 (Akt1)	- infinite	0.04985

Supplementary Table 4

Test group	Bleomycin administration	Eupatilin administration
Normal control group	-	-
Bleomycin-administered group	40 μg/head	vehicle
Bleomycin + 1 μg of eupatilin-administered group	40 μg/head	1 μg/20 μL
Bleomycin + 5 μg of eupatilin-administered group	40 μg/head	5 μg/20 μL
Bleomycin + 10 μg of eupatilin-administered group	40 μg/head	10 μg/20 μL
Bleomycin + 20 μg of eupatilin-administered group	40 μg/head	20 μg/20 μL
Bleomycin + 40 μg of eupatilin-administered group	40 μg/head	40 μg/20 μL