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Abstract 

Researchers can investigate the mechanistic and molecular basis of many 

physiological phenomena in cells by analyzing the fundamental properties of 

single ion channels. These analyses entail  recording single channel currents 

and measuring current amplitudes and transition rates between conductance 

states. Since most electrophysiological recordings contain noise, the data 

analysis can proceed by idealizing the recordings to isolate the true currents 

from the noise. This de-noising can be accomplished with  threshold crossing 

algorithms and Hidden Markov Models, but such procedures generally 

depend on inputs and supervision by the user, thus requiring some prior 

knowledge of  underlying processes. Channels with unknown gating and/or 

functional sub-states and the presence in the recording of currents from 

uncorrelated background channels present substantial  challenges to  

unsupervised analyses.  

Here we describe and characterize an idealization algorithm based on 

Rissanen’s Minimum Description Length (MDL) Principle. This method uses 

minimal assumptions and idealizes ion channel recordings without requiring a 

detailed user input or a priori assumptions about channel conductance and 

kinetics.. Furthermore, we demonstrate that correlation analysis of 

conductance steps can resolve properties of single ion channels in recordings 

contaminated by signals from multiple channels. We first validated our 

methods on simulated data defined with a range of different signal-to-noise 

levels, and then showed that our algorithm can recover channel currents and 

their substates from recordings with multiple channels, even under conditions 
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of high noise. We then tested the MDL algorithm on real experimental data 

from human PIEZO1 channels and found that our method revealed the 

presence of substates with alternate conductances. 
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Introduction 

The analysis of discrete events in single ion channel data has been a powerful 

tool in electrophysiology research since the pioneering work of Erwin Neher 

and Bert Sakmann, recognized with the 1991 Nobel Prize in Medicine. 

However, these analyses usually entail data modeling methods that rely on 

user-defined inputs, filters, event detection thresholds or subjective criteria for 

event detection. These conditions present difficulties,  particularly when 

analyzing time series composed of currents from multiple ion channels, or in 

cases when a channel can make a transition between one or more 

sub-conductance states. 

Given these considerations, approaches to the analysis of ion channel 

currents often involve one of two paradigms. In one approach, Hidden Markov 

Models (HMMs) are  used to analyze recordings containing signals arising 

from one or more  ion channels (Qin, 2007). Here, we assume  that the ion 

channels generate the observed currents by jumping between metastable 

conductance states. Consequently, HMM analysis is most suitable when 

different conductance states of channels can be estimated a priori; so long as 

these estimates are valid , the HMM  algorithm provides maximal information 

about the conductance transitions and their kinetics.  

HMM is not always applicable, precisely because it requires a priori 

knowledge of likely kinetic models, which can be especially difficult to predict 

if currents from several channels are present in the recording. While the 

HMM-based algorithms can provide  useful quantitative analyses, real 

laboratory data  often fail to satisfy the inherent assumptions of the model. 
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Chief among these assumptions or conditions is that the system should be in 

a steady-state  for the duration of the recording. However, the channel 

kinetics and ion flux can vary with time, for example the membrane resting 

potential may change during the recording (Suchyna et al., 2009; Gottlieb et 

al., 2012). An alternative to the HMM approach is to idealize the measured 

input sequence using an event detection algorithm that is independent of the 

kinetic model (Colquhoun and Sigworth, 1995;Carter et al., 2008;Parsons and 

Huizinga, 2013), The measured current is thus modeled as a series of events 

without imposition of a particular kinetic scheme, and can in principle account 

for unknown sub-states in the recording. Methods that analyze the filtered 

time course of conductance transitions enable highly accurate determination 

of transition points (Colquhoun and Sakmann, 1985). However, even the most 

advanced methods have previously required user-defined inputs such as 

event trigger thresholds and the selection of some particular  low-pass filter 

cut-off frequency.  

As an alternate to these methods, we now test  Rissanen’s Minimum 

Description Length Principle (MDL) to provide an idealization algorithm based 

on “structural breakpoint detection” (Rissanen, 1978;Lee, 2001;Davis et al., 

2006;Killick et al., 2012). Our aim is to provide a fast and unbiased 

idealization of single channel time-series without requiring any user-

dependent a priori model inputs. We assume that the current can be modeled 

stepwise as a sequence of segments of constant amplitude, separated by 

abrupt (instantaneous) transitions to some new current amplitude. The 

algorithm identifies the location of the transitions between segments, and 

calculates the mean current prevailing in each segment. Furthermore, the 
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MDL algorithm performs the calculation of transition locations and amplitudes 

without a priori assumptions of step-size or transition kinetics, and the current 

amplitude in each segment is independent of other amplitudes occurring in 

the recording. To provide a post hoc analysis of the output data, we 

developed a correlation analysis in which the conditional probability of 

observing pairwise adjacent steps is used to infer the number of discrete 

states. Finally, we tested the MDL algorithm on real experimental data from 

human PIEZO1 channels and found that our method revealed the presence of  

substates with alternate conductances. 

 

Methods 

Cell culture and Electrophysiology 

We analyzed current records from the mechanically gated channel PIEZO1 in 

transformed HEK cells maintained in an incubator at 37oC and 5% CO2. 

These cells had been  transfected with 200-500 ng of hPIEZO1 cDNA one-

two days prior to performing cell-attached patch-clamp recordings  at room 

temperature. The resting membrane potential of cells was maintained close to 

0 mV by using a high potassium  bath solution containing 150 mM KCl, 10 

mM HEPES, and 1 mM MgCl2 and CaCl2, adjusted to pH 7.4. The pipette 

solution contained 150 mM KCl, 80 mM TEA, and 10 mM HEPES at pH 7.4.  

During the recordings, the patch membrane potential was randomly stepped 

to voltages within the range of -100 mV to +100 mV and pressure steps were 

applied to the pipette using a high-speed pressure clamp (ALA Scientific) 
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(Figure 6A and B). Data sampling was at  10 kHz, with Bessel filtration at 2 

kHz. 

 

Mathematical Analysis 

The basic assumption in our method is that the opening and closing of an ion 

channel gives rise to instantaneous changes in membrane current, which are 

superimposed on a noisy background of the recording. Accordingly, we 

modeled the time series of currents as a sequence of steps corresponding to 

opening and closing of channels and additive Gaussian noise (ignoring for the 

present the possibility of  state-dependent noise). We define time points at 

which the conductance jumps occur as break points, and the difference in 

mean amplitude on each side of the break point as step height (or step 

amplitude).  

Consider a data set denoted as x = (x1, x2, …, xN) consisting of N data points. 

Here, we define the code length L as the length of the message containing the 

relevant information in the data. The code length, L, need not be constant, but 

varies depending on how the information in x is represented. More effective 

coding schemes generally have low description length. In particular, if x is well 

described by a particular model, it may be more efficient to first encode the 

model parameters, and then encode any deviations from the model 

(Rissanen, 1978; Lee, 2001; Davis et al., 2006). MDL serves  to rank the 

fitness of models of a data set by identifying the particular model producing 

the shortest total description length for the observations; in other words, the 
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task is to select the model providing an optimal tradeoff between model 

complexity and fitting of the data.   

In order to apply MDL to an ion channel recording, we first need to calculate 

the lower bound of the description length of the observed time series, x. 

Considering a time series segment x = (x1, x2, …, xN) with mean value µ, the  

residual sum of squares (RSS) is defined as  

RSS0 = xi − µ( )2
i=1

N

∑                                                                     Equation 1 

We now consider the minimum description length for encoding the data 

sequence (Rissanen, 1978; Lee, 2001). A set of N data points with a 

Gaussian distribution can be most efficiently encoded as the mean value and 

a list of deviations from the mean. Thus, the minimum description length of a 

segment described by a single mean value is given as  

L0 =
1
2
log(N )+ N

2
log RSS0

N
⎛
⎝⎜

⎞
⎠⎟       Equation 2 

In Equation 2 the first term is the description length of the mean value; the 

minimum number of bits required to encode the mean value depends on the 

precision with which it is determined, and that precision is determined by N, 

the number of data points. The second term of the equation is the description 

length of the N deviations from the mean. By convention of information theory, 

base 2 logarithms (log2) are usually used to calculate code length in units of 

bits. However, for the application at hand, we are interested in comparing 

relative changes in code length, and therefore prefer to use the natural 

logarithm, the particular base being irrelevant.   
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We next consider the same sequence of data, but divided into daughter 

segments at k locations defined by 2 ≤ ni ≤ N-1, and where ni < ni+1. We then 

define the residual sum of squares of the divided segment (RSSk) as  

RSSk n1,…,nk{ }( ) =
j=1

Ni

∑
i=1

k+1

∑ xni−1+ j − µi( )2  Equation 3 

where ni is the i’th division point and µi is the mean value of the Ni data points 

between ni-1 and ni. As above, we then calculate the minimum description 

length of the divided segment as (Lee, 2001), 

Lk ni ,…,nk{ }( ) = k2 log(N )+
1
2

log Ni( ) +
i=1

k+1

∑ N
2
log RSSk

N
⎛
⎝⎜

⎞
⎠⎟ Equation 4

 

Here the first term describes the code length for the location in the data string 

of the defined break points, i.e. the points at which the segment is divided into 

k+1 daughter segments. The second term describes the code length of the 

mean value of each segment, and the third term is the code length for the 

residuals. According to the Minimal Description Length Principle, a divided 

segment can be considered a better model of the data only if Lk < L0. In our 

implementation, we applied Equation 4 with k=1 or k=2.  

Step detection algorithm 

Having come this far, the task is now to identify a set of breakpoints 

minimizing the description length of a given dataset. This is inherently a 

complex multidimensional optimization problem. For typical data the number 

of possible segmentations is enormous and a full search for all possible 

breakpoints  not feasible. We therefore search for breakpoints iteratively using 
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a modification of the Binary Segmentation process (Scott and Knott, 1974; 

Kalafut and Visscher, 2008). In brief, we try to locate 1 or 2 breakpoints in the 

full segment and, if successful, we repeat the search on each sub-segment. 

We first try to locate a single break point in the time series. If this putative 

breakpoint fails to reach the MDL criterion, we try to locate two break points. 

Thus, our search is essentially a tertiary segmentation process with an initial 

binary search step. Using numerical tests, we show below that for the binary 

search, the probability of detecting channel-like events depends on the 

recording length, but that this undesirable property is circumvented with the 

tertiary search.  

The algorithm proceeds in the following steps: 

1. Calculate L0 for the segment. 

2. Search for the optimal location for a single break point (k=1). In other 

words, find n* as the n where RSS1 is minimized. Thus, we define n* as 

 

n* = argmin RSS1, ni | lmin < i ∧ i < N − lmin{ }( )   

 

where lmin is a cutoff threshold for the smallest segment allowed. 

Unless otherwise stated we use lmin = 3. 

3. Apply MDL to test whether division at the optimal breakpoint, n*, is 

indeed a better model than for the entire undivided segment: 

a. Calculate L1(n*) using Equation 4 

b. If L1(n*) < L0 the segment is divided at n*and the procedure is 

repeated from step 1 for each of the two daughter segments. 
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Thus, if the single breakpoint is accepted in step 3b, the algorithm is repeated 

from step 1. Otherwise, we proceed by evoking the tertiary search noted 

above, thus trying to locate two breakpoints in the segment:  

4. Find the pair{m1
*,m2

*}  for which RSS2 is minimized. 

5. Apply MDL to test if a model with divisions at the two breakpoints,

{m1
*,m2

*} , provides a better model than the undivided segment: 

a. Calculate L2({m1
*,m2

*} ) using Equation 4 

b. Accept {m1
*,m2

*}  as break points if L2({m1
*,m2

*} ) <  L0 

6. If the breakpoints are accepted, we repeat the procedure from step 1 

onward for each daughter segment.   

The algorithm proceeds until no sub-segment is further divisible  (into two or 

three parts). Ultimately, the algorithm produces a list of breakpoints and the 

mean value of the segments follows easily.   

The number of calculations using the tertiary search in step 4 scales with N2. 

However, in data containing many breaks, the binary search, i.e. steps 1-3.b 

of the search algorithm, is often by itself sufficient to decompose the 

sequence into shorter segments. This reduces the total computing time 

because the computationally demanding tertiary search is evoked on shorter 

sub-segments later in the search (see Figure 3).  

We tested a number of alternate criteria for the detection of break points. 

Similar results were obtained when putative break points were tested using 

the Bayes Inference Criterion (BIC) (Schwarz, 1978), although a minimum 

segment length (lmin=10) was required to avoid false segmentation of small 
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segments. The Akaike Information Criterion (AIC) (Akaike, 1973) allowed 

many false steps, and was thus considered inappropriate in the present 

application (data for BIC and AIC are not shown). Similar observations have 

been reported by Kalafut and Visscher (2008), who used BIC in their event 

detection algorithm. We note that the alternate criteria BIC and AIC both 

require a priori knowledge of the variance of the noise. While this is estimable 

from a segment of the time series in which no steps/transitions were apparent 

by visual inspection, such a manual approach introduces bias favoring higher 

baseline noise models. However, the MDL method does not require this 

potentially subjective operation, and has superior performance in terms of low 

number of false positives.  

The step detection algorithm with MDL was implemented in MATLAB and is 

available on MATLAB central file exchange (Dreyer, 2016). It is also available 

as a plugin for ion-channel analysis software QuB 

(https://www.qub.buffalo.edu/download/). 

Computational Complexity 

The RSS of N points was computed with O(N) time complexity, using a well-

known incremental one-pass method (Chan et al., 1983). 

𝜇! =
1
𝑖 𝑖 − 1 𝜇!!! + 𝑥!  

𝑅𝑆𝑆! = 𝑅𝑆𝑆!!! + 𝑥! − 𝜇!!! ! − 𝑖 𝜇! − 𝜇!!! ! 

We derived the decrimental form, which removes a point from the distribution 

by solving for µi-1 and RSSi-1. 
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𝜇!!! =
1

𝑖 − 1 𝑖𝜇! − 𝑥!  

𝑅𝑆𝑆!!! = 𝑅𝑆𝑆! − 𝑥! − 𝜇!!! ! + 𝑖 𝜇! − 𝜇!!! ! 

With these methods, the optimal break point, n*, was found with O(N) 

complexity. We initialized the left-hand distribution DL with the first lmin points, 

and the right-hand distribution DR with all N points.  The RSS2 of the first 

break point candidate is then the sum of the left- and the right-hand 

incremental RSS values. We computed the RSS2 of each subsequent 

candidate by adding a point to DL and removing it from DR. The tertiary search 

for the pair{m1
*,m2

*}  was implemented by evaluating, for all possible m1, the 

optimal binary division of points m1...N, thus meeting the criterion for O(N2) 

complexity. 

The overall complexity of the algorithm depends on the scale of the input data 

and the order in which intervals are segmented. Considering for example the 

binary segmentation  of an interval sequence ABCDEFGH (i.e.NI=8 intervals), 

in the best possible case this might  be decomposed first as ABCD, EFGH, 

then AB, CD, EF, GH, and finally  A, B, C, D, E, F, G, H. The tree's height, or 

in other words the number of generations, is then g=log2(NI). In the worst 

case, the sequence might be first  decomposed into A, BCDEFGH, then A, B, 

CDEFGH, and so on, and g = NI-1, or O(NI). Since each generation involves a 

linear pass through the data, the intervals will be fully split with O(gN) 

complexity. If signal-to-noise ratio (SNR) is low, intervals are found by the 

tertiary search, which increases the complexity to O(gN2). Thus, in many 

applications, the SNR is a critical factor influencing computational burden;  

when SNR is high, most steps are found using a single point search and 
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computation time  grows like O(gN), but when SNR is low, double point 

search dominates, such that computation time grows like O(gN2).  

We tested the computation time of the MDL algorithm and compared with 

timing of HMM based segmentation using ‘viterbi_path’, a MATLAB 

implementation of the Viterbi algorithm coded by Kevin Murphy (Murphy, 

1998).  We performed the test  on a Macbook pro (2.3 GHz Intel Core i7) 

using the builtin MATLAB timer functions ‘tic’ and ‘toc’. We took care to 

ensure that the process used more than 99% of resources in a single CPU 

core.  

Coherence spectra 

We determined the coherence of the idealized output of the sequence with the 

input sequence as a function of noise level (Figure 2).  At each defined SNR, 

we generated five data sequences, each consisting of 131072 data points, 

using a single Markov process. We average the coherence spectra in sections 

of 1024 points  with 50% overlap and Hamming window using the MATLAB 

function ‘mscohere’.  

 

Correlation between neighboring events 

The outputs of our algorithm are a list of breakpoints indicating the locations 

where the current is found to change abruptly, and the step amplitudes at 

these locations. Since the breakpoints and step amplitudes are determined 

independently, one therefore needs to undertake post-processing in order to 
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analyze properties of single channels, in particular when there are transitions 

between states of various condutance.  

We define the step amplitude si is defined as µi+1 - µi . The precision of si 

compared to the true value is given by 

β = li + li+1
σ 2   

Equation 5 

where li+1 and li is the length of each of the adjacent segments and σ2 is the 

variance of the noise.  

Consider a list of M step amplitudes, s1, s2, …, sM determined from an ion 

channel recording. We denote by P(x) the probability of observing a step of 

size x, and calculate this probablity as  

P(x) =
n sj = x ±

Δ
2

⎛
⎝⎜

⎞
⎠⎟

M
    Equation 6 

Here, the numerator indicates the number of steps with amplitude x and within 

a bin-width Δ, and the denominator is the total number of observed steps.  

Our aim is to determine how often steps of amplitude x were immediately 

followed by steps of amplitude y in the recording. To this end, we therefore 

first define Pxy as the joint probability of observing a step of amplitude x being 

immediately followed by a step of amplitude y: 
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Pxy =

n sj = x ±
Δ
2
∩ s j+1 = y ±

Δ
2

⎛
⎝⎜

⎞
⎠⎟

M
 

Equation 7 

Here the numerator indicates the number of steps with amplitude x±Δ/2 

followed by steps of amplitude y±Δ/2. The correlation between subsequent 

neighboring steps was then calculated as 

Cxy = Pxy − P(x)P(y)      Equation 8 

The sign of C indicates if particular transitions are over- or underrepresented 

relative to an independent process, and may thus provide physiologically 

relevant details of the underlying step-generating mechanism. In particular, 

Cxy  > 0 if the observation “step of size x is followed by step of size y” happens 

more frequently than if the observed sequence was purely random and Cxy  < 

0 if it is less frequent. We used the MATLAB function ´hist3´ to generate joint 

probability histograms, selecting a bin width Δ in the range  5-10% of the 

typical maximal amplitude. The resultant joint probability distributions, Pxy and 

Cxy, were smoothed using a 2D Gaussian kernel with a half-maximum width of 

1 bin-width. If either P(x)=0 or P(y)=0 (that is to say, if no events occurred with 

amplitudes x±	 Δ/2	 or y±	 Δ/2), the correlation is undefined. In the analysis 

below we consider regions where the bin counts in the joint probability 

histogram ≤ 1 as undefined and these regions are indicated by white in the 

plots.  
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Generation of simulated  data 

We used simulated data for evaluating the basic properties of our step 

detection method (Figure 1 - Figure 5). As test data for quantifying the 

reliability of our detection mechanism, we simulated a simple two-state ion 

channel with the transition probability between conduction states being 1/100 

per time step (Figure 1). The kinetics and noise in the test data were 

deliberately defined so as to challenge the limits of our detection method. Test 

data for quantifying the false positive detections consisted of homogeneous 

sequences of random numbers with a Gaussian distribution. This process was 

also used for coherence spectra (Figure 2) and timing measurements (Figure 

3) 

To compare our MDL-based detection methods to other methods (Figure 4), 

we used simulated test data consisting of N = 5*106 data points generated by 

a two-state Markov Model with equal probability for each state. Here, the 

transition probability of the Markov chain was 10-3 in each time-step and the 

standard deviation of the Gaussian noise was equal to the step size between 

Markov states, giving a SNR equal to 1. The slightly slower transitions kinetics 

used for test data in Figure 4 compared to the test in Figure 1 were chosen 

to provide test data for which the methods to be compared would all perform 

reasonably well.  

We then applied MDL-detection to a simulated recording of three independent 

ion-channels with a complex structure of sub-conductance states (Figure 5). 

Each channel had one closed state (C0) and 4 open states (O1, …, O4) linked 

according to  
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Equation 9  

The amplitudes from the states C0, O1,…, O4 are 0, 0.1, 0.3, 1, and 1. Thus, 

O3 and O4 are degenerate fully open states whereas O1 and O2 are nearly 

closed states but with some residual current. The rate constants are 

presented in Table 1. The rates of transition from state O2 are relatively faster 

than the other rates, thus making O2 a short-lived state.  

Parameter Value (per time-step) Value (if sampled at 40 

kHz) 

k01 10-4 4 s-1 

k10 10-4 4 s-1 

k12 10-5 0.4 s-1 

k21 5 x 10-3 200 s-1 

k13 10-4 4 s-1 

 

C0

k01
!
k10

O1

k12
!
k21

O2

k13 k31 k24 k42

O3

k34
!
k43

O4

! !
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k31 2 x 10-4 8 s-1 

k34 2 x 10-4 8 s-1 

k43 10-3 40 s-1 

k24 5 x 10-3 200 s-1 

k42 5x 10-3 200 s-1 

Table 1: Transition kinetics of simulated complex channel used in Figure 5. 

States are described by Equation 9. 

 

Threshold-crossing and QuB analysis of synthetic data 

We tested the MDL method against a threshold-crossing algorithm and the 

Viterbi algorithm as implemented in QuB (Rabiner, 1989; Nicolai and Sachs, 

2013). The test was performed under optimal detection conditions for the 

competing algorithms: For the threshold crossing algorithm, we used prior 

information of the unitary steps in the process to set the detection threshold to 

0.5. We applied low-pass filtering of the time-series in order to ensure 

reliability of the step detection by threshold crossing. In the next step we 

tested the sensitivity of the threshold crossing method against low-pass 

filtering by applying three different filters with cutoff frequency at 1/20, 1/40, 

and 1/80 times the Nyquist frequency (corresponding to 1, 0.5, and 0.25 kHz if 

the time-series modeled a real recording sampled at 40 kHz). Low-pass 

filtering was done using a digital three pole Butterworth filter. For easier 

comparison with MDL, each segment between detected steps was assigned 
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its own mean value based on the unfiltered data points in the segment. The 

entire step-detection algorithm was coded in MATLAB.  

For the sake of comparison, the same simulated data were also analyzed 

using the QuB software (Nicolai and Sachs, 2013). This approach uses the 

Viterbi algorithm to provide the most likely path through the state space of the 

HMM given the observed data. To provide the best possible conditions for 

event detection by this method we fitted data to the same two-state Markov 

model that was used to generate the test data.  
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QuB analysis of hPIEZO1 channel unitary current 

Data containing multiple open levels which varied in amplitude were first 

analyzed in QuB using the Segmental K-Means (SKM) algorithm (Qin et al., 

1996b;1997) to idealize the events. We used a model with one or two open 

states to find the levels. The MDL algorithm was subsequently applied to the 

same dataset in order to evaluate its performance against the model-based 

approach. In the two-state model (SKM2), the initial estimates of the current in 

the closed and open states were assigned manually before idealizing the time 

series. In the three-state model (SKM3), we included a sub-state for which we 

set the starting estimate to 0.4 pA. Here, the three states were connected 

linearly and subjected to detailed balance. SKM recognized all occurrences of 

the predefined states from the entire trace; i.e. the two-state model 

recognized two states (closed and open) and the three-state model 

recognized the presence of three states (closed, low-conductance open-state 

and high-conductance open-state). 

 

Results 

Validation on simulated data 

We first asked how well our method resolved a simple sequence consisting of 

a simulated single channel embedded in Gaussian noise. The channel was 

modeled as a two-state Markov process of unit step-size, with equal 

probability of being either open or closed, and with a state transition 

probability of 1/100, and the added Gaussian noise was set at SNR = 3.3 or 
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SNR = 1 (Figure 1A top and lower panel respectively). On average, 98% of 

the steps were detected at SNR = 3.3 (low noise) and only 50% at SNR = 1 

(high noise). The fraction of detected steps did not depend on record length 

(Figure 1B, solid green, low noise; solid blue high noise), whereas detection 

deteriorated in longer records when using the binary search alone, in 

particular at high noise levels (Figure 1B, dashed green, low noise; dashed 

blue high noise). 

We next asked if the algorithm would generate false positive steps (Figure 

1C). In general, false positives occur when a subset of consecutive data 

points randomly has a mean value sufficiently different from the rest of the 

segment to fulfill the MDL criterion. When analyzing any data set with many 

segments, there will be some finite probability that this occurs. To determine 

this probability, we constructed data series with a different total number of 

data points, N, but without deliberate introduction of any steps. For segments 

with N > 100, the method detected virtually no false positive steps. The 

probability of erroneously dividing the segment one or more times was 6 ± 1% 

for segments with 10 < N < 100 (Figure 1C, black). Only in segments with N < 

10 was there any appreciable risk of detecting false positive steps. Increasing 

the minimum acceptable segment length, lmin, to 3 or 5 reduced the risk of 

false positive steps in short segments, but had negligible effect on event 

detection in longer segments (Figure 1C; lmin = 1, black, lmin = 3, red, lmin = 5, 

blue).  

Thus, the risk of generating false positive steps is greater within short 

segments (Figure 1C). This observation has implications for application of our 

method for analyzing data with fast kinetics under high SNR. For example, 
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63% of the segments of the input data in Figure 1A are shorter than 100 data 

points. Under conditions of high SNR, where the algorithm is able to detect 

most true transitions, some of the resulting segments can be sufficiently short 

to risk instances of false positive segmentation. In order to differentiate 

between genuine transitions and errors, we compared the expected precision 

(Equation 5) of the transitions (based on the length of adjacent segments) and 

the observed step (lmin = 1). Under high SNR, we found that the amplitude 

deviated more than expected on the basis of the precision estimate in 5% of 

the identified transitions, and that many of these occurrences had small |Δx| 

(Figure 1D, SNR = 3.3, dots indicate observed step and estimated precision. 

Red lines indicate 4 standard deviations from unity). In data with low SNR, the 

algorithm does not capture the shortest segments, and false positives will thus 

be rarer. Under low SNR, 4% of the transitions lay outside the expected range 

(Figure 1E, SNR = 1). This was presumably because the algorithm stopped 

before all segments were detected. In biological data, where we do not always 

have prior knowledge of typical step amplitudes and kinetics, we used lmin = 3 

to reduce putative false positive detections.  

To verify that our method gave relevant information of the state-transitions, we 

calculated the joint probability histogram of neighboring steps. As the step 

generation mechanism was by definition a two-state Markov process 

(simulating a single simple channel with open and closed states), each step 

must necessarily be followed by an inverse step. We found that the 

conditional histogram showed exactly this predicted behavior: the vast 

majority of +1 steps (transition from closed to open state) were followed by -1 

steps (transition from open to closed states) and vice versa (Figure 1F, low 
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noise; Figure 1H, high noise). The correlation plot revealed the Markov 

structure of the process: +1 steps correlated positively with ‘-1’ steps, and vice 

versa, whereas +1 steps correlated negatively with other +1 steps (Figure 

1G, low SNR; Figure 1H, high SNR).  

The above analysis showed that the algorithm resolved long segments, 

whereas sometimes missed short segments at low SNR.  To characterize 

further the performance of our algorithm, we calculated the coherence 

spectrum between the input time series and the idealized output (Figure 2). 

Coherence was nearly 1 at low frequencies (indicated as inverse segment 

length) but decayed at high frequencies. At SNR = 1 (Figure 2, purple), 

coherence was ~0.5 at frequencies corresponding to segments of length 

n~100. This is consistent with our observation above that for a process with 

mean segment length 100 and SNR = 1, MDL detected roughly 50% of the 

segments (Figure 1B, solid blue). The observed roll-off at higher frequencies 

indicates that the idealized output failed to resolve shorter segments. At 

higher SNR the roll-off occurred at higher frequencies (higher values of 1/n), 

indicating that our algorithm was able to resolve increasingly finer details of 

the input (Figure 2; SNR 3.3, yellow; SNR 10, orange; SNR 33, blue). Thus, 

our algorithm resolves transient details, but in a manner limited by the SNR. It 

follows that our algorithm can resolve noisy data, even with SNR < 1, if the 

kinetics ensure that typical segments are sufficiently long.  
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The combination of binary and tertiary search saves 

computation time 

We determined the computation time for MDL to resolve data as shown in 

Figure 1A on a typical laptop computer (Figure 3). With SNR = 3.3 (as in 

Figure 1A upper), computation time scaled linearly with sequence length and 

was uniform across 10 trials. For example, the processing time for a 

sequence of 500,000 data points had a mean of 7.2 s (range 6.8 to 8.9 s)  

(Figure 3, blue circles show mean and error bars show range). With SNR = 1 

(as in Figure 1A lower), the computation time was significantly higher and 

more variable between trials. For example, the mean processing time for 

500,000 data points was  ~1000 s (range 75 – 3600 s) (Figure 3, red dots 

show mean  and error bars show range from n = 10 iterations).  

The computation time for uniform random data was even longer, did not vary 

between trials, and the processing time scaled with the square of the 

sequence length (Figure 3, yellow dots computation time for a single trial). To 

provide a comparison with HMM-based methods, we found the processing 

time for analyzing the sequences using our MATLAB implementation of the 

Viterbi algorithm to be linear and independent of SNR (Figure 3, purple 

asterisks show computation time for a single trial at SNR = 3.3).  

The differences in computation time reflect which method is most involved in 

the search for breakpoints. While the binary search is fast, albeit apt to miss 

breakpoints in long segments, the tertiary search is computationally 

expensive, but is required to enable uniform recovery at different record 

lengths (Figure 1B, compare dashed and solid). However, our approach of 
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combining binary and tertiary searches reduces computation time and 

enables computationally efficient searches on datasets with multiple 

breakpoints.  

Comparison with other idealization methods 

Our motivation behind developing the MDL algorithm is to enable unbiased 

event detection and idealization of real electrophysiological data. The 

algorithm is designed to idealize ion channel recordings without user-specified 

inputs, and with the fewest possible assumptions, thus providing a versatile 

and general tool. We concede that other methods of idealization might be 

optimal for a particular system, thus providing more information in a particular 

application. In order to compare the fitness of other specialized methods to 

MDL, we analyzed a simulation consisting of a simple two-state Markov model 

emitting 0 or 1 with equal probability and Gaussian noise with standard 

deviation 1 (Figure 4A). The transition probability between states was set to 

10-3 per time step, a 10 times slower process than used above (Figure 1 - 

Figure 3). The distribution of step-lengths, i.e. the dwell time in each state, 

followed an exponential decay function (Figure 4B and C, black).  

In this comparison of methods, we first applied threshold-based event 

detection on the simulated data. The threshold was set at 0.5, i.e. the 50% 

level between the two states. At the noise level used in the test, threshold-

crossing required prior low-pass filtering of the data. For this, we used a 3-

pole Butterworth low-pass filter, and tested the effect of three levels of 

low-pass filtering, i.e. at FNy/20, FNy/40, and FNy/80 (these filters correspond to 

1, 0.5, and 0.25 kHz in relation to 40 kHz sampling).  
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The algorithm’s ability to detect short duration events using a threshold 

proved to be highly dependent on the filter width, with best sensitivity at  

FNy/40 (Figure 4A, dark blue, Figure 4B and C, dark blue – note that the dark 

blue overlaps other colors, with the exception of cyan in Figure 4B). With too 

little filtration, i.e. FNy/20, the threshold algorithm detected many false-positive 

events (Figure 4B, cyan). On the other hand, with excessive  filtration of the 

input data, i.e. FNy/80, there was a penalty in the ability of the threshold-based 

algorithm to detect short segments (Figure 4C, cyan).  

We next analyzed the data using QuB (Figure 4A, green). This approach 

uses the Viterbi algorithm, which provides the most likely sequence of states 

given an observed sequence of emissions, and provided that the probability of 

observing a particular emission from each state is known (Rabiner, 1989), 

without requiring low-pass filtering. The overall distribution of dwell times was 

similar to the input sequence (Figure 4B, green), although the probability of 

detecting transitions with a dwell time less than ~30 time-steps was lower 

than for the case of threshold-based detection (Figure 4C, compare green 

and dark blue).  

We then applied the MDL method to the data (Figure 4A, red). Overall, MDL 

performed well on the test data, and the distribution of dwell times matched 

the theoretical result (Figure 4B, red) (see also Figure 2, SNR = 1, typical 

segments in the input has n=1000 data points). The probability of detecting 

segments briefer than 30 time-steps was reduced to the same degree as seen 

with QuB. With MDL, there was a slight overrepresentation of segment 

lengths between 50 and 100 time steps, which we did not see with  QuB. This 

bias of MDL is presumably due to the same effect as illustrated in Figure 1C, 
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where brief segments face a certain risk of being erroneously sub-divided. 

The lower detection limits observed by QuB and MDL are determined by the 

SNR of the input data, rather than being an intrinsic property of these 

methods. The event detection by MDL had a similar distribution and 

correlation pattern as did the threshold crossing method (compare Figure 4D 

and E, with F and G). 

These simulation results show that it is possible to optimize detection 

methods by taking into account prior knowledge of the process, such as 

kinetics and step size. The highest temporal resolution was found with the 

optimally filtered threshold-based method, and the accuracy of detection of 

true amplitudes was highest with the HMM based method. The MDL-based 

detection method, on the other hand, is designed to be generally applicable. 

When applied to simple processes it may provide an independent 

confirmation of the sorts of assumptions and constraints used in more refined 

analyses. 

 

Detection of sub-states in multiple channels 

Many types of data do not lend themselves to analysis by conventional 

methods. For example, currents arising from background channels can be 

present in the data recording, or individual channels can exhibit transitions 

between sub-states. In these cases, MDL-based detection is still reliable. As a 

test of our algorithm on complex data of this type, we simulated the combined 

output of three simultaneously active, independent, and complex ion-

channels, each as given by Equation 9. The simulation generated output from 
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states with long and short dwell times and different current amplitudes. The 

expected amplitude steps defined in the dataset are ± 0.1 (from C0 to O1), ± 

0.2 (from O1 to O2), ± 0.9 (from O1 to O3) and ± 0.7 (from O2 to O4). 

Transitions from O3 to O4 will not give a step in current, but these two states 

have different transition kinetics to the other states. We analyzed the same 

simulated dataset with different levels of noise (Figure 5 A1-A3 shows part of 

the test data with noise (gray), original state emissions (black), MDL idealized 

(red)).  

The first idealization of the recordings was in a condition of low noise (Figure 

5 A1, black and red traces superimposed, SNR = 33. The MDL algorithm 

detected multiple steps at the same amplitudes as defined for the channel (± 

0.9, ± 0.7, ± 0.2, and ± 0.1; Figure 5 B1, compare black and red). There was 

a small fraction of false-positive detections clustered about the origin of the 

histogram. Based on a comparison with Figure 1C, this bias is most likely due 

to the favored detection of very short segments under a condition of low 

noise.  

The complex state transitions of the simulated channels (Equation 9) were 

apparent in the joint probability histogram of neighboring steps. This 

histogram depicted numerous open events followed by closing events (Figure 

5 C1, along the diagonal in the lower right quadrant). and also many closing 

events followed by open events, Figure 5 C1, along the diagonal in the upper 

left quadrant). In addition, numerous off-diagonal events were observed.  

We see a similar pattern in the corresponding amplitude correlation map 

(Figure 5 D1). Here, the most highly correlated transition was +0.7, and the 
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second most common -0.7, and vice versa. This result is doubtless because 

of the rapid flickering between O2 and O4, as defined in the model. Events 

with a -0.1 step (transition from O1 to C0) were  highly correlated with a +0.1 

step (transition from C0 to O1). We also found steps of -0.7 to be highly 

correlated with steps of +0.7 (Figure 5 D1, upper left quadrant, reflecting 

transitions from O4→O2 →O4) and also with -0.2 transitions (reflecting O4 →  

O2→O1), and note that the O4→O2 transition seemed more strongly 

correlated, whereas the O3→O1 transition was less correlated. These results 

presumably arise from the kinetics of transition away from O1 being slower 

than from O4. Therefore, in the presence of other channels, slow transitions 

like O3→O1→O3 are not often observed directly in step detection, because 

they are likely to be interrupted by events in other channels.  

We next analyzed the same simulated recording under increased noise levels 

(Figure 5 A2, SNR = 3.3; and A3, SNR = 1). As expected, the sensitivity of 

detection gradually declined for small amplitude events, and the estimation of 

the plateau magnitudes became more influenced by the SNR (Compare red 

and black lines in lower panels of Figure 5 A2 and A3 and in B2 and B3). The 

joint probability histogram and correlations between neighboring steps were 

remarkably robust, and most transitions observed under very low noise 

(Figure 5C1 and D1) were also detected in recordings with moderate noise 

(Figure 5C2 and D2). At high noise, only the most dominant amplitude events 

were discernable. In that condition, it was no longer possible to clearly 

distinguish ± 0.7 from ± 0.9 events. Even though the detection limit was 

limited by noise, it remained possible to identify C0→O1→O3 (Figure 5 D3, 

small peak at [Δxn, Δxn+1] = [0.1, 0.9]), O1→C0→O1 (Figure 5 D3, small peak 
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at [Δxn, Δxn+1] = [-0.1, 0.1]), and O3→O1→C0 (Figure 5 D3, small peak at 

[Δxn, Δxn+1] = [-0.9, -0.1]). 

Thus, our analysis of simulated recordings predicts that the algorithm should 

successfully resolve subconductance structures even under high noise 

conditions and in the presence of potentially interfering signals arising from 

multiple channels. 

 

Analysis of human PIEZO channels 

We tested the MDL method for analysis of experimental data from human 

PIEZO1 ion channels. The PIEZO1 channel is a mechanosensitive receptor 

that is activated by membrane tension (Cox et al., 2016), which can be 

applied experimentally by stretching patched membranes with either positive 

or negative pressure (Besch et al., 2002). This channel activates and 

deactivates rapidly, tracking closely the onset and termination of the pressure 

stimulus. It also shows voltage-dependent inactivation, which is faster at 

hyperpolarized membrane potentials. In our preparation we observed 

openings to multiple levels during application of steady pressure; some of 

these open levels may in fact represent sub-conductance states of the 

channel, affording a useful test of the performance of our MDL algorithm. 

The analyzed segment lasted 140 s and contained 14 episodes of applied 

stimulus, each of 5 s duration, with a 5 s relaxation interval between the 

stimuli. We held the patch  at five different potentials during the recording 

(Figure 6A shows the voltages and Figure 6B the suction pulse train that 
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served as the mechanical stimulus; Figure 6C shows the recorded current). 

The drift in the baseline leakage current resulting from changes in voltage was 

cancelled using the baseline algorithms in QuB (www.qub.buffalo.edu), 

whereas the MDL method was applied to the unfiltered current trace. MDL 

detected the channel opening events even though the unitary current 

amplitude changed as a function of the potential applied across the patch 

(Figure 6C, compare amplitude of steps in red, blue, and green highlights). 

The MDL algorithm also detected current steps of multiple sizes (Figure 6C, 

putative sub-state currents indicated by arrows in red and green highlights). If 

the membrane potential was -60 mV or more negative, the current steps 

appeared to reflect openings of different duration and current (Figure 6C, 

arrows in red and green highlight indicate small current events). At low 

polarization (-20 mV), these events were detected only rarely, presumably 

because their amplitude fell below the noise detection limit. The algorithm 

detected 125, 191, 985, 230, and 632 events at -20 mV, -40 mV, -60 mV, -80 

mV and -100 mV respectively. A total of 78 events that were detected in 

proximity to recording artifacts occurring at changes in holding potential were 

ignored in the analysis (see asterisks in Figure 6C). 

To facilitate analysis across the different voltages of the time series, we 

divided the MDL-detected current steps by the concurrent holding potential to 

calculate changes in conductance, Δg. assuming channel conductance is 

linear. The event amplitude histogram presented a wide range of conductance 

steps with peaks at Δg = ± 28 pS, but we also observed smaller transitions 

down to Δg = ± 6 pS (Figure 6D). The relative fraction of smaller conductance 

steps varied with the holding potential. Thus, at -20 and -40 mV the algorithm 
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detected relatively few steps with amplitude lower than 28 pS. However, 

higher holding potentials revealed a wide distribution of different amplitudes, 

although steps at ± 28 pS amplitude were always present and appeared to be 

the dominant amplitude.  

We then analyzed the joint probability distribution and correlation of 

neighboring steps at different holding potentials (Figure 7A and B shows -60 

mV, C and D shows -100 mV). The main transitions at ± 28 pS were clearly 

identified at all holding potentials (Figure 7A and C shows -60 and -100 mV, 

other holding potentials not shown). However, there were some notable 

differences as a function of the voltage. For example, at -60 mV the +6 pS 

open steps were frequently followed by a -6 pS closing step, whereas other 

sub-states were infrequent. However, at -100 mV holding potential there was 

a wider range of sub-amplitude openings, including ± 10 and ± 16 pS.  

Multiple factors must account for the details of the observed channel kinetics, 

and a full characterization of hPIEZO1 channel properties is beyond the scope 

of this report. For the present, we emphasize that the unsupervised MDL 

idealization and our joint probability and amplitude correlation method proved 

to be sensitive to the changes in the full open amplitudes and sub-states. 

Thus, our method may provide a firm foundation for subsequent analysis 

using this model approach.  

Several methods are already available for the analysis of single-channel data. 

To get an understanding of performance of the MDL method in comparison to 

the established techniques, we analyzed a segment of the hPIEZO1 data with 

QuB using the Segmental K-means (SKM) method to estimate the unitary 
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channel amplitudes. Unlike MDL, this method explicitly employs a defined 2- 

or 3-state model, with user-defined rates emulating the inverses of the 

observed closed and open state lifetimes. We chose an arbitrary part of the 

recorded segment for the MDL analysis (Figure 8A, indicated by the 

rectangular inset in Figure 6C). The segment was recorded at -60 mV holding 

potential, where ± 6 and ± 28 pS were the dominant transitions according to 

the analysis above (Figure 7 A and B). 

We first idealized the segment using SKM for a 2-state ion channel. The 

idealized current trace contained 40 open or closed events. The analysis 

yielded a transition between the closed state and a single open state of 29.8 

pS conductance. Visual inspection confirmed that the idealization detected the 

high amplitude openings but missed a number of smaller amplitude openings 

(Figure 8B, compare SKM 2 and SKM 3 or MDL).  

When the segment was reanalyzed with SKM using a 3-state 

linearly-connected model, the idealized data contained 86 events. Now the 

event sizes were either Δg = ± 6.7 pS or ± 23.2 pS. The current at the fully 

opened state was  29.8 pS, equal to the sum of the two main event sizes. By 

visual inspection, the smaller event size appeared to reflect opening to the 

same sub-conductance state discussed above (see arrows in highlighted 

parts of Figure 6C). 

We then idealized the data segment using the MDL method, which detected 

61 events and proved to be sensitive to most of the visually-observed 

openings to both the sub-state and the fully-open state. The apparent 

amplitude of the events was roughly the same as for the 3-state SKM 
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approach, although MDL appeared slightly conservative, in failing to capture 

some possible small amplitude events detected by the 3-state model (Figure 

8B).  

 

Discussion 

Analysis of currents from a membrane patch containing an unknown number 

of channels in the presence of a noisy background or leakage current is 

challenging, regardless of the applied algorithm. The various available 

methods all have different strengths and weaknesses. Most of the currently 

used methods require some degree of user-dependent input and supervision, 

through selection of a low-pass filter followed by application of an 

event-detection threshold, or a priori Markov models. While such methods can 

have good performance in analyzing records with a few simple channels, 

there is currently no way of accommodating complicated records, which may 

contain events of differing amplitudes and kinetics. While the HMM based 

methods use a kinetic model to estimate the individual channel current 

amplitudes, the observed amplitudes are relatively insensitive to the 

magnitude of the transition rate constants (Qin et al., 1996a). For dealing 

better with multichannel currents from identical channels, the MAC 

(macroscopic) algorithm in QuB (Milescu et al., 2005) is robust for estimating 

transition kinetics, the number of active channels in the pool, and the mean 

jump size arising from an arbitrary stimulus (Bae et al., 2013). 

Here we show that the Minimum Description Length principle (MDL) enables 

idealization of patch recordings in a user-independent manner. We find that 
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this method can be applied to raw data without the need to correct baselines, 

and has good performance even in cases where event amplitude changes 

during the recording (Figure 6 and Figure 7). We provide proof of this 

principle based on three main findings. First, we applied our method to 

simulated  data and investigated the limits for detection. These simulations 

showed our method to be efficient for detecting events with multiple 

independent Markov processes under various noise levels. Finally, we used a 

novel correlation analysis to relate the results to the transitions of single 

channels.  

Our approach required the solution of two sub-problems: First, we needed an 

objective criterion for model selection. More precisely, it was necessary to test 

whether a complex model of the data using many discrete segments is 

superior to a simple model with fewer segments. For this type of assessment, 

several measures of quality have been proposed, among which the Akaike 

Information Criterion (Akaike, 1973), Bayes Inference Criterion (Schwarz, 

1978), and the Minimum Description Length Principle (Rissanen, 1978;Lee, 

2001). In our hands, MDL proved to work best, and we derived a cost function 

that described the balance between model complexity and fitness. Optimizing 

the cost function posed a second challenge: Calculation of the description 

length depends on multiple interdependent variables, all of which contribute to 

the cost function. A full search of all possible combinations in solution-space 

is not universally applicable, since the expected number of events in real data 

is often in the thousands, which would be computationally impossible. Instead, 

we resorted to an iterative procedure in which breakpoints were inserted 

sequentially. One method for this is presented by the binary segmentation 
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process (Scott and Knott, 1974;Kalafut and Visscher, 2008). However, when a 

binary search was applied to simulated data, the fraction of detected steps 

declined as a function of record length. In contrast, no such dependence was 

observed when implementing a tertiary search, where the algorithm searches 

for possible combinations of two break points before terminating (compare 

solid to dashed lines in Figure 1B). A binary search was used in the method 

presented earlier by Kalafut and Visscher (2008) for analyzing movement of 

the molecular motor kinesin. Presumably, loss of detection in long time series 

is less of a concern in their application because the motion of kinesin has a 

preferred direction, which makes it simpler to decompose the time series into 

segments. For ion channel applications, time series are often generated by a 

stationary random process, which makes it more unlikely that breakpoints 

inserted one by one fulfills the criterion given by Equation 4. Thus, resolution 

of typical data for our application also requires the more elaborate tertiary 

search method where breakpoints are inserted two by two. However, to 

optimize the computing time and reliability, our algorithm combines binary and 

tertiary searches (Figure 3).  

We anticipate that there could be cases for which the tertiary search method 

will also be sub-optimal. For example, a long time-series constructed of 

alternating segments of equal length would require a higher SNR in order to 

be resolved than would be necessary if the segments were of random length, 

as in our tests. However, this situation is unlikely to occur in real data from ion 

channels for which stochastic processes drive the changes in conductance 

states. Furthermore, were such a circumstance actually encountered, there 
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are convenient analysis methods for accommodating periodicity (Little et al., 

2011).  

Proper use of prior knowledge of the underlying biophysical processes 

generally enhances data analysis. For example, supervised methods such as  

SCAN take into account the presence of low-pass filters, and are thus able to 

determine transition points with accuracy exceeding the sampling rate of the 

data (Colquhoun and Sakmann, 1985). We found that the MDL method 

approached (but did not exceed) the performance of methods that explicitly 

use prior information (Figure 4). In situations where analysis can be 

performed by more specialized methods, the MDL-based method may 

nevertheless serve as an independent test of the model assumptions, and 

guide development of more refined analysis. Due to the minimal number of 

assumptions, our unsupervised MDL method may prove particularly useful for 

complex data from recordings of channels with unknown sub-state structure, 

and in cases where multiple independent channels are active (Figure 5 and 

Figure 8). 

We applied the MDL method to experimental recordings of human PIEZO1 

(hPIEZO1) channels, in which we encountered currents with multiple 

amplitudes (Figure 6 and Figure 7). Our analysis showed that the algorithm 

has particular advantage in situations where prior knowledge of the sub-

conductance states of a channel is lacking. The flexibility of the MDL 

algorithm is a desirable property when performing analyses on large datasets. 

The MDL algorithm is generalized and can be used with time-series datasets 

acquired from other disparate sub-fields of biology characterized by state 

models (Nicolai and Sachs, 2014). 
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Conclusion 

We developed an idealization method based on the minimal description length 

principle for the use of analyzing ion channel recordings. The method was 

validated on simulated data, with characterization of event detection reliability 

under different noise and recording conditions. We the applied the algorithm 

to the analysis of patch clamp recordings of currents from the human PIEZO1 

channel. Results of this test confirmed the algorithm’s fitness  to detect sub-

conductance states.  
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List of Figure Captions 

Figure 1: Evaluation of the step detection method applied to synthetic data. 

Panel A: 1000 data points of unit steps (upper, SNR = 3.3; lower, SNR = 1). 

Input data are shown in black, MDL-idealized data are shown in green, and 

true states are shown in red (note that the green and red lines often coincide). 

Panel B: The tertiary search method provides a constant frequency of event 

detection regardless of recording segment length. Markers show the number 

of detected steps relative to the number of known steps as a function of N, the 

number of data points in the record. Squares (green).: SNR=3.3 Circles 

(blue): SNR = 1. Solid lines show results from the tertiary search, and dashed 

lines show the results from the binary search. Panel C: Analysis of probability 

of false events. Each data point shows mean number of false events from 

5000 sequences of uniform random numbers of length N. Black: lmin = 1, red: 

lmin = 3, and blue: lmin = 5. Panel D and E: Analysis of precision in step 

estimates at SNR 3.3 and 1 respectively. Dots show precision of jump 

estimate as function of observed absolute jump. We calculated the precision 

using the length of the adjacent segments according to Equation 5. Red lines 

indicate 4 standard deviations from the target value at different levels of 

precision.  Panel F: Histogram of neighboring events at SNR 3.3. The x-axis 

shows Δx of event n and the y-axis shows Δx of the following event, n+1. 

Panel G: Correlation of events at SNR 3.3. Detected events display same 

correlations of neighboring events as a simple channel. Red indicates 

neighboring events occurring more frequently than random. Blue indicates 

neighboring events occurring less frequently than random. White areas 
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indicate undefined correlation. Panel H: Histogram of neighboring events at 

SNR 1. Panel I: Correlation of events at SNR 1.  

 

Figure 2: Absolute value of coherence spectrum between input time series 

and idealized time series. Purple, SNR = 1; yellow, SNR = 3.3; orange, SNR = 

10; and blue, SNR = 33. Frequency is plotted as 1/n where n is the length of 

the segment. Horizontal red dashed line indicates 0.5.  

 

Figure 3: Comparison of computation time for different datasets. SNR = 3.3; 

blue dots show mean and vertical lines show range between minimum and 

maximum from 10 iterations.  SNR = 1; orange dots show mean and vertical 

lines show range from 10 iterations.  SNR = 0 (uniform random data), yellow, 

single iteration. Example of scaling by Viterbi algorithm (SNR = 3.3); purple 

asterisk, single iteration. Black lines indicate O(N) (dashed) and O(N2) scaling 

(solid).  

 

Figure 4: Event detection using different algorithms on simple simulated data. 

Panel A: Top; input data (gray) and Markov states (black). Blue states 

detected using threshold crossing algorithm applied on low-pass filtered data 

(low-pass filtered raw data are shown in black in the lower traces of A); green, 

states detected using Viterbi-algorithm as implemented in QuB. Red: states 

detected using MDL-algorithm. Panel B: Distribution of step-lengths. Black, 

step lengths of input; solid blue, threshold crossing on low-pass filtered data 
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(FNy /40); green, Viterbi; red, MDL; cyan, threshold crossing on light low-pass 

filtered data (FNy /20). Panel C: Close-up view of distribution of step lengths. 

Cyan, threshold crossing on heavily low-pass filtered data (FNy /80). Other 

colors as in Panel B. Panel D: Histogram of neighboring events detected by 

thresholding. The x-axis shows Δx of event n and the y-axis shows Δx of the 

following event, n+1. Panel E: Correlation of events detected by thresholding. 

Red indicates neighboring events occurring more frequently than random. 

Blue indicates neighboring events occurring less frequently than random. 

White areas indicate undefined correlation. Panel F: Histogram of neighboring 

events detected by MDL. Panel G: Correlation of events detected by MDL. 

 

Figure 5: Validation on complex simulation data with different levels of noise. 

Data simulates three identical, but independently operating channels. First 

column, Panels A1-D1, is the case for low noise (SNR = 33); second column, 

Panels A2-D2, is for medium noise (SNR = 3.3); and last column, Panels A3-

D3, is for high noise (SNR = 1).  Panel A1-A3: Gray, segment of raw data 

(upper line only); black, true states; red, MDL idealization. Panels B1-B3: 

Histogram of detected steps. Panels C1-C3: 2D conditional histogram of 

neighboring steps. Panels D1-D3: Correlation between neighboring steps.   

Figure 6: Analysis of PIEZO1 channels. Panel A: Membrane potential during 

the recording. Panel B: Mechanical stimulus, dashed line indicates 0 mmHg. 

Panel C: Analyzed current trace. Gray is unfiltered raw data; black is low-pass 

filtered data. Black asterisks indicate capacity artifacts during changes in 

membrane potential; the rectangle indicates the region analyzed in Figure 8. 
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Colored segments (red, blue, and green) are shown in detail below with the 

idealized trace in black. Arrows in highlighted traces (red and green only) 

indicate putative sub-state currents. Panel D: Histogram of channel events. 

 

Figure 7. Correlation analysis of neighboring events in PIEZO1 channels 

recorded at -60 and -100 mV holding potentials. As in other figures, x and y 

scales are arranged so that open events followed by closed events populate 

the lower right quadrant. Panel A: Distribution of neighboring events at -60 

mV. The x-axis shows Δg of event n and the y-axis shows Δg of the following 

event, n+1. Panel B: Correlation of neighboring events at -60 mV. Red 

indicates neighboring events occurring more frequently than random. Blue 

indicates neighboring events occurring less frequently than random. White 

areas indicate undefined correlations. Panel C and D: same as A and B but 

for -100 mV holding potential.   

 

Figure 8: Comparison of MDL and SKM analysis on data from PIEZO1 

channels recorded at -60 mV. Panel A: Analyzed segment (part of recording 

in Figure 6, indicated by rectangular inset in Figure 6C). Raw data, gray; low-

pass filtered, black. MDL idealized, red. Rectangles indicate regions 

expanded below. Panel B: Expanded view of parts of the trace in panel A. 

Top: MDL idealized (red) and low-pass filtered data (black). Middle: Idealized 

by two state SKM (SKM2). Bottom: Idealized by 3 state SKM (SKM3). 

.  
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