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Abstract 

 

Pedigree-based analyses of intelligence have reported that genetic differences account for 50-80% of 

the phenotypic variation. For personality traits, these effects are smaller with 34-48% of the variance 

being explained by genetic differences. However, molecular genetic studies using unrelated 

individuals typically report a heritability estimate of around 30% for intelligence and between 0% and 

15% for personality variables. Pedigree-based estimates and molecular genetic estimates may differ 

because current genotyping platforms are poor at tagging causal variants, variants with low minor 

allele frequency, copy number variants, and structural variants. Using ~20 000 individuals in the 

Generation Scotland family cohort genotyped for ~520 000 single nucleotide polymorphisms (SNPs), 

we exploit the high levels of linkage disequilibrium (LD) found in members of the same family to 

quantify the total effect of genetic variants that are not tagged in GWASs of unrelated individuals. In 

our models, genetic variants in low LD with genotyped SNPs explain over half of the genetic variance 

in intelligence, education, and neuroticism. By capturing these additional genetic effects our models 

closely approximate the heritability estimates from twin studies for intelligence and education, but not 

for neuroticism and extraversion. From an evolutionary genetic perspective, a substantial contribution 

of genetic variants that are not common within the population to individual differences in intelligence, 

education, and neuroticism is consistent with mutation-selection balance.  
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The scores of different types of cognitive ability tests correlate positively and the variance 

that is shared between tests is termed general intelligence, general cognitive ability, or g.1 General 

intelligence typically accounts for around 40% of the overall variance among humans in batteries that 

contain tests of diverse cognitive abilities. The personality traits of extraversion and neuroticism are 

two of the five higher-order personality factors that are consistently identified in dimensional models 

of personality. High levels of extraversion are associated with positive affectivity and a tendency to 

engage with, and to enjoy, social situations, but also shows phenotypic and genetic associations with 

mental disorders like attention deficit hyperactivity disorder.2 High levels of neuroticism are 

associated with stress sensitivity, as well as mental and physical disorders.2, 3 All of these traits are 

partly heritable, but have also been linked to evolutionary fitness. This poses an ostensible paradox, 

that could be resolved if rare variants, which are less amenable to selection, are found to play a major 

role in the genetic contribution to variance in these traits. Using a recently-developed analytic design 

for combined pedigree and genome-wide molecular genetic data, we test whether rare genetic 

variants, copy number variants (CNVs), and structural variants make an additional contribution to the 

genetic variance in intelligence, neuroticism, and extraversion. 

General intelligence has been found to be heritable, with twin and family studies estimating 

that 50% to 80%4 of phenotypic variance is due to additive genetic factors, a proportion that increases 

with age from childhood to adulthood.5 Heritability can also be estimated from molecular genetic 

data. Using the genomic-relatedness-matrix restricted maximum likelihood (GREML) method, 

additive common single nucleotide polymorphisms (SNPs) are estimated to collectively explain 

between 20% and 50% of variation in general intelligence,6, 7 with an estimate of around 30% in the 

largest studies.8 General intelligence is also a significant predictor of fitness components including 

mortality,9 fertility,10, 11 higher social status,12 as well as mental and physical disease,5 and it is 

associated with developmental stability,13, 14 suggesting that general intelligence is not selectively 

neutral. 

As selective pressure on a trait is expected to deplete its genetic variation, the existence of 

such robust heritability findings seems paradoxical when evolutionary theory is considered.15 

However, mutation-selection balance provides an explanation of how genetic variation can be 

maintained for quantitative traits that are under directional selective pressure. Mutation-selection 

balance describes instances where mutations that are deleterious to the phenotype occur within a 

population at the same rate that they are removed through the effects of selective pressure. Due to the 

removal of variants with deleterious effects on the phenotype, the existence of common variants of 

medium to large effect is not expected under mutation-selection balance. This is consistent with the 

current findings from large GWAS on cognitive phenotypes, including general intelligence and 

education, where common single nucleotide polymorphisms (SNPs) collectively explain a substantial 

proportion of phenotypic variance, but the individual effect size of each genome-wide significant SNP 

discovered so far is around 0.2%.16, 17  
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Population genetic simulations show that very rare (Minor allele frequency, MAF < 0.1%) 

variants explain little of the population variance in traits that are not under selection.18 However, the 

contribution made by rare variants increases when their effects on a trait and on fitness are correlated 

either through pleiotropy, or by the trait directly affecting fitness.18 The genetically informative 

evidence that is available tends to show that variants associated with intelligence are also linked to 

better health,19, 20 although these effects may be outweighed by a negative effect on fertility,21, 22 and 

that the regions of the genome making the greatest contribution to intelligence differences have 

undergone purifying selection.23 Whereas this does not necessarily imply that intelligence has been 

selected for or against across our evolutionary history, it does indicate that genetic variants that are 

associated with intelligence are also associated with fitness, which suggests that rare genetic variants 

and hence mutation-selection balance, may act to maintain intelligence differences.18 

Empirical studies so far have failed to find evidence of a link between intelligence and rare 

variants.24 These studies have often been limited in scope, with only copy number variants or exonic 

regions being considered, or being limited in statistical power because all rare variants were treated as 

having the same direction of effect through the use of burden tests.24-27 Where such tests have found 

an association these have been in small samples and subsequently failed to replicate.28 However, in 

large samples, rare variants found within regions of the genome under purifying selection have been 

found to be associated with educational success,29 an effect that was greater for genes expressed in the 

brain. Hence, rare variants found in some genes might have an effect on intelligence.  

Less is known about the genetics of personality.30 As with intelligence, extraversion and 

neuroticism have been found to have higher heritability estimates, of around 34-48%, using 

quantitative (twin- and family-based) genetic methods31 compared to molecular genetic estimates (4 – 

15% for neuroticism32 and 0 – 18% for extraversion2, 33). Both extraversion and neuroticism are 

predictive of social and behavioural outcomes as well as anxiety, well-being and fertility.34-37 Positive 

genetic correlations have been reported for extraversion with attention deficit hyperactivity disorder 

and bipolar disorder, and for neuroticism with depression and anorexia nervosa.2 

In the current study, we quantify the total genetic effect from across the genome on 

intelligence (including education, which shows strong genetic correlations with general intelligence38 

and is used as a proxy phenotype for it in genetic studies39), extraversion, and neuroticism. We are 

able to include genetic variants not normally captured using GWAS. As our sample included 

nominally unrelated individuals with varying degrees of genetic similarity, as well as family members 

who all provided genome-wide SNP data, we were able to decompose two genetic sources of variance 

corresponding to genetic effects associated with common SNPs in a population (h2
g), and genetic 

effects associated with kinship (h2
kin). Among related individuals, linkage disequilibrium is stronger 

and hence allows us to capture variation not tagged by common SNPs. This includes rare variants, 

CNVs, and other structural variants. As the inclusion of family members can introduce a confound 

between shared genetic effects and shared environmental effects,40 we use the method employed by 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 6, 2017. ; https://doi.org/10.1101/106203doi: bioRxiv preprint 

https://doi.org/10.1101/106203


5 
 

Xia and colleagues 
41 to simultaneously estimate three sources of environmental variance: sibling 

effects, spouse effects, and family effects. By using information from both nuclear family 

relationships and the many more distant pedigree relationships in the cohort we analyse, this novel 

design allows us to estimate kin-specific genetic variation net of common environmental effects. 

 

Materials and Methods 

Samples 

Data was used from the Generation Scotland: Scottish Family Health Study (GS:SFHS).42-44 

A total of 24 090 individuals (Nmale = 9927 , Nfemale = 14163 , Agemean = 47.6) were sampled from 

Glasgow, Tayside, Ayrshire, Arran, and North-East Scotland of whom 23 919 have donated blood or 

saliva for DNA extraction. These samples were collected, processed, and stored using standard 

procedures and managed through a laboratory information management system at the Wellcome Trust 

Clinical Research Facility Genetics Core, Edinburgh.45 The yield of DNA was measured with a 

PicoGreen and normalised to 50ng/μl prior to genotyping.  Genotype data were generated using an 

Illumina Human OmniExpressExome -8- v1.0 DNA Analysis BeadChip and Infinium chemistry.46 

We then used an identical quality control procedure as Xia et al.41 that included removing SNPs in the 

event that they were not on autosomes or had a minor allele frequency (MAF) of <0.05, a Hardy-

Weinberg Equilibrium P-value <10-6, and a missingness of  >5%. As per Xia et al.41 this left 519 729 

common SNPs from 22 autosomes. Following quality control, a total of 20 032 individuals (n females 

= 11 804) were retained; 18 293 of these individuals were a part of 6 578 nuclear or extended 

families.47 The mean age of the sample was 47.4 years (SD = 15.0, range 18 to 99 years). As the 

variance attributable to the shared environment was explicitly modelled here, no relationship cut off 

(typically, 0.025 is used) was applied to the genetic relationship matrix (GRM).  

 

Ethics  

The Tayside Research Ethics Committee (reference 05/S1401/89) provided ethical approval 

for this study.  

 

Phenotypes 

A total of eight phenotypes were examined here. Six of the phenotypes were cognitive in 

nature and included general intelligence (g), education, the Mill Hill Vocabulary Scale (MHVS),48 the 

Wechsler Digit Symbol Substitution Task (DST),49 Wechsler Logical Memory which measures 

Verbal declarative memory,50 and executive function (phonemic Verbal fluency, using letters C, F, 

L).51 The general factor of intelligence (g) was derived by extracting the first unrotated principal 

component from the four cognitive tests. This single component accounted for 42.3% of the variance 

in the total sample and each of the individual tests used demonstrated strong loadings on the first 

unrotated component (DST 0.58, Verbal Fluency 0.72, MHVS 0.67, and Verbal declarative memory 
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0.63). Education was calculated in the GS:SFHS as the years of full time formal education which was 

recoded into an ordinal scale from 0 to 10 (0: 0 years, 1: 1-4 years, 2: 5-9 years, 3: 10-11 years, 4: 12-

13 years, 5: 14-15 years, 6: 16-17 years, 7: 18-19 years, 8: 20-21 years, 9: 22-23 years, 10: > 24 years 

of education). Education and general intelligence were positively correlated (r = 0.38, SE = 0.01, p < 

2.20 × 10−16). 

The effects of age, sex and population stratification were controlled for by using regression 

prior to fitting the models using GREML. Supplementary section Figure 1 shows the number of 

principal components used to control population stratification for each of the phenotypes used.  

 

Statistical method 

 

Partitioning phenotypic variance into five sources 

 

For each of the phenotypes examined here variance was partitioned into five corresponding 

effects plus residual variance. This variance components analysis is based on the work of Zaitlen and 

colleagues40 who developed a method for estimating h2
g and h2

kin in a data set with a measured family 

structure. More recently this method has been extended by Xia and colleagues41 to include sibling, 

spouse, and nuclear family environmental effects. The two genetic matrices described by Zaitlan et al. 

and Xia et al. correspond to those associated with common SNPs (h2
g) and those associated with 

pedigree (h2
kin) genetic variants. These two genetic sources of variance were quantified using a 

genetic relationship matrix derived in the GCTA software.52 Whereas h2
g describes variance 

associated with common SNPs, and those that are in LD with genotyped SNPs on a SNP chip, h2
kin 

describes variance from the additional genetic effects associated with pedigree.  

 

Matrix construction 

 

Genetic matrices 

The contribution made by common SNPs, h2
g, was quantified using a genomic relationship 

matrix (GRMg, or G). This was derived in the manner set out by Yang and colleagues,52 where the 

estimated genomic relatedness between each pair of individuals is derived from identity by state SNP 

relationships and is found in each off diagonal entry in the GRM.   

 

1

𝑁
∑

(𝑥𝑗𝑖 − 2𝑝𝑖)(𝑥𝑘𝑖 − 2𝑝𝑖)

2𝑝𝑖(1 − 𝑝𝑖)

𝑁

𝑖=1
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Minor allele frequency for SNP i is denoted as pi and the allelic dose (x) for individuals j or k 

at locus i is described as xji or xki.  N indicates the total number of SNPs.  

 

The kinship relationship matrix, GRMkin, or K, was derived using the method described by 

Zaitlen et al., (2013)40 by modifying the GRMg. Here, values in the GRMg that were equal to or less 

than 0.025 were set to 0. 

 

Environmental matrices 

Three environmental matrices (ERM) were used to capture the variance associated with 

specific relationships between individuals. Each ERM was created by deriving an N by N (where N is 

number of participants) matrix with diagonal entries set to 1and non-diagonal entries set to 1 if the 

pair of individuals are a part of the environmental relationship described or set to zero otherwise. The 

three ERMs derived here captured variance associated with the shared environment of spouses, 

(ERMCouple, or C), siblings (ERMSibling, or S), and nuclear families (ERMFamily, or G). 

 

Deriving the quantity of phenotypic variance explained 

For each trait we first fitted the two GRM and the three ERM simultaneously using a linear 

mixed model (LMM) implemented using the GCTA software.52, 53 This full model is referred to as the 

GKFSC model, as it includes the genetic, kinship, family, sibling, and couple matrices.   

 

Y =  GRMg + GRMkin + ERMFamily + ERMSibling + ERMCouple + ε 

 

Here, Y is a vector of standardised residuals derived using one of the eight phenotypes 

examined here. Random genetic effects were explained by fitting the GRMg and the GRMkin, which 

captured variants in LD with common SNPs found across a population and the extra genetic effects 

captured by the increase in LD found between members of the same family, respectively. Random 

environmental effects that were shared between related pairs of individuals were captured by fitting 

the ERMFamily, ERMSibling, and ERMCouple to quantify the contributions made by environmental 

similarities between members of a nuclear family, siblings, and couples, respectively. 

Restricted maximum likelihood (REML), implemented using the GCTA software,52 was used 

to estimate the variance explained by each of the matrices, with statistical significance being 

examined using a log-likelihood ratio test (LRT) and the Wald test. Model selection began with the 

full GKFSC model (referred to as the full model) and components were dropped if they were not 

statistically significant according to both the Wald and the LRT tests (The model that contained only 

components that explained a significant proportion of variance is referred to as the selected model). If 

more than one component could be dropped from the model, we dropped the one with the poorer fit 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 6, 2017. ; https://doi.org/10.1101/106203doi: bioRxiv preprint 

https://doi.org/10.1101/106203


8 
 

first then tested the significance of the other. The full results of each model can be seen in 

Supplementary Table 1.  

The variance components corresponding to h2
g (common SNP-associated effects), h2

kin 

(Pedigree associated genetic effects), ef
2 (shared family environment effect), es

2 (Shared sibling 

environment effect), and ec
2 (shared couple environment effect) were estimated (Table 1).  

 

Results 

 The results of the full GKFSC models (consisting of the GRMg, GRMkin, ERMFamily, 

ERMSibling, ERMCouple), as well as the results of the selected models, can be seen in Table 1. For 

general intelligence (g) the final model was the GKSC model, allowing for a significant contribution 

from additive common genetic effects, additive pedigree-associated genetic variants, shared sibling 

environment, and a shared couple environment. For g, common SNPs (h2
g) explained 23% (SE = 2%) 

of the phenotypic variation. Pedigree-associated genetic variants (h2
kin) added an additional 31% 

(SE=3%) to the genetic contributions to g, yielding a total contribution of genetic effects on g of 54% 

(SE=3%). The net contribution of measured environmental factors to phenotypic variance in g was 

35%. This was due to two sources of variance, shared sibling environment (es
2) and shared couple 

environment (ec
2), that accounted for 9 % (SE=1%), and 22% (SE=2%), respectively.  

 The GKSC model was also the selected model for education, vocabulary, verbal fluency, and 

digit symbol test. As with general intelligence, pedigree-genetic variants accounted for the majority of 

the total genetic contribution to phenotypic variation in these traits. Pedigree-associated genetic 

variants explained between 15% - 30% of the variation, and common SNP effects explained 16% - 

26%. The genetic results, i.e. SNP and pedigree contributions combined, for g and education are 

similar to the heritability estimates derived using the traditional pedigree study design which found a 

heritability estimate of 54% (SE=2%) for g54 and 41% (SE=2%) for education using the same data set 

(Figure 2). This indicates that the genetic variants with the greater estimated cumulative effect on 

cognitive abilities are those that are poorly tagged on current genotyping platforms.  

For logical memory the effect of shared couple environment was non-zero, but not significant, 

with the final selected model being GKS. Here, common SNP effects explained 12% (SE = 2%) of the 

variation. As with the other cognitive phenotypes considered here, pedigree-associated variants made 

a greater estimated contribution to the net genetic effect on logical memory, explaining 20% (SE=3%) 

of the variation. Sibling effects explained 5% (SE=1%) of the variation in logical memory. 

For neuroticism the final model consisted of the G (GRMg), and K (GRMkin) contributions. 

Additive common genetic effects explained 11% (SE=2%) of the variance with pedigree-associated 

variants explaining an additional 19% (SE=3%). Whereas none of the environmental components was 

statistically significant, the family component accounted for 2% of the variance in the full model and 
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1% in a model that included only the G and the K matrices in addition to F. A lack of power may have 

occluded this effect. 

For extraversion the only detectable source of genetic variation came from GRMg, where G 

accounted for 13% (SE=2%), with ERMFamiliy explaining a further 9% (SE=1%) of the phenotypic 

variation. The lack of pedigree-associated genetic effects could be due to low statistical power, as K 

explained 5% of the variance in the full model and 6% in a GKF model, but with a relatively large SE, 

estimated at 5%. 

In addition to our model selection procedure, we also fit all possible component combinations 

for all phenotypes, to show a more complete account of the data and to give readers the ability to 

explore the consequences of including different components for the results, even when some of those 

components were not significant. The results have been made interactively available at 

https://rubenarslan.github.io/generation_scotland_pedigree_gcta/.   

 

Discussion 

The aim of this study was to use molecular genetic and pedigree data on the same large 

sample in order to decompose and quantify genetic and environmental sources of variation to 

intelligence and personality in a novel manner. In doing so, we sought to identify reasons for the gap 

between pedigree-based and SNP-based estimates of heritability in samples of unrelated individuals, a 

difference which might be due to genetic variants in poor linkage disequilibrium with SNPs 

genotyped on current platforms. This permits us to draw inferences about the evolutionary pressures 

that maintain general intelligence and personality differences. By making use of a large Scottish 

cohort that consists of close, distant, and spousal relationships, we were able to partition phenotypic 

variance of cognitive and personality measures into two genetic and three environmental sources of 

variance. A number of novel findings speak to long-standing questions in behaviour genetics and 

evolutionary genetics of psychological differences.15, 30, 55 

Firstly, taken together, the two variance components derived directly from genome-wide 

molecular genetic data can account for the entire narrow-sense heritability of general intelligence, as 

estimated in twin and family studies.54, 56 For all of the cognitive variables measured here, a 

substantial and significant proportion of the phenotypic variance was found to be explained by 

pedigree-associated genetic effects (h2
kin). With the exception of the digit symbol test, these pedigree-

associated genetic variants accounted for over half of the genetic effects.  

The SNP-based methods of estimating heritability from unrelated individuals often produce 

lower heritability estimates than those derived using family-based studies. One reason for this is that 

population-based SNP methods, such as GREML, rely on LD between genotyped SNPs and causal 

variants at population level, and are sensitive to the frequency of causal alleles. Should LD between 

genotyped SNPs and causal variants be low, then the genetic similarity between a pair of individuals 

at the causal variant will be different to the genetic similarity at genotyped SNPs, resulting in a 
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reduction in the heritability estimate in the studies group. In within-family and twin studies, 

relatedness is based on identity by decent (IBD), where segments of DNA have been inherited from a 

recent common ancestor. Should a region be IBD between a pair of individuals, then all variants 

except de novo mutations within that segment are shared. As population-based SNP methods are 

sensitive to allele frequency, where IBD methods are blind to such effects, the discrepancy between 

the heritability estimates is consistent with the idea that causal variants in low LD with genotyped 

SNPs account for this missing element of the heritability of intelligence differences.  

In the current study we investigate if variants in poor LD with genotyped SNPs account for 

additional heritability, unmeasured in GWAS on unrelated individuals, by using DNA from close 

family members. Higher genetic relatedness within families leads to an increase in the LD between 

genotyped SNPs and potentially causal variants and resulted in heritability estimates in our study that 

are comparable to pedigree-based methods. This provides evidence that, for intelligence, the gap 

between the heritability estimates derived using IBD methods and those derived using SNP-based 

population methods is most likely due to causal variants in low LD with genotyped SNPs. In addition, 

we were able to model this missing variance and separate it from the additive common genetic effects 

that are estimated in a GREML analysis based on unrelated individuals. The additional source of 

additive genetic variance from closely related family members, captured here in our kinship matrix 

(GRMkin), would go unnoticed in a GWAS on unrelated individuals. This shows a need for GWAS on 

related individuals and for methods such as whole-genome sequencing to capture the individual 

effects of such variants. Whilst the use of related individuals can result in the confounding of pedigree 

genetic effects with shared family environmental effects, here we were able to distinguish the 

contributions made to phenotypic variance by pedigree-associated genetic variants from those by 

shared environment. Since we modelled three sources of environmental variance alongside the two 

genetic sources simultaneously, the variance that is due to a shared environment does not contribute 

towards our estimates of the genetic effects, as would be the case in instances where related 

individuals are included without adjusting for the shared environmental effects.41, 52  

Furthermore, despite the level of confounding between the five matrices, we were able to 

correctly disentangle the contributions of each of the variance components. Simulations conducted by 

Xia et al.41 show that this method provides robust results due to the dense relationships within the 

GS:SFHS cohort. The GS:SFHS is a family based cohort and the participants are related to varying 

degrees, including 1,767, 18,320, 7,851, 4,129, 3,950 and 11,032 pairs of couples, 1st, 2nd, 3rd, 4th and 

5th degrees of relatives, respectively. Therefore, what is shared between ERMFamily matrix and GRMkin 

matrix are merely ~18k pairs of entries represented by 1st degree relatives. However, ERMFamily holds 

~1.8k pairs of unique entries (couple pairs) and GRMkin holds ~23k pairs of unique entries (2nd-5th 

degree relative pairs of who were greater than 0.025 genetically identical), the unique entries from 

both matrices result in an increase of power to correctly disentangle the variance from those two 

different sources. An additional point is that the pedigree-associated genetic effects decay as the 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 6, 2017. ; https://doi.org/10.1101/106203doi: bioRxiv preprint 

https://doi.org/10.1101/106203


11 
 

distance of the relationship increases, whereas nuclear family environmental effects do not. Thus, the 

fact that GS:SFHS consist of different classes of relatives, as well as the unique entries within the 

GRMkin and ERMFamily, helps to capture the property of pedigree-associated genetic variants. This 

logic extends to separating the variance from each of the environmental matrices. Although ERMCouple 

and ERMSib are nested within the ERMFamily, there are 9,853 pairs of unique entries (representing 

parents-offspring) existing within the ERMFamily, which helps to separate the environmental effects. 

Therefore, there are sufficient number of appropriate relationship in GS:SFHS to make sure this 

method works. 

Xia et al.41 showed that our method reliably identifies the major sources of variance that 

contribute to trait architecture. However, as with any method, with decreasing effect sizes they 

become harder to measure accurately and more power is needed for the reliable detection of small 

signals. This means that if one of the matrices here only contributes to a small proportion of the 

overall phenotypic variance (e.g. less than 5% in GS:SFHS) its contributions will not be estimated 

reliably and dropped in the model selection procedure. However, any excluded minor component in 

the final model will have only a limited influence on the estimates of the major components that are 

retained in the final model. Thus, the major components we detected for each trait should be estimated 

reliably. 

For personality traits, the genetic components can explain slightly more (30%) than the 

narrow-sense heritability (22%) that was meta-analytically derived from family and adoption studies 

with heterogeneous measurements of personality.31 However, it falls short of the broad-sense 

heritability (47%31; 45%57). As previous research has suggested,31, 58 this is consistent with epistasis 

playing a major role in personality genetics, as a non-additive genetic component is not captured well 

outside of twin studies. Previous research58 did not discuss gene-environment correlation (rGE) and 

interaction (GxE) as a plausible cause for heritability estimates being higher in twin studies than in 

adoption and family studies, presumably because the shared environment contribution to personality 

variation was usually estimated not to be different from zero. A more recent meta-analysis gives an 

estimate of 13%57 for shared environment that seems to be stable over age, so the difference between 

twin estimates of heritability and those presented here may also be explained to some extent by gene-

by-environment interactions (GxE) and gene-environment correlations (rGE)30.  

The additional variance explained by the GRMkin is unlikely to be due to common SNPs that 

are poorly tagged on current arrays because even with imputed data SNP heritability estimates of 

general intelligence are around 66% of that explained by twin models in the same sample.59 Using 

GREML-LDMS,60 and data on 43,599 participants with ~17 million SNPs imputed based on the 1000 

Genomes reference panel, the heritability for height was found to be 56%, with 8% of this estimate 

being traced to rare variants with a minor allele frequency between 0.001 and 0.01. By imputing to 

1000 Genomes, the same study estimated that 97% of common genetic variation was being captured, 

but only 68% of rare variation.60 Using ~500 000 genotyped SNPs, Xia and colleagues41 found that 
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common variants explained 43% of the variance for height, whereas 45% of the variance was 

explained by pedigree-associated variants. These two studies together show there is only a modest 

increase in heritability by measuring or imputing further common SNPs, and that with 97% of 

common variants the heritability estimate is lower than what can be found in family studies. As the h2
g 

plus h2
kin estimates for height from Xia and colleagues41 exceed the total contribution from common 

variants, and closely approximate the estimates from twin studies of h2 = 0.89-0.9361, it seems more 

likely that the h2
kin is not mainly driven by common genetic variants that are in low LD with 

genotyped variants but by rare variants, CNVs, and structural variation.  

Our variance analyses are blind to the direction of effects and the number of variants involved 

in each genetic component. If, as we would predict, future work finds that variants with the lowest 

minor allele frequency tend to have the greatest negative effects, it would imply a coupling between 

the selection coefficient of alleles and their effect on intelligence, as selective pressure would act to 

minimise the frequency of highly deleterious variants. If this coupling were strong,62 future work 

might infer that selection on intelligence was important in the past, even though current selective 

pressure may differ. If the impact of intelligence on fitness were limited to instances of pleiotropy 

with, for example, health, as some initial research suggests,19, 20 the coupling between the selection 

coefficients of alleles and their effect sizes would be expected to be weaker. Selective pressure would 

act on the health-linked variants and intelligence-linked variants would only be selected to the extent 

of their pleiotropic effects on health. This would de-couple the selection coefficient of an allele and its 

effect on intelligence.  

Future work can use the SNPs known to affect intelligence and personality16, 17 to empirically 

quantify the coupling between allele frequency (indicating selection strength) and effect size to test 

this explanation, as has been demonstrated for height and BMI.60 Targeted re-sequencing of enriched 

genetic regions23, 63, 64 might be necessary to find very rare genetic variants associated with 

intelligence and personality, as has proven fruitful for example in prostate cancer research.65 Future 

studies should test directly whether rarer SNPs have stronger negative effects on intelligence and 

personality, as has been shown for height and BMI.60 This could test whether selection has acted to 

minimise the frequency of variants that negatively affect these traits. 

The sibling component, which was retained in all models of intelligence, tracks the meta-

analytic estimate of shared environmental variance (11%) from twin studies almost exactly. However, 

in our study the sibling component might also include a quarter of the dominance variation in 

intelligence that siblings share, because siblings are the only relationship in this study where 

dominance plays a significant role.41 In the classical twin design, dominance variation (making 

dizygotic twins more dissimilar than half the similarity of monozygotic twins) can be obscured by 

shared environment effects (making DZs more similar). There is some evidence from other 

approaches that dominance only plays a minor role in intelligence differences.66-69  
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The family component was only retained in the model for Extraversion, although the point 

estimate was non-zero in the full Neuroticism model as well. This is consistent with meta-analytic 

estimates of shared environment for adults,57 but may also be due to some level of confounding 

between K and F, where the association between extraversion and the GRMFamily is due to 

contributions of the genetic factors accounted for by the GRMkin. 

The couple component is somewhat complex to interpret. For intelligence70 and education71, 

there is evidence of assortative mating, which will increase both the genetic and environmental 

similarity between couples. The spousal similarity could explain still uncaptured genetic and 

environmental variance. If recent research on similarity in genetic propensities for education71 is a 

good guide, spousal similarity in intelligence may be mostly explained by genetic similarity. Apart 

from this, the spouse’s trait value may also serve as a good aggregate indicator of any effects the 

current environment has on a person, so that the couple component would also reflect recent 

environmental influences. The importance of shared environment with siblings appears to decline 

from childhood to adulthood,72 as individuals pick their environmental individual niches (i.e., active 

gene-environment correlation). It may be that the current environment, now shared with a spouse, still 

has causal influences. We find no couple component for personality, which is consistent with much 

weaker assortative mating on personality, especially neuroticism and extraversion.73-75  

In the current study we were able to exploit the high LD found between members of the same 

family to measure the contribution of genetic effects that are normally missed in GREML analyses of 

GWAS data. We also simultaneously modelled the effect of the family, sibling, and couple 

environment to avoid potential environmental confounds inflating our estimates. For intelligence and 

education, we find that genetic variants poorly tagged on current genotyping platforms explained a 

substantial and significant proportion of the phenotypic variance, raising our heritability estimates to 

match those derived using pedigree-based methods. Such variants can include CNVs, structural 

variants, and rare variants. We find similar effects for neuroticism, a dimension of personality 

genetically correlated with many fitness traits,76 where pedigree-associated genetic variants explained 

19% of variation. For extraversion, pedigree-associated variants appear to play a smaller role in 

phenotypic variation. These results suggest that mutation-selection balance has maintained heritable 

variation in intelligence and neuroticism, explaining why differences in these traits persist to this day 

despite selection. Future work should directly measure rare variants, as well as CNVs and structural 

variants, and test the direction of their effects.  
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Table 1  

Results of the variance components analysis for cognitive abilities using the full model and the final model selected from a stepwise selection procedure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Phenotype N Model Variance 

components  

GRMg 

h2 
g %(S.E) 

GRMkin 

h2 
kin % (S.E) 

ERMFamily 

ef
2 % (S.E) 

ERMSibling 

es
2 % (S.E) 

ERMCouple 

ec
2 % (S.E) 

Cognitive         

g 19 036 Full GKFSC 21.1 (2.0) 41.5 (4.8) 1.0×10−4 (2.2) 8.9 (1.3) 26.4 (2.6) 

 19 036 Selected GKSC 22.7 (2.1) 31.3 (2.9)  9.2 (1.3) 22.1 (2.0) 

          

         

Education 18 528 Full GKFSC 13.3 (2.0) 39.4 (5.1) 1.0×10−4 (2.4) 10.9 (1.4) 36.1 (2.7) 

 18 528 Selected GKSC 15.6 (2.1) 28.1 (3.0)  11.4 (1.4) 31.3 (2.8) 

         

Vocabulary  19 269 Full GKFSC 23.4 (0.2) 39.4 (4.7) 1.0×10−4 (2.2) 6.5 (1.3) 30.7 (2.6) 

 19 269 Selected GKSC 25.6 (2.0) 30.1 (2.8)  7.3 (1.3) 27.4 (1.9) 

         

Verbal 

Fluency 

19 380 Full GKFSC 18.3 (2.0) 30.7 (5.2) 1.0×10−4 (2.4) 4.5 (1.3) 16.2 (3.1) 

 19 380 Selected GKSC 18.9 (2.1) 27.1 (2.9)  0.5 (1.3) 14.7 (2.1) 

         

Digit Symbol 

Test 

19 385 Full GKFSC 20.2 (2.1) 22.7 (5.1) 1.0×10−4 (2.4) 8.0 (1.4) 17.3 (3.1) 

 19 385 Selected GKSC 21.4 (2.1) 14.7 (2.8)  8.1 (1.3) 13.2 (2.3) 

         

Logical 

Memory 

19 365 Full GKFSC 11.4 (2.0) 24.0 (5.2) 1.0×10−4 (2.5) 5.1 (1.4) 5.3 (3.2) 

 19 365 Selected GKS 11.9 (2.0) 20.3 (2.8)  5.4 (1.4)  

Personality         

Neuroticism  19 494 Full GKFSC 10.7 (2.0) 14.9 (5.1) 2.3 (2.5) 1.0×10−4 (1.4) 1.0×10−4 (3.4) 

  Selected GK 10.8 (2.0) 19.2 (2.5)    

         

Extraversion 19 487 Full GKFSC 11.3 (0.2) 4.9 (5.1) 7.3 (2.5) 1.0×10−4 (1.4) 1.0×10−4 (3.3) 

 19 487 Selected GF 13.0 (1.7)  9.0 (1.1)   
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Figure legends  

 Figure 1. Selected models plotted for each of the phenotypes included. The proportion of 

variance explained is on the x-axis with each of the phenotypes used on the y-axis. Each component 

from the selected model is plotted individually, with the stacked bar plot showing the total proportion 

of the variance explained by the selected models. Error bars indicate standard error.   

 

Figure 2. Bar plots showing the proportion of variance explained using family based methods 

and using molecular genetic data. Both of these analyses were performed using the same GS:SFHS 

data (n = 20 522, Education n = 22 406, current manuscript, g n = 19 036, Education n = 18 5280. 

Estimates shown in red were derived in the current study using GREML and show two sources of 

genetic variance. Bright red being common genetic effects captured by the GRMg matrix and dark red 

shows the additional genetic effects captured by exploiting the higher level of linkage disequilibrium 

between family members using the GRMkin matrix. The estimates in blue are taken from Marioni and 

colleagues54 and show the total genetic effects using ASReml-R when relatedness is inferred using 

identity by descent. 
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