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Abstract

While second generation sequencing led to a vast increase in sequenced
data, the shorter reads which came with it made assembly a much harder
task and for some regions impossible with only short read data. This
changed again with the advent of third generation long read sequencers.
The length of the long reads allows a much better resolution of repetitive
regions, their high error rate however is a major challenge. Using the data
successfully requires to remove most of the sequencing errors. The first
hybrid correction methods used low noise second generation data to cor-
rect third generation data, but this approach has issues when it is unclear
where to place the short reads due to repeats and also because second gen-
eration sequencers fail to sequence some regions which third generation
sequencers work on. Later non hybrid methods appeared. We present a
new method for non hybrid long read error correction based on De Bruijn
graph assembly of short windows of long reads with subsequent combina-
tion of these correct windows to corrected long reads. Our experiments
show that this method yields a better correction than other state of the
art non hybrid correction approaches.

1 Introduction

First generation sequencing allowed to determine the genomic sequences of im-
portant genomes like the human (cf. [14, 28]) and fly (see [3]) genomes. While
the technology was suitable for achieving these very important goals, it was
too expensive and slow for many applications. Second generation sequencing
brought the advent of high throughput sequencing and was much more afford-
able and quick. Second generation technologies however have, especially with
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the application of genome assembly in mind, the major drawback of producing
much shorter reads than those which were common in the first generation. Sec-
ond generation reads, which are often no more than 150 base pairs (bp) long,
enable a much lower capability to correctly resolve genomic repeat regions than
the previously used first generation reads with an average read length of 700
bp. Third generation sequencers like those built by Pacific Biosciences (PacBIO)
and Oxford Nanopore yield much longer reads up to 50000 bp with an average
of 15kb for PacBIO. In addition these sequencers can work on single molecules,
which in principle makes polymerase chain reaction (PCR) unnecessary and thus
removes the bias induced by this procedure. These features however come at the
price of a greatly enlarged average base error rate of 15% and higher. This poses
enormous algorithmical challenges. To work effectively with the data obtained
in many cases, including single nucleotide polymorphism (SNP) detection and
genome assembly, requires correcting most of these errors. Second generation
error correction handled mainly the substitution errors typical for short read
data and is not suitable to handle long read data in which most errors are inser-
tions or deletions. The first algorithmic approaches for correcting errors in third
generation reads used second generation reads (see e.g. [4, 10, 18, 24]). These
approaches are called hybrid as they combine two different types of sequencing
data. Such approaches however inevitably suffer from two problems. First it is
often unclear where to map the short read data on the long reads if long reads
span repeats which cannot be resolved by short reads. Secondly the short read
data suffers from amplification biases so for certain regions which can be suc-
cessfully sequenced using third generation technology there will be no coverage
by second generation data. More recently non hybrid methods based on third
generation data only were established (see for instance [6, 7, 12, 25]). In this
paper we present a new method for non-hybrid long read error correction based
on local De Bruijn graph assembly. While genome wide De Bruijn graph based
assembly is infeasible using long read data, we show that even for high error
rates the De Bruijn graph approach is effective on small windows. Experiments
show our approach to be competitive with previously published work.

2 Method

2.1 Modelling Sequencing Events

For the sake of modelling let us assume that in comparison with the true se-
quence a sequencer may produce three kinds of error events:

• insertion (I): the sequencer reports a base which has no corresponding
base in the true sequence

• deletion (D): the sequencer fails to report a base existing in the true se-
quence

• substitution (S): the sequencer reports a base which differs from the one
found in the true sequence

2

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted February 6, 2017. ; https://doi.org/10.1101/106252doi: bioRxiv preprint 

https://doi.org/10.1101/106252


and a single type of event M representing a correctly reported base. Let Xi for
i = 0, 1, . . . denote a sequence of independent and identically distributed (iid)
discrete random variables such that

P (Xi = k) =


pm for k = M
ps for k = S
pi for k = I
pd for k = D

(1)

and pm + ps + pi + pd = 1. The sequence Xi represents the series of events
produced by a sequencer. In this setting the probability to see ni insertions
before the j’th non insertion event is given by a negative binomial distribution,
the probability mass function (PMF) of which is given by

Pj(ni = `) =

(
j + `− 1

`

)
p`i(1− pi)j (2)

The probability to see nd deletions within the first j non insertion events follows
a binomial distribution. It’s PMF is

Pj(nd = `) =

(
j

`

)(
pd

1− pi

)`(
pm + ps
1− pi

)j−`

. (3)

Given these two functions we can deduce the probability to see a correctly
reported base at true position t offset by o in a sequenced read (i.e. the base is
at position t in the true sequence but t+ o in a sequenced read) as

Pt(o = `) =
∑

y,z≥0,z≤d−1,y−z=` Pt(ni = y)Pt−1(nd = z)

= (Pt(ni) ∗ Pt−1(−nd)) (`)
(4)

where the ∗ symbol denotes the convolution operator.
Figure 1 shows Pt for several values of t and error probabilities pi, pd and

ps typically found in PacBIO reads.

2.2 Edit Scripts

Let Σ = {A,C,G, T} denote the DNA alphabet. The set OP = {M,SA, SC , SG,
ST , IA, IC , IG, IT , D} contains the edit operations we consider (copy/match,
substitute/replace by A,C,G, T , insert A,C,G, T and delete). An edit script S
is a sequence over OP. For an edit script S = s1, s2, . . . , si the occurrence count
function OccO defined by OccO(S) = |{i | si ∈ O}| for any subset O ⊆ OP
counts the number of operations from O contained in S. The number of errors
in an edit script is given by the err function defined by err(S) = OccOP\{M}(S)
and the error or difference rate function erate for a script S by

erate(S) =
err(S)

OccOP(S)
, (5)

i.e. the number of error operations in S divided by the number of all operations
in S. An edit script S is admissible for a string R of length |R| over Σ if
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Figure 1: Function Pt(o−t) for t = 0 (top left), t = 5 (top right), t = 10 (bottom
left) and t = 20 (bottom right) using pi = 0.114, pd = 0.0135 and ps = 0.0121
implying an error rate of 14%. The horizontal axis denotes positions in the
sequenced read. The vertical axis represents the probability of seeing a correctly
reported base from position t in the true sequence at the respective x position
in a read. The vertical black bar marks the respective value of t in each graph.
Note that for t = 10 and t = 20 the maximal probability does not appear at
x = 10 and x = 20 respectively as insertions are far more likely than deletions.
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Occ{M,SA,SC ,SG,ST ,D}(S) = |R|, i.e. the number of non-insertion operations in
S equals the number of symbols in R. Given a string or sequence S = s1, . . . , sn
and i, j s.t. i ≤ j we define Si..j by SiSi+1 . . . Sj if 1 ≤ i ≤ j ≤ n and the empty
string/sequence respectively otherwise. We use Si as a short version of Si,i.
For a string R over Σ and an edit script S admissible for R the edit function
edit(R,S) is recursively defined as

edit(R,S) =


ε if S = ε
Xedit(R,S2..|S|) if S1 = IX
Xedit(R2..|R|, S2..|S|) if S1 = SX

edit(R2..|R|, S2..|S|) if S1 = D
R1edit(R2..|R|, S2..|S|) if S1 = M ,

(6)

i.e. both R and S are scanned from left to right and the edit operations in R are
applied to S. Given two strings U and V over Σ and optimal alignment of U
and V is any edit script S admissible for U s.t. edit(U, S) = V which minimises
the err function.

2.3 Read Alignment Piles

Let G = {G1, G2, . . . , Gg} denote a genome, i.e. each Gi is a string over the
DNA alphabet Σ = {A,C,G, T}. Further, let P = P1, . . . , Pp denote a set
of read parameters s.t. each Pi is a tuple (j, b, e, d, S) where 1 ≤ j ≤ g, 1 ≤
b ≤ e ≤ |Gj |, d ∈ {0, 1} (forward or reverse complement) and S is an edit
script admissible for Gb,e. We denote the components of any such tuple using
the notation Pi.j, Pi.b, etc. Each element of P denotes a sequencing read. It
specifies where in the genome the read stems from (coordinates and strand)
and how this region needs to be modified to obtain a resulting read. More
precisely a read is obtained from a read parameter tuple by extracting Gjb,e ,
applying the reverse complement operation if d is set and finally applying the
edit script S. We denote the read described by a tuple Pi as read(Pi). Two
reads given by the tuples Pi and Pk overlap in G if Pi.j = Pk.j and [Pi.b, Pi.e]∩
[Pj .b, Pj .e] 6= ∅. Given two overlapping reads by Pi and Pk we can deduce an
edit script representing their relative alignment on G (details are described in
Appendix A). Aligning read(Pi) and read(Pk) using the edit script obtained
requires applying the reverse complement operations as stored in Pi.d and Pk.d
respectively. In general any alignment of two reads A and B can be described
as an alignment tuple (abpos, aepos,bbpos,bepos, inv, S) where abpos denotes
the start position of the alignment on A, aepos the end position on A, bbpos
and bepos start and end position on B respectively, inv whether the B read is
to be reverse complemented and S the edit script, which needs to be admissible
for Aabpos,aepos and satisfy edit(Aabpos,aepos, S) = Bbbpos,bepos if inv = 0 and
edit(Aabpos,aepos, S) = Bbbpos,bepos otherwise (we use B to denote the reverse
complement of B). One easily checks that it is sufficient to have the inverse
complement option for one of the reads only. If we would need to invert both
reads instead, then this would be equivalent to keeping the reads as they are
and reversing the edit script instead. For a given read A we call any set of
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GPi.j

Pi

Pi.b Pi.e

Figure 2: Perfect alignment pile for a read described by a tuple Pi. Other reads
overlapping Pi are drawn solid inside the pile and dashed outside the pile.

alignment tuples between A and other reads an alignment pile for A. Note that
in this definition we do not require that A truly overlaps the reads contained in
the pile in the sense that both A and all the other reads stem from the same
place in a genome. The definition of alignment tuples mandates the validity of
the represented alignments though. This reflects the scenario we mostly find
in real data. We see significant (local) alignments between reads, but there
is no guarantee that these local alignments all represent true overlaps in the
underlying genome. In contrast to this we define the perfect alignment pile for
a read read(Pi) given by a tuple Pi as the set of alignment tuples constructed
from all reads Pj overlapping Pi on G. Figure 2 depicts a perfect alignment pile
for a read described by some tuple Pi.

2.4 De Bruijn Graph

The De Bruijn graph is a data structure used in many assembly programs (see
e.g. [23, 26, 17]). It was first introduced as a concept for genome assembly in [11].
Let Σ = {A,C,G, T} denote the DNA alphabet and let R = {R1, R2, . . . , Rr}
denote a set of strings (reads) over Σ. The De Bruijn graph D = (V,E) of order
k ∈ N for R is given by

• the set of vertices V containing exactly the substrings of length k (so called
k-mers) occurring in the strings in R and

• the set of edges E, where an edge exists from v1 = a1a2 . . . ak to v2 =
b1b2 . . . bk iff a2a3 . . . ak = b1b2 . . . bk−1, i.e. v1 and v2 overlap by k − 1
symbols/bases.

The essential idea used for assembly is that, given a set of preconditions, the
genome is contained in the graph as a set of paths/tours through the graph.
The necessary condition, which we call connectivity, for this is that each k-mer
appearing in the genome appears in at least one read. Assuming the reads
represent a uniform sampling of the genome at coverage c (i.e. each base is
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Figure 3: Left: probability to see a correct k-mer (k = 8, 20 and 30) in a set
of reads of coverage c with a single base error rate of 14%, the horizontal axis
denotes c and the vertical the probability. Right: probability to see another
copy of a given k-mer (k = 6, 8 and 10) in a genome, the horizontal axis denotes
the length of the genome observed, the vertical marks the probability

represented in c reads) the probability Pk to see this happen for a single k-mer
is bounded below by 1 − (1 − pk)c if the behaviour of the sequencer can be
formulated as an iid time discrete stochastic process with probability p to see a
correctly reported base. This is a lower bound as the k-mer could appear more
than once in the genome. This function converges to 1 for increasing values of
c if p 6= 0. However, depending on the size of k it may require an infeasibly
high coverage c to see it happen with a probability close to 1. In particular the
higher k is, the lower Pk gets for constant c. For this reason a lower value of
k makes it more likely to fulfil the necessary condition to allow a set of paths
through the graph spelling out the sequences of the genome. The left plot in
Figure 3 shows the probability to see a k-mer with increasing depth for various
values of k.

On the other hand a lower value of k makes it more likely to get a graph with
a lot of branching nodes, i.e. such nodes which have more than one successor.
Each of these makes it computationally harder and practically more unlikely to
find paths in the graph which represent correctly reconstructed sequences from
the genome. For this reason a higher value of k would be beneficial. In a genome
which has size G ≥ 4k (the length of the corresponding De Bruijn sequence)
and where each k-mer appears with the same probability the likelihood of seeing
certain k-mer is

1−
(

1− 1

4k

)G−k+1

(7)

which is also roughly the likelihood of seeing any given k-mer again in a genome
of size G after having observed it once. The plot on the right side of Figure 3
shows this function for several values of k. Any such repeating k-mer node has
a probability of 3

4 to be a branching node.
The probability p of a correct base is a feature of the sequencing technology

employed and in most cases cannot be changed easily. The sequencing coverage
feasible is constrained as well in practice, mostly so by financial considerations.
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Figure 4: Contig n50 size obtained by following non-branching paths in De
Bruijn graphs for E.coli (left) and D.mel (right). The horizontal axis shows the
order of the De Bruijn graph used, the vertical axis the contig length obtained.

The term contig denotes a contiguously reconstructed stretch of a genome
from read data. For a set S = {C1, C2, . . . , Cn} of contigs such that w.l.o.g.
|C1| ≥ |C2| ≥ . . . ≥ |Cn| the n50 statistic n50(S) is |Cj | for the smallest j

s.t.
∑j

i=1 |Ci| ≥ 1
2

∑n
i=1 |Ci|. Figure 4 shows the maximum n50 contig length

obtainable for the species E.coli and D.mel using De Bruijn graphs of varying
orders when following non-branching paths through the graphs. In this context
a branching node is any node with more than one predecessor or successor in the
graph. A non-branching path is a path starting and ending in a branching node
while not traversing any branching nodes in between. For a sensible assembly
result one would desire that the reconstructed contigs in most cases at least
exceed the average read length, which e.g. for the PacBIO sequencing machines
is about 14k on average at the time being. The graphs show that in a perfect
scenario of error free reads this happens for k = 24 in the case of E.coli and
k = 30 for D.mel. Figure 3 shows that for such k and error rates typical for long
read data a whole genome scale assembly using a standard De Bruijn graph at
a coverage of 50x would be infeasible, as many of the k-mers appearing in the
genome would not appear in even a single read. An approach using a sparsified
version of the graph as proposed in [15] may be feasible though.

The situation changes notably if the scenario is switched from whole genome
assembly to the assembly of small windows on a genome covering no more than
100 base pairs. Figure 5 shows a zoom of the right hand side plot depicted in
Figure 3. The probability to see a second copy of a given k-mer is very low even
for small values of k between 7 and 10 if we assume the window considered is
produced by an iid process with equal base probabilities. The probability of a
repeating k-mer can be substantially higher for real genomes than in such iid
sources. We call a De Bruijn graph built on a perfect single read representing
a window of a genome a window De Bruijn graph. Figure 6 shows that for
genomes like E.coli and D.mel the window De Bruijn graphs for windows of
size 40 and 100 can in most cases be traversed while encountering a very low
number of branching nodes to reclaim the original window. So even for the
more repetitive case of real genomes it is still feasible to perform De Bruijn
graph based assembly of small windows based on noisy long read data. Note
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Figure 5: Probability to see another copy of a given k-mer (k = 6, 7, 8, 9 10)
in a window of a given size. The horizontal axis denotes the window size, the
vertical marks the probability.

that while the number of branching nodes is low in this scenario, there is still
a significant number of windows whose reconstruction requires visiting at least
one branching node. We will tackle this issue in the following.

2.5 k-mer scores

Let R = {R1, R2, . . . , Rr} denote a set of strings/reads over the DNA alphabet
and let 0 ≤ pm, ps, pi, pd ≤ 1 sequencing event probabilities s.t. pm+ps+pi+pd =
1. Further let k > 0 ∈ N. W.l.o.g. assume |Ri| ≥ k for all 1 ≤ i ≤ r, if any of the
reads is too short, then we just drop it. Each read Ri generates a sequence of
pairs of a k-mer and a position. For instance if Ri = c1c2 . . . cn for n ≥ k, then
the read generates the pairs (c1..k, 0), (c2..k+1, 1), . . . , (cn−k+1..n, n − k). Let P
denote the concatenated sequence of all pairs generated by the strings in R and
let Pw denote the sequence obtained by first taking the subsequence of pairs in
P whose first component equals w and subsequently projecting each of those
pairs to it’s second component (thus retaining a sequence of positions where
w appears in the reads in R). Let Hw denote the frequency histogram of Pw,
i.e. the function mapping each position w appears at in any read to the number
of times it appears in that position. Given the discussion of subsection 2.1 we
can assign a score to each pair of k-mer and position pair. It may at first seem
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Figure 6: Fraction of windows of size 40 and 100 in E.coli (left) and D.mel
(right) having De Bruijn graphs of order k = 8 with a path representing the
window featuring up to a given number of branching nodes. The horizontal axis
denotes the number of branching nodes and the vertical axis the probability.

tempting to express this as a conditional probability

P (real = p | read = q1, q2, . . . , qi) = P (read=q1,q2,...,qi|real=p)P (real=p)
P (read=q1,q2,...,qi)

= P (read=q1,q2,...,qi|real=p)P (real=p)∑
z P (read=q1,q2,...,qi|z)

=
∏i

j=1 P (read=qj |real=p)P (real=p)∑
z

∏i
j=1 P (read=qj |real=z)

(8)

where real = p denotes the event of having the real position p for a base and
read = q1, q2, . . . , qi the event of seeing the base at positions q1, q2, . . . , qi in
reads. The function P (read = qj | real = p) is easily expressed using the function
Pt defined above. This approach however has several drawbacks. Firstly we
do not know the function P (real = p). We could obtain an approximation
by assuming a constant value inside a window of reasonable position values
though. Secondly and more severely this approach suffers from it’s dependence
on a precondition we do not have, namely that all positions for a k-mer in
the input stem from a single instance of the k-mer in the real sequence. This
precondition does not hold for two reasons. Firstly a k-mer may appear multiple
times in the assembled sequence. Secondly the appearance of a k-mer may be
due to an error. Both of these lead to position sets which are incompatible with
obtaining a non-zero probability out of P (real = p | read = q1, q2, . . . , qi) and
we would obtain a zero probability for each real position even though a subset
of the reported read positions would give evidence for a non-zero probability
for certain real positions. We avoid this issue by instead of trying to obtain
P (real = p | read = q1, q2, . . . , qi) computing a score for each pair of a k-mer
and a real position it may occur at. To this end we define the function kscore
by

kscore(w, p) =
∞∏

i=−∞
Pt=p(i− p)Hw(i) (9)

for a k-mer w and a position p. kscore is easily evaluated due to the finite
support of both Pt and Hw. It is resilient to single outlier positions produced
by erroneous k-mers, as those do not harm the score of a real occurrence. As
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Figure 7: Window (dashed lines) on an alignment pile for a read A. Reads R1,
R3, R4 and R5 overlap the window. Reads R1 and R5 span the window.

the support of Pt is narrow for small values of t, kscore produces separate peaks
for all but very close repetitions of a k-mer in our application. Having separate
peaks is not crucial for our application though.

2.6 Extracting Windows from Alignment Piles

As we want to compute consensus sequences over small windows of size 100 base
pairs or less, we need to obtain the respective read data for such windows. Given
an alignment pile for a read A it is a simple task to extract a sub pile starting
and ending at any given position of A using the edit scripts contained in the
alignment tuples. This yields the information which read data we need to use
to build a De Bruijn graph. Figure 7 depicts a window on an alignment pile.
For computing consensus sequences we use only read data from reads which
fully span a window, i.e. not such which start or end inside the window. In
practice it has proven to be beneficial to extract overlapping windows instead of
partitioning a read into a sequence of non-overlapping intervals. Once we have
extracted the read data for a window, we can build it’s De Bruijn graph.

2.7 Estimating Consensus Length

One of the crucial tasks for finding a good reconstruction for a window is having
a good estimate of the length of the reconstructed sequence. Note that due to
the fact that the insertion and deletion error rates for long read sequencing are
often different, the average length of the input data is not a good estimator
of the consensus length. For PacBIO data, where we usually see pi > pd, the
consensus sequences are usually shorter than the average of the read data. A
better method is to consider the set of last k-mers appearing in the reads. Let w
be the one with the maximum frequency, i.e. there is no other k-mer w′ s.t. more
reads end on w′ than on w. Let p = arg maxi kscore(w, i), i.e. the position p
maximising the kscore function for w. Then p + k is a good estimate of the
length of the consensus sequence. We call the maximal interval PF = [p, p]
s.t. kscore(w, p′) 6= 0 for p′ ∈ PF the interval of feasible lengths for a window.
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2.8 Paths through the De Bruijn Graph

Any path through a De Bruijn graph can be specified by the sequence of nodes
v1, v2, . . . , vn it visits. We assign the weight

∑n
i=1 kscore(vi, i − 1) to the path

v1, v2, . . . vn. An obvious choice for a starting node of a path is the most fre-
quent first k-mer found in the reads. At low depths it may pay off to try several
starting nodes though, as the true first k-mer may be no more frequent than
any error k-mer. As the support of Pt widens and thus the expressiveness of
the scores yielded by kscore decreases with increasing position it is beneficial to
keep the positions as low as possible. For a single path there is no way to achieve
this, but we can traverse the graph in two directions instead and look for points
where we can join up the paths originating from the read fronts and read backs.
As we already noted for estimating the consensus length, a suitable start node
from the back of the reads is the most frequent last k-mer found in the read set.
As for the case of starting from the read fronts it may be beneficial to try multi-
ple alternatives in the case of low depth. When we join up two paths originating
from the read fronts and read backs the combined path weight is the weight of
the path from the front plus the weight of the path from back minus the weight
assigned to the last node of the front originating path (as otherwise we take that
node into account twice). Let PF = [p, p] denote the interval of feasible lengths
for the window underlying the De Bruijn graph considered. We traverse the

graph from the back of the reads until we reach a path length of
⌈
p−k+1

2

⌉
. Let

Q denote the set of paths obtained in this way. Then we traverse the graph from

the front of the reads up to a length of
⌈
p−k+1

2

⌉
. As soon as we reach a path

length of at least p−
⌈
p
2

⌉
−k+1 we try to connect up the path with the paths in

Q. Figure 8 depicts the traversal strategy. As a practical (and heuristical) opti-
misation we do not follow a path any further (from the front as well as from the
back) if we have already found a given number (say c) of higher scoring paths
of the same length. This is easily achieved by keeping a (min) heap for each
length storing the up to c top scoring paths of that length found so far. Assume
we have a new path of length `. If the heap for length ` contains less than c
paths so far, then we add the new path. Otherwise the heap is full. If the new
path has a score not exceeding the score of the lowest scoring path in the heap,
then we discard the new path. Otherwise we discard the lowest scoring path in
the heap and add the new path for length `. In addition we do not consider all
front and back path pairs possible but only a given number of highest scoring
ones. To this end let Q = {Q1, Q2, . . . , Qn}. Let first(Qi) denote the first k-mer
in the path Qi (i.e. the last k-mer which was added starting from the back of
the reads), and let pscore(Qi) denote the score of the path Qi as defined above.
Let Qw denote the set of Qi in Q s.t. first(Qi) = w. Consider any linearisation
(Qw1 , Qw2 , . . . , Qwm) of Qw. We assign an integer rank(Qwj ) ∈ {0, 1,m − 1}
to each Qwj s.t. rank(Qwa) < rank(Qwb

) if pscore(Qwa) < pscore(Qwb
) or if

pscore(Qwa
) = pscore(Qwb

) and a < b. The rank function induces a strict
ordering on Qw in terms of the scores of it’s elements. Now we index the se-
quence rank(Qw1

), rank(Qw2
), . . . , rank(Qwm

) for range maximum queries (see
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≤ p+ 1− k

A B

Q1

Q2

≤ p+1−k
2

Figure 8: De Bruijn graph traversed from front of reads (node A) and back of
reads (node B)

e.g. [8]) and range quantile queries using a wavelet tree (see [9]). The range
maximum queries allow us to find one highest scoring path in constant time.
The range quantile queries facilitate finding the next lower scoring path rel-
ative to a given path in time O(logm). For enumerating complete paths in
decreasing order of combined score consider the set of front originating path
P = {P1, . . . , Pn}. For each Pi let last(Pi) denote the last k-mer in Pi and let
pscore∗(Pi) = pscore(Pi)− kscore(last(Pi), |Pi| − k − 1) the adapted path score
for Pi (remember we subtract the score for the last k-mer as to not consider it
twice). Now, using another heap, it is simple to enumerate the sequence of pairs
(Pa, Qb) s.t. last(Pa) = first(Qb) in decreasing combined score order s.t. retriev-
ing the next element takes time O(log max{|P |, |Q|}). If there is insufficient
depth or an excessive error rate then we may encounter the case that there is
no path from the chosen start node to the chosen end point. In this case we
cannot produce any consensus sequence.

2.9 Selecting Consensus

We constructed a De Bruijn graph for a window of an alignment pile of a read
A. This De Bruijn graph is based on a sequence of strings S1, S2, . . . , Sn, the
first being a window from A and the latter windows from other reads aligning
with A. The graph traversal will in general not yield a single path but a set
of paths. Each of these paths spells out a possible consensus sequence. Let
{C1, C2, . . . , Cm} denote the set of possible sequences. For each Ci we compute
optimal pair wise (global) alignments between Ci and the strings Si. We choose
the string Ci yielding the lowest accumulated error as the consensus of the Si.

2.10 Combining Window Consensus to Read Consensus

Up to this point we have computed consensus sequences of small windows on a
read alignment pile. We combine these windows by first aligning each window
consensus to it’s respective window on the A read. Let the window start at
base number b in A and let S = s1, . . . , sn denote the resulting edit script
for transforming the window of A into the consensus. We assign position pair
(b+ i, 0) to the i’th non insertion in S and position pair (b+ i,−d) to the d’th
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insertion before the i’th non-insertion counted from right to left (i.e. if S starts
with two insertions and a match then the first three position pairs are (b,−2),
(b,−1) and (b, 0)). Each position pair is annotated with the respective symbol
of the window consensus (or D if the edit script has a deletion for the position)
thus generating pairs of position pairs and symbols. We then sort these pairs
in lexicographical order by the position pair component. The final consensus
is obtained by using a simple majority vote for each position pair. In case no
symbol has a clear majority we arbitrarily choose the first eligible symbol in
the order A,C,G, T,D. We then combine each sequence of consecutive position
pairs without gaps into a consensus sequence, i.e. a read may have more than one
stretch of consensus if the path generation fails for some intermediate windows.
Majority symbols A, C, G and T are retained, positions with majority symbol
D are dropped.

2.11 Patching in Missing k-mers

For low depth it often happens that the De Bruijn graph does not yield a
path from a chosen start to a chosen end node. In this case it sometimes proves
effective in practice to patch in k-mers which may be suspected as missing. If for
instance we have k-mers w and v s.t. w = c1c2 . . . ck and v = c3c4 . . . ckck+1ck+2

then we insert u = c2c3 . . . ck+1 at a position p + 1 where p is any position in
which w appears in any read if u does not already appear in the graph.

2.12 Estimating Error Probabilities

Our modelling and scoring schemes rely heavily on the error probabilities pi,
pd and ps, so it is crucial to have good estimates of these probabilities. One
way to obtain these values is to resequence a species with a known reference
genome, map the reads to this reference and extract the error probabilities
from the resulting alignments. Another way which works well in practice is
the following. Consider a short window (≤ 40 base pairs) on an alignment pile
of high depth d (≥ 100). We build a De Bruijn graph for the window. Then
for each node we remove all edges but the one to the most frequent successor
node (i.e. the one to the k-mer among the successors which appears most often
in the reads). We then traverse the graph from the most frequent starting to
the most frequent last k-mer in the window. If there is no such path, then the
window most likely contains a repeating k-mer and we disregard it. Otherwise
the path obtained spells out a consensus candidate. Assume there would be a
repeating k-mer in the true sequence of the window. The probability of seeing
this repeating k-mer twice in any of the reads is at least (pk)2, where p is the
probability of a correctly reported base. This implies we have a chance of at
least 1 − (1 − (p2k))d to see the repeating k-mer twice in a single read inside
the pile. For p = 0.14 as we typically find it in PacBIO data and k = 8
and d = 100 we obtain the probability 0.9996 and are thus almost sure to see
this event. When we detect a repeating k-mer then we again disregard the
underlying window. If we did not disregard the window because we consider
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A

Figure 9: Intrinsic quality values for read A. Lighter colours denote better
quality, darker ones worse quality.

it as containing a repeating k-mer, then we consider the consensus as similar
to reference quality and align the A read fragment underlying the window to
the consensus. We accumulate alignment statistics data (number of matches,
mismatches, insertions and deletion) for a large set of windows. Finally we
compute average error rates from the accumulated data to obtain estimates for
pi, pd and ps. Figure 6 shows that there is an ample number of windows in
species like E. coli and D. mel for this approach to work. In both cases more
than 80% of the windows of length 40 can be traversed without encountering a
branching node.

2.13 Intrinsic Quality Values

Intrinsic quality values are a concept which has already appeared in the Dazzler
suite. The quality of a read region (usually panels of 100 bp on a read) is
estimated by considering the error rate at which other reads align to it in that
region. More precisely given a depth parameter d the intrinsic quality value for
a position interval [it, (i + 1)t) of a read A is obtained by taking the top d/4
(in terms of error rate) reads aligning to A in [it, (i + 1)t), summing up the
number of errors between A and those reads in [it, (i + 1)t) and dividing it by
d/4. If less than d/4 reads align to A in an interval than the read is considered
as broken in this interval. As the intervals have fixed size the average number
of errors of the top d/4 aligning reads can be transformed into an average error
rate. Figure 9 depicts a graphical representation of intrinsic quality values on
a read. In our context the main benefit of intrinsic quality values is to provide
a hint as to whether an alignment between two reads ends although none of
the two reads ends because either (at least) one of the reads has a sharp drop
in quality or both reads have good quality but no longer correlate. The latter
case usually signifies that two reads align due to a common repeat region, but
the alignment ends because the regions the reads stem from are not correlated
beyond this repeat region.

2.14 Simple Repeat Detection

As mentioned in subsection 2.3 we need to distinguish between the case of
simulated data giving us the opportunity to obtain perfect alignment piles and
the case of real data where we start off from a set of local alignments between
reads, not all of which will represent true overlaps in the genome. The non true
alignments in alignment piles are induced by repeats in the underlying genome.
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A

B

O1 O2

Figure 10: Proper and improper alignments: the reads A and B share the local
alignments O1 and O2. O1 is a proper alignment. It has a proper left end
because it reaches the left end of B and a proper right end because it reaches
a low quality region of A on the right. O2 is an improper alignment. Whilst it
has a proper left end as it extends to the edge of a bad region in A, it ends on
the right without extending to a read end or bad quality region. This suggests
A and B are no longer correlated although they have good quality.

We will present two simple methods to remove a part of the non true alignments
from alignment piles which contain all significant local alignments between read
pairs. To this end assume we are given the following:

1. a set of reads R = {R1, R2, . . . , Rr}

2. an alignment pile Pi for each read Ri containing all the significant local
alignments between Ri and other reads in R (for instance compute using
DALIGNER [21])

3. intrinsic quality values for each read Ri.

We say that an alignment Si between two reads Ri and Rj has a proper left
(right) end, if Si extends to the left (right) until either Ri or Rj ends or either
Ri or Rj has low quality (as signified by the intrinsic quality values for Ri

and Rj). We call an alignment Si between Ri and Rj proper, if it has both a
proper left and right end. Figure 10 depicts a proper and an improper alignment
between two reads A and B. Note that although the alignment O1 in Figure 10
is a proper alignment according to this definition, the fact that the two reads
also share an improper alignment O2 gives evidence that O1 should also be
disregarded. If a read A shares an improper alignment S with a read B s.t. S
start at base b and ends at base e in A, then we say that S gives evidence for
a repeat [b, e] on A. A position p on a read A is inside a c-repeat, if at least
c alignments between A and other reads give evidence that p is in a repeat
region. We could consider 1-repeats as sufficient to declare regions in a read
as repetitive, but as we are handling noisy data it is safer to use a somewhat
higher threshold c in practice. As a first method to remove non true overlaps,
we remove all such alignments between a read A and a read B s.t. A and B
share at least one improper alignment. Note that for reads without low quality
regions this would essentially boil down to removing all alignments which are
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RUB
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R′C V
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A

Figure 11: Read B contains a marked repeat R. A suffix of A aligns to a prefix
of B and the alignment is covered by the repeat R. A prefix of another read C
aligns to a suffix of A and this alignment is covered by the repeat R.

not of the suffix/prefix type, i.e. at both ends of the alignment a suffix of one
read aligns to the prefix of another read. As however we often find low quality
regions in real data, the more general approach proves to be useful in practice.

The approach so far only removes improper alignments. There are however
non true repeat induced alignments which do not produce improper alignments.
One sub class of these can be detected, as we describe in the following. Let
A and C be two reads featuring a suffix/prefix alignment where a prefix of C
aligns to a suffix of A. The alignment of A and C is covered by a repeat R
in the underlying genome. A has a segment called U to the left of R. C has
a segment called V to the right of R. Figure 11 depicts this scenario. The
picture has R′, which may be a prefix of R. Note that the alignment between
A and C is proper if A and C both are of good quality. It ends on the left
because it extends to the left end of C and on the right because it extends to
the right end of A. Assuming the left context U of R in A and the right context
V of R in C are sufficiently long we can check whether U and V are compatible
contexts for R or, in other words, whether the combination URV appears in the
underlying genome. For detecting this scenario we first need to mark c-repeats
for some suitable c in the reads using intrinsic quality values. Then, given the
marked repeats, we check for a given read A, whether it’s suffix (the prefix case
is symmetric) aligns to another read B which has a repeat region R covering a
suffix of A (see Figure 11). If this is the case, then A ends in a repeat. Now we
check for reads C which have a prefix aligning to a suffix of A s.t. the alignment
is covered by the marked repeat. W.l.o.g. let C overlap a suffix of A as depicted
in Figure 11. We check whether there are reads D, which properly align to a
suffix of A, extends at least a given number of bases into U and has an overhang
of a given number of bases to the right of A. If there are any such reads D, but
C does not properly align to any of them because the right context of R found
in C is not compatible with any of the right contexts found in the D reads, then
we discard the alignments between A and C.

The two filtration steps described above remove a large number of spurious
alignments not stemming from real overlaps. Some however, particularly those
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due to reads which are completely contained in repeat regions, remain. Remov-
ing these requires a deeper analysis of the read data beyond this algorithmic
work on read consensus computation. One feasible way is to perform repeat
separation by computing a preliminary consensus sequence and then separating
reads in groups which disagree with this consensus in a consistent way. We will
address this open problem in upcoming work.

3 Experimental Results

We have implemented the approach described above in a program called dac-
cord. It is freely available at https://github.com/gt1/daccord. For testing
we used simulated as well as real long read data. Simulated reads were pro-
duced using the PacBIO read simulator PBsim (cf. [22]) with mean length of
15000 bp and mean accuracy of 85%. For simulations we used the genomes
E. coli (strain K-12 MG1655, GenBank U00096.2) and Saccharomyces cere-
visiae (strain S288C, NCBI accession NC 001133-NC 001148 and NC 001224,
R64-2-1 20150113). We used real PacBIO data for E. coli (strain K12, data
from [1]) and Saccharomyces cerevisiae (strain W303, data from [2]) as well as
Oxford Nanopore data data for E. coli (strain K12 MG1655, data from [16]).
All tests were performed on machines equipped with two Intel Xeon E5-2680
v3 CPUs (12 cores per CPU, hyper threading disabled) and 256GB of RAM.
Tests were generally run with 24 threads. The machines were running CentOS
Linux version 7.2. We first discuss the effects of some algorithmic parameters
and alignment filtering on the consensus error rate achieved before comparing
our approach to other published work.

3.1 Algorithmic Parameters

Our implementation of the algorithm described above has some user settable
parameters. These concern the k-mer size used and window parameters. Figure
12 shows the effect of the k-mer size chosen on the residual average read error
rate on perfect alignment piles of simulated E. coli data. Consensus for the
k-mer intervals [7, 9] and [6, 10] is implemented by way of trying each k in the
interval for a window and then choosing the computed consensus sequence yield-
ing the minimum accumulated error between the reads and the consensus. We
compute the residual error for a single read by first finding the longest common
substring between the raw read and the computed consensus and subsequently
extending this seed by running a slightly modified version of the O(ND) align-
ment algorithm (cf. [20]). The graphs show that different single values of k work
best for different ranges of sequencing depth. A k value of 6 works best among
those shown for a depth below 15. Finding a conserved 6-mer is more likely
than a conserved k-mer for k > 6 and finding a sufficient number of conserved
mers is crucial for our approach. As the depth grows finding conserved k-mers
for higher values of k becomes more likely. As longer k-mers make De Bruijn
graph traversal less ambiguous, we are more likely to find a good path. Figure
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Figure 12: Dependence of reconstruction quality (average error rate per read)
on k for k = 6, 7, 8, 9, 10 and k intervals [6, 10] and [7, 9] for simulated E. coli
data. The left graph shows sequencing depth 3 to 30, the right graph 3 to 200.
Note that the vertical axes are logarithmic.
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Figure 13: Dependence of run-time on k for k = 6, 7, 8, 9, 10 and k intervals
[6, 10] and [7, 9] for simulated E. coli data. The left graph shows sequencing
depth 3 to 50, the right graph 3 to 200.

13 shows how the run-time changes with the k-mer size. All the curves have a
local maximum for a depth below 20. This is caused by our implementation try-
ing to reconstruct and correct as much data as possible, which requires patching
in missing k-mers and trying several window start and end k-mers at low depth.
As the depth increases so does the speed for higher values of k.

The situation is similar for yeast as shown in Figure 28 (accuracy) and Figure
29 (run-time). We do however see a more pronounced benefit for larger k-mer
sizes in the accuracy graph. A k-mer size of 10 beats the smaller k-mer sizes for
a depth as low as 50.

Figure 14 shows the effect of the window parameters chosen on reconstruc-
tion quality for k = 8. For parameters w and a the window coordinates used are
[ia, ia+ w), i.e. the i’th window starts at position ia and has length w. As the
graph shows it is best to use fairly small windows of size 40 for a large range of
sequencing depth settings. Even smaller windows of size 20 work slightly better
for low coverage scenarios, but overall 40 is a good default value. Smaller values
for a improve the consensus accuracy to some degree, but this comes at the price
of increased run time as more windows need to be handled. Again the situation
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Figure 14: Dependence of reconstruction quality (average error rate per read)
on window parameters w and a.

for yeast is similar as shown in Figure 30. The main difference is that a small
window size of 20 works as well as larger window sizes even for high depth.

For the rest of the paper we fix the parameters of our runs to k = 8, w = 40
and a = 10.

3.2 Effects of Alignment Filtering

Figure 15 shows the effects of alignment filtering on correction performance. The
graph compares the error rates obtained on simulated E. coli data for various
sequencing depth values when using unfiltered (all significant local alignments
as computed by DALIGNER are used), filtered (we use the two filters described
above) and perfect alignment piles are used. The filtering shows little effect for
low depth, in fact it may be detrimental. Filtering requires intrinsic qualities
values and we require a depth of at least 20 to compute these. A window with
insufficient depth is marked as bad, so we do not mark repeats in regions of low
coverage. Filtering may be detrimental as for low depth having an alignment
to a read from a highly likely repeat region is better for correction than having
too little data. The effect of filtering starts to show for depth 25 and above. For
depth 200 the accuracy obtained via the filtered data is an order of magnitude
better (in terms of remaining errors) than the one obtained from the unfiltered
data. For high depth the quality obtained for the filtered data is better than the
one obtained for the perfect piles. This at first appears to be an artifact. At a
closer look this can be explained by the fact that the alignments in the perfect
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Figure 15: Dependence of reconstruction quality (average error rate per read)
on filtering.

piles continue all the way through bad read regions while DALIGNER stops an
alignment if the error rate gets too high. Figure 31 shows the same type of plot
for S. cerevisiae. Again filtering significantly improves the reconstruction qual-
ity. Note however that in this case the quality yielded by the filtered alignment
is worse than the one for the perfect piles. This can be explained by a higher
abundance of long repeats in the genome, false alignments caused by which are
not removed by our two simple filters.

3.3 Comparison of Accuracy on Simulated Data

We first compare the accuracy of our method with two tools which work on very
similar input to ours. These are namely pbdagcon (see [6]) and falcon sense
(cf. [7]). pbdagcon was obtained via

https://github.com/PacificBiosciences/pbdagcon

(commit f19aed1668d6ace0ab3ab4eb0e1e7d81139492a8).

We ran the program dazcon with options -c 2 -l 100 -m 10000 -j 24. This
sets the minimum coverage for attempting to build a consensus to 2, the min-
imum length for correction to 100 and the maximum coverage used to 10000.
Those parameters were chosen to make the program reconstruct/correct as much
read data as possible. falcon sense was installed using FALCON-integrate avail-
able at
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Figure 16: Comparison of accuracy with pbdagcon and falcon sense

https://github.com/PacificBiosciences/FALCON-integrate

(commit 02867d30753e0510f9fed47abfb1c15fc0249f2d).

We called the program fc consensus with options --output multi --n core

24. The --output multi makes the program output more than one fragment of
corrected data per read and again was set with the goal of correcting more read
bases. Like our implementation pbdagcon and falcon sense are prepared to work
with DALIGNER’s LAS file format as input. For this reason we can also observe
how these tools perform on perfect alignment piles and repeat filtered alignments
as described above. Figure 16 shows a comparison of daccord with pbdagcon and
falcon sense for simulated E. coli data (see Figure 32 for S. cerevisiae). These
graphs at first suggests a superior correction performance of falcon sense at low
depth (below 16 for both). At a closer look this is however not the case. Figure
17 shows which fraction of the total bases in the read set each of the tools yields
as corrected data (see Figure 33 for S. cerevisiae). At depth 10 falcon sense only
outputs corrected data for half of the input data, while daccord and pbdagcon
produce output for virtually all of the input data. When we compare the output
of daccord with the output of falcon sense for those regions were falcon sense
produces any data, then we find that for these regions our error rate is lower than
the one observed for falcon sense. As this makes comparison hard, we change
our comparison strategy in the following way. Both daccord and falcon sense
have options to output complete sequences where uncorrected bases are given
as lower case and correct bases as upper case letters. In falcon sense this can be
switched on using the option --output full. For pbdagcon (and other tools
we compare to further down in the text) we map the corrected fragments onto
the corresponding uncorrected reads to obtain the same structure. Furthermore
for all tools we inject all input reads for which a tool has produced no output at
all in the output as is. A comparison of the resulting data is shown in Figure 18
for E. coli and Figure 34 for S. cerevisiae. In this analysis daccord outperforms
pbdagcon and falcon sense at every depth. A run-time comparison of daccord
with pbdagcon and falcon sense is shown in Figure 19 for E. coli and 35 for
S. cerevisiae. daccord is slower for low depth as it spends a lot more time trying
to get a good correction based on little data. For higher depth the run-time is
comparable with falcon sense and faster than pbdagcon.
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Figure 17: Fraction of read bases corrected by daccord, pbdagcon and fal-
con sense on perfect piles of simulated E. coli data.
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Figure 18: Comparison of reconstruction quality on perfect alignment piles of
simulated E. coli data. Output data was inserted into the original reads for
comparison.
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Figure 19: Run-time comparison with pbdagcon and falcon sense on perfect
piles of simulated E. coli data

LoRMA (see [25]) and Canu (cf. Canu [13]) are two other programs allow-
ing non hybrid long read error correction. PBcR (see [12]) is another one, but
we consider it as superseded by Canu. We used LoRMA version 0.4 and Canu
version 1.4. Canu internally uses an adapted version of falcon sense. We ran
LoRMA with parameters -threads 24 and Canu with -correct corOutCove-

rage=300 useGrid=false -pacbio-raw and the genomeSize parameter set to
the exact length of the reference in bases. We set the corOutCoverage param-
eter to 300 in the hope that it would correct all the reads in the input. This
however did not have the desired effect. Figure 20 shows the correction perfor-
mance of all the tools mentioned above (but PBcR) on simulated E. coli data
(see Figure 36 for S. cerevisiae). We ran daccord, pbdagcon and falcon sense
on filtered DALIGNER alignments. LoRMA and Canu were run on the corre-
sponding raw reads. The line called canu unfilled in the graph does not contain
data for reads Canu does not produce output for, i.e. we did not insert the
raw uncorrected reads to compute the resulting error rate. We provide this line
because for an assembly pipeline it may be sensible to not output a corrected
version for every read as most of the corrected reads produced will be redun-
dant, i.e. the data contained is found in other reads as well. The plot however
suggests that even for a high value of 300 for corOutCoverage Canu does not
produce corrected versions for most of the reads in the input at higher input
depth. LoRMA requires relatively high coverage to even start any correction.
The plot suggests that below a depth of 50 essentially no correction takes place.
The plots in Figure 21 (E. coli) and Figure 37 (S. cerevisiae) provide more detail
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Figure 20: Comparison of correction performance with pbdagcon, falcon sense,
LoRMA and Canu for simulated E. coli data

on this. Another problem in the output of Canu for higher depth and LoRMA
can be seen in Figure 22 (E. coli) and 38 (S. cerevisiae). While for daccord,
falcon sense and pbdagcon the average reconstructed fragment length quickly
approaches the average length of the corresponding corrected reads, this is not
the case for LoRMA and in parts for Canu. At depth 50 for instance the av-
erage length of a corrected read part produced by LoRMA is in the order of a
short read length (below 300 bp). We do not provide a run-time comparison
between daccord and LoRMA or Canu for simulated reads because both of the
tools start from raw reads while daccord starts from pre computed local align-
ments on the reads. We will however be giving timings for complete correction
pipelines below in the section on real read data.

3.4 Comparison of Accuracy on Real Data

For real data we cannot be sure about the accuracy of a read correction pro-
cess as it is often unclear where on a reference a read stems from because of
repeats. In lieu of using ground truth data we can only assume a read stems
from the position in a reference where it maps with a minimal number of errors.
As real read data is subject to various influences like the presence of adapters,
chimeric joins or stretches of (close to) pure noise, fragments of reads may not
map at all and need to be clipped. For our tests we first ran the read correctors
(daccord, pbdagcon, falcon sense, LoRMA and Canu), inserted the corrected
sequence fragments into the raw reads, added all reads not contained in the
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Figure 21: Fraction of read bases corrected by daccord, pbdagcon, falcon sense,
LoRMA and Canu on simulated E. coli data
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Figure 22: Average corrected fragment length produced by daccord, pbdagcon,
falcon sense, LoRMA and Canu on simulated E. coli data
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Figure 23: Comparison of reconstruction quality for real PacBIO E. coli data

output of a corrector in their pure uncorrected form and finally mapped the
resulting reads to the respective reference using the long read aligner damap-
per bwt (cf. [19, 27]). Regions clipped during mapping were disregarded as
unusable. The residual error rate for a corrected read was computed based on
the edit script between the mapped parts of the corrected read and the cor-
responding reference regions. As for simulated data the value depicted in the
graphs is the average error rate for all reads.

Figure 23 shows a comparison of residual errors for real PacBIO sequenced
E. coli (strain K12 MG1655, chemistry C4, enzyme P6) data. The coverage
denoted on the horizontal axis is the number of sequenced bases divided by the
number of bases in the reference sequence. As for simulated data daccord yields
lower error rates than the other programs. Notably though pbdagcon performs
better than falcon sense in the real sequencing data scenario. Table 1 shows the
run-time and memory usage of the benchmarked tools on two partial data sets
obtained by sub sampling. The run-time contains all steps required to obtain
the corrected output when starting from raw sequence data in FastA format. In
particular it contains the run-time of DALIGNER and the sub-sequent filtering
steps for daccord, pbdagcon and falcon sense. Run-time and memory usage were
measured using the Linux time command. Due to the way multi processing is
implemented in falcon sense the time program is unable to accurately measure
it’s memory usage (it only measures the memory usage of the control process
but not the worker tasks performing the actual computation), so we do not
provide a memory usage for falcon sense. daccord is slower on the real data
than the tests on simulated data would let us expect. Figure 24 gives us a hint
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d=25.5 daccord falcon sense pbdagcon LoRMA canu
time 7:13 3:16 5:37 4:00 13:29
mem/GB 5.7 n/a 5.7 55.2 3.8
d=42.5 daccord falcon sense pbdagcon LoRMA canu
time 13:48 7:31 14:15 13:22 17:50
mem/GB 11.8 n/a 11.8 55.5 4.6

Table 1: Run-time and memory usage of tools on real PacBIO sequenced E. coli
data
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Figure 24: Sequencing depth histograms for real PacBIO sequenced E. coli data

why this is happening. It depicts histograms showing how often reference bases
were covered by read bases. The coverage is not as even as for our simulated
data. For many reference bases the coverage is sufficiently low to make daccord
use increased effort to produce a good consensus.

Figure 25 shows a comparison of residual errors on yeast sequenced on
PacBIO (strain W303, chemistry C2, enzyme P4). Table 2 gives run-time and
memory usage for two data sets obtained via sub sampling. Canu and LoRMA
are faster than the DALIGNER based pipelines on this data set. For Canu
this is mainly do to the faster overlap computation employed (MHAP, see [5]).
LoRMA avoids computing all pairwise overlaps, which saves time but seems to
sacrifice continuity.

For nanopore correction we replaced the parameter -pacbio-raw by -nano-

pore-raw when running Canu. Figure 26 shows an accuracy comparison for
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Figure 25: Comparison of reconstruction quality for real PacBIO S. cerevisiae
data

d=28.1 daccord falcon sense pbdagcon LoRMA canu
time 58:48 37:39 1:38:01 33:32 18:27
mem/GB 20.5 n/a 22.0 55.8 3.8
d=46.9 daccord falcon sense pbdagcon LoRMA canu
time 2:05:14 1:33:29 4:20:08 1:05:05 30:12
mem/GB 24.8 n/a 39.2 56.6 4.8

Table 2: Run-time and memory usage of tools on real PacBIO sequenced S. cere-
visiae data
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Figure 26: Comparison of reconstruction quality for real 2d Oxford Nanopore
E. coli data

E. coli sequenced on Oxford Nanopore (strain K12, MG1655, chemistry R9). In
this plot only the higher accuracy 2D reads were used for consensus computation.
daccord is also the most accurate program in this category. Table 3 shows a
run-time and memory comparison for two subsets of this data set. Figure 27 and
Table 4 show the same for more inaccurate 1D Oxford Nanopore data sequenced
from the same E. coli strain. For this data set even at very high depth we have
a residual error rate of more than 2%. This suggests effectively correcting this
type of data requires a more machine specific method than our iid random event
based approach.

d=27.9 daccord falcon sense pbdagcon LoRMA canu
time 5:13 4:39 7:07 12:57 15:16
mem/GB 13.4 n/a 13.4 55.5 3.7
d=46.5 daccord falcon sense pbdagcon LoRMA canu
time 18:09 13:14 20:45 34:02 21:23
mem/GB 26.5 n/a 26.5 55.9 4.1

Table 3: Run-time and memory usage of tools on real Oxford Nanopore se-
quenced 2D E. coli data
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Figure 27: Comparison of reconstruction quality for real 1d Oxford Nanopore
E. coli data

d=29.8 daccord falcon sense pbdagcon LoRMA canu
time 7:13 5:56 8:48 6:48 22:53
mem/GB 9.1 n/a 9.1 55.3 3.8
d=49.5 daccord falcon sense pbdagcon LoRMA canu
time 18:55 16:19 24:28 18:17 29:56
mem/GB 15.8 n/a 15.8 55.7 4.7

Table 4: Run-time and memory usage of tools on real Oxford Nanopore se-
quenced 1D E. coli data
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4 Conclusion

We have presented a new method for long hybrid long read error correction.
The approach is practical and our implementation outperforms state of the art
competitors in terms of reconstruction accuracy. In upcoming work we will dis-
cuss more involved alignment filtering to remove repeat induced alignments and
thus improve error correction for long repeat regions. While our approach works
for data produced by Oxford Nanopore sequencers the resulting corrected data
still contains a high rate of errors. Solving this may require a more sophisticated
model for sequencing events.
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A Computing Edit Scripts Between Reads

W.l.o.g. assume Pi.b ≤ Pk.b, the other case is symmetric. Let ` denote the mini-
mum length of a prefix of Pi.S s.t. Occ{M,D,SA,SC ,SG,ST }(Pi.S1..`) = Pk.b−Pi.b.
We remove the prefix S1,` from Pi.S and update Pi.b to Pk.b. This is also
equivalent to clipping off the first Occ{M,IA,IC ,IG,IT ,SA,SC ,SG,ST }(Pi.S1..`) bases
off read(Pi). If Pi.e 6= Pk.e then w.l.o.g. assume Pi.e ≤ Pk.e. Again let r de-
note the length of a minimum length suffix of Pk.S s.t. Occ{M,D,SA,SC ,SG,ST }
(Pk.S|Pk.S|−r,|Pk.S|) = Pk.e − Pi.e. We remove the suffix Pk.S|Pk.S|−r,|Pk.S|
from Pk.S and update Pk.e to Pi.e. This is also equivalent to clipping off
the last Occ{M,IA,IC ,IG,IT ,SA,SC ,SG,ST }(Pk.S|Pk.S|−r,|Pk.S|) bases off read(Pk).
These steps ensure [Pi.b, Pi.e] = [Pk.b, Pk.e] while keeping Pi.S and Pk.S ad-
missible for GPi.jPi.b,Pi.e

and GPk.jPk.b,Pk.e
respectively. In particular we have

Occ{M,D,SA,SC ,SG,ST }(Pi.S) = Occ{M,D,SA,SC ,SG,ST }(Pk.S) = Pi.e − Pi.b + 1.
To deduce the final edit script we parse the remainders of Pi.S and Pk.S from
left to right. To this end let Ri = read(Pi) and Rk = read(Pk). We perform the
following two steps Pi.e−Pi.b+1 times. First let Pi.S1,y and Pk.S1,z denote the
maximum length prefixes of Pi.S and Pk.S respectively s.t. that all operations
contained in these prefixes are insertions. W.l.o.g. let y ≤ z, the other case is
symmetric. Let Ci = Ri1..y and Ck = Rk1..y . Scan Ci and Ck from left to right.
If we find the same symbol in a position then append an M operation to the
edit script. Otherwise append SX where X denotes the symbol seen in Ck. Let
Ek = Rky+1..z

. For each symbol X in Ek scanned from left to right append IX
to the edit script (in the case of y > z we would add deletions instead). Now
remove the prefixes Pi.S1,y and Pk.S1,z from Pi and Pk respectively and the
prefixes Ri1,y and Rk1,z from Ri and Rk respectively. As the second step we are
handling the next non insertion operation Y and Z in Pi.S and Pk.S respec-
tively. If Y = Z = D then we add nothing to the edit script. If Y = D 6= Z
then we append the operation IRk1

to the edit script and remove the first sym-
bol from Rk. If Y 6= D = Z then we append a D operation to the edit script
and remove the first symbol from Ri. If Y 6= D and Z 6= D, then let c = Ri1

and d = Rk1
. If c = d we append an M to the edit script, otherwise we append

an Sd. In both cases we remove the first symbol from Ri and Rk. To conclude
the second step we remove the first operation from Pi.S and Pk.S respectively.
Finally there may be some insertion operations in Pi.S or Pj .S left. We handle

36

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted February 6, 2017. ; https://doi.org/10.1101/106252doi: bioRxiv preprint 

https://doi.org/10.1101/106252


10−4

10−3

10−2

10−1

0 5 10 15 20 25 30

av
er

a
g
e

re
si

d
u

a
l

er
ro

r
ra

te

coverage

k=6
k=7
k=8
k=9

k=10

10−6

10−5

10−4

10−3

10−2

10−1

0 50 100 150 200

av
er

a
g
e

re
si

d
u

a
l

er
ro

r
ra

te

coverage

k=6
k=7
k=8
k=9

k=10

Figure 28: Dependence of reconstruction quality (average error rate per read)
on k for k = 6, 7, 8, 9, 10 for simulated S. cerevisiae data. The left graph shows
sequencing depth 3 to 30, the right graph 3 to 200. Note that the vertical axes
are logarithmic.
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Figure 29: Dependence of run-time on k for k = 6, 7, 8, 9, 10 for simulated
S. cerevisiae data. The left graph shows sequencing depth 3 to 50, the right
graph 3 to 200.

these by running step one once more.

B Figures for S288C
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Figure 30: Dependence of reconstruction quality (average error rate per read)
on window parameters w and a for simulated S. cerevisiae data.
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Figure 31: Dependence of reconstruction quality (average error rate per read)
on filtering for simulated S. cerevisiae data.
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Figure 32: Comparison with pbdagcon falcon sense for simulated S. cerevisiae
data
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Figure 33: Fraction of read bases corrected by daccord, pbdagcon and fal-
con sense on perfect piles of simulated S. cerevisiae data
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Figure 34: Comparison of reconstruction quality on perfect alignment piles of
simulated E. coli data. Output data was inserted into the original reads for
comparison.
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Figure 35: Run-time comparison with pbdagcon and falcon sense on perfect
piles of simulated S. cerevisiae data
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Figure 36: Comparison of correction performance with pbdagcon, falcon sense,
LoRMA and Canu for simulated S. cerevisiae data
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Figure 37: Fraction of read bases corrected by daccord, pbdagcon, falcon sense,
LoRMA and Canu on simulated S. cerevisiae data
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Figure 38: Average corrected fragment length produced by daccord, pbdagcon,
falcon sense, LoRMA and Canu on simulated S. cerevisiae data
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