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Abstract

Background: Experimentally and clinically collected time series data are often

contaminated with significant confounding noise, creating short, non-stationary

time series. This noise, due to natural variability and measurement error, poses a

challenge to conventional changepoint detection methods.

Results: We proposed a novel, real-time changepoint detection method for

effectively extracting important time points in non-stationary, noisy time series.

We validated our method with three simulated time series, a widely benchmark

data set, two geological time series, and two physiological data sets, and

compared it to three existing methods. Our method demonstrated significantly

improved performance over existing methods in several cases.

Conclusion: Our method is able to effectively discern meaningful changes from

system noise and natural fluctuations, accurately detecting change points. The

ability of the method to extract meaningful change points with minimal user

interaction opens new possibilities in clinical monitoring dealing with Big Data.

Keywords: Machine learning; Changepoint detection; Non-stationary noisy time

series

Background

Various biological and medical settings require constant monitoring, collecting mas-

sive volumes of data in time series typically containing confounding noise [1, 2, 3].

This noise, as well as natural fluctuations in the biological system, create non-

stationary time series, known as piecewise locally stationary time series, which are

difficult to analyze in real time [4, 5, 6, 7]. Immensely important in clinical and
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experimental decision making is the accurate and timely detection of pathological

changes in the observed time series as they occur. Statistically, this may be in-

terpreted as a changepoint detection problem for piecewise locally stationary time

series [8, 9, 10].

The heavy contamination of noise due to measurement error and naturally varying

phenomena, however, make the detection of changepoints challenging, as existing

techniques will often observe non-pathological changes, resulting in false-alarms

and mistrust of detection techniques [11, 12, 13] - the so-called cry-wolf effect.

Extracting meaningful changepoints from naturally occurrig fluctuations and noisy

corruptions remains a challenging research problem. With this setting in mind, we

proposed a novel real-time changepoint detection method to extract a meaningful

changepoint from other changepoints, which may occur due to noise and natural sig-

nal variability. Our method operates autonomously on each individual data steam,

providing clinical information in real-time to assist in decision making.

While existing methods [8, 14, 15, 16, 17], can determine the location of change-

points, they are not able to extract meaningful changepoints in time series with

piecewise locally stationary structure that contain minor changes and large noise

corruption. We propose a novel method, termed the Delta point method, extending

the Bayesian online changepoint detection method of Adams and MacKay [17] and

later Turner [18], to allow a meaningful changepoint to be extracted. Our method

uses fixed time intervals to construct the joint distribution of the number of change-

points per interval, and the average length of time between changepoints in each

interval. The Delta point method is computationally efficient, and rapidly scales

to large data sets. We demonstrate the effectiveness of the Delta point method on

three simulated time series of our own design inspired by existing literature, the

widely used Donoho-Johnstone Benchmark curves [19], nuclear magnetic resonance

recordings from well-log measurements [20],annual lowest water levels of the Nile

River [21], ECG recordings from clinical setting [22],and an experimental data set

of recordings of fetal sheep heart rate variability during experiments mimicking hu-

man labour [23, 24, 25]. The fetal sheep data set contains short time series with

large amounts of measurement noise, while the ECG dataset consists of short time

series, with varying features.
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Methods

Bayesian online change point detection

We begin with a review of the Bayesian online changepoint detection (BOCPD)

algorithm [17]. BOCPD uses a combination of a predictive model of future obser-

vations of the time series, an integer quantity, rt, known as the run length, or the

time since the last changepoint, and a hazard function p(rt|rt−1), which calculates

the probability of a changepoint occurring with respect to the last changepoint, to

calculate the probability of a changepoint occurring. Bayes’ rule is used to compute

the posterior or past distribution of the run length as

p(rt|y1:t) =
p(rt,y1:t)

p(y1:t)
(1)

where y1:t is a vector of past observations of the time series, p(rt,y1:t) is the joint

likelihood of the cumulative run length and observations, calculated at each step,

and p(y1:t) is the marginal likelihood of the observations. The joint distribution

p(rt,y1:t) is computed with each new observation using a message passing algorithm,

p(rt,y1:t) =
∑
rt−1

p(rt|rt−1)p(yt|rt−1,y(r))p(rt−1,y1:t−1) (2)

where p(rt|rt−1) is the hazard function, p(yt|rt−1,y(r)) is the prediction model with

observations y(r) since the last changepoint, and p(rt−1,y1:t−1) is the previous

iteration of the algorithm.

Gaussian processes

We implemented a recently developed predictive model using Gaussian processes

(GP) [18]. A GP is a Gaussian distribution over functions - that is, the distribution of

the possible values of the function follows a multivariate Gaussian distribution [26].

GPs are flexible and expressive priors over functions, allowing patterns and features

to be learned from observed data. A GP is completely specified by a mean function,

µ(x), and a positive definite covariance function, or kernel, k(x,x′), where x and

x′ are different observations. The covariance function generates properties of the

function drawn from the GP, such as smoothness and shape. In our work, we make

use of the rational quadratic covariance function,

kRQ(x,x
′) = 1 +

||x− x′||22
2α`

(3)
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where α is a computing parameter, and ` is the input scale, or distance between

inputs x and x′, which determines the smoothness of the functions.

The observed inputs are collected into a matrix X, and the covariance function

is used to generate a covariance matrix K. Using the regression model, y = f(x) +

εt, where εt ∼ N(0, σ2
t ), and f is generated by a GP with mean function µ and

covariance function k, f ∼ GP (µ, k), the distribution specified over functions is the

multivariate Gaussian,

p(f|X) = N(f|µ,K) =
1√

2πdetK
exp

{
1

2
(f− µ)>K−1(f− µ)

}
(4)

To predict future observations of the time series, we appeal to Bayes’ rule, using

the GP as a prior over functions. By the rules of conditioning Gaussian distribu-

tions [26], the predictive distribution for our next function value f∗ given input x∗

is

p(f∗|x∗,X,y) = N(f∗|µ∗, σ
2
∗) (5)

µ∗ = K>
∗ K

−1y (6)

σ2
∗ = K∗∗ −K>

∗ K
−1K∗ (7)

where K∗ is the covariance matrix between the new input x∗ and past inputs X,

k(x∗,X), and K∗∗ is the covariance between the new inputs, k(x∗,x∗).

Delta point method

Given a vector of suspected changepoints, we view each observed changepoint as a

realization of a point process. We construct a user-defined, domain specific interval

of fixed length [ti, tj ], where i < j and introduce a new variable c = c[ti,tj ], the

number of changepoints in the interval [ti, tj ]. The average run length r̄ is calculated

for each interval [ti, tj ] by

r̄ =
1

c

c∑
k=1

rk (8)

where rk is the run length associated with each changepoint in the interval. We

then consider the joint distribution of c and r̄, and condition r̄ by c, yielding,

p(r̄, c) = p(r̄|c)p(c). The interval with the longest average run length and fewest
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number of changepoints is selected as the interval with the highest probability of

containing the changepoint of interest. The selected interval is then searched, and

the changepoint with the longest associated run length rk is chosen. This chosen

changepoint is declared the Delta point, or the changepoint of interest.

Statistical analysis

To compare the Delta point method to competing methods, we performed several

statistical tests on declared changepoints from each method. For the simulated data,

we computed the mean square error (MSE) for each method, taking the absolute

temporal difference between the user labelled changepoint and the declared change-

point. We then performed two-sided t-tests to compare the mean absolute detection

times of each method to the Delta point method, with the null hypothesis that the

mean detection times of other methods will not differ from the Delta point method’s

time. For the clinical ECG recording data set, we computed the absolute differences

in detection times for each method between the user-labelled changepoints, and the

MSE for each method. We also performed two-sided t-tests to compare the mean

absolute detection times between methods with the null hypothesis that the mean

detection times of other methods will not differ from the Delta point method’s

time. For the experimental data sets, we performed a Fisher’s exact test to com-

pare successful changepoint detection for each method. In addition, we generated

Bland-Altman plots to compare the accuracy of each method to the user defined

changepoint of interest and the declared changepoint.

Results

We tested the Delta point method on several simulated and real world time series

data sets. The simulated time series consist of three synthetic time series of our own

design, and two widely used benchmark curves. The real world data sets are made up

of well-log recordings from geophysical drilling measurements, annual water levels of

the Nile river, 100 clinical ECG recordings, and an experimental data set of 14 fetal

sheep recordings mimicking human labour. We compared the Delta point method to

three competing non-stationary change point detection algorithms, namely Takeuchi

and Yamanishi (TY) [15], Last and Shumway (LS) [16], and Liu et al (L) [27].
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Simulation

To test the efficacy of the Delta point method, we produced 1000 simulations of

three different time series, each 500 data points in length. Each time series was

designed to simulate changepoints that may be seen in real world settings, and to

have a specific changepoint that is of more interest than others in the time series.

Series 1 has two changepoints, with the changepoint of interest occurring at

t = 150. This time series simulated the change from a scaled random walk to an

autoregressive model, and then back to a scaled random walk. This is a relatively

subtle changepoint to detect, and was inspired from [16]. Series 1 is given as,

Xt =


εt/

√
3, if 1 ≤ t < 150 and 350 < t ≤ 500

0.7Xt−1 + εt, if 150 ≤ t ≤ 350,

(9)

where εt ∼ N(0, 1), is Gaussian white noise.

Series 2 is a simulated autoregressive model with a large jump, and then a return

back to the original process. The changepoint of interest was chosen as the onset of

the jump (t = 175). This time series was used to simulate sensor shocks or faults,

or a change in the generative parameters of the time series distribution. Series 2 is

given as,

Xt =


0.4Xt−1 + εt, if 1 ≤ t < 175 and 325 < t ≤ 500

0.4Xt−1 + 3 + εt, if 175 ≤ t ≤ 325,

(10)

where, εt ∼ N(0, 1), is Gaussian white noise.

Series 3 is a simulated autoregressive moving average model with an introduced

linear trend and subsequent return to the autoregressive moving average model. The

changepoint of interest was chosen as the beginning of the linear trend (t = 225).

This is a difficult changepoint to detect, as the noise added to the data obscured

the introduction of the trend. This time series simulated the accumulation of some

product in a system. Series 3 is given as,

Xt =


0.5Xt−1 + εt + 0.5εt−1, if 1 ≤ t < 225

0.5Xt−1 + εt + 0.5εt−1 + 0.02t− 4, if 225 ≤ t ≤ 375

0.5Xt−1 + εt + 0.5εt−1 + 4, if 375 ≤ t ≤ 500,

(11)
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where, εt ∼ N(0, 1), is Gaussian white noise.

The BOCPD method learned parameter values through training, so we only list

the values we used to initiate the method. For Series 1, Series 2, and Series 3,

we used a training set of 200 data, taken at the beginning of the time series. The

Gaussian process model used a non-biased parameter initialization, with an assumed

standard normal distribution prior for Series 1, Series 2, and Series 3. The hazard

rate parameter used for the hazard function for initial training for each time Series

is θh = −3.982. The Delta point interval length for each time series was set at

40 for training, as this should protect against the BOCPD possibly declaring too

many erroneous changepoints. The techniques TY, LS, and L all require a threshold

value above which a changepoint will be declared. We performed cross-validation

of several threshold values for each method, choosing the value for each time series

that allows the most accurate detection of the changepoint of interest. We select the

changepoint declared by each method that is closest to the significant changepoint

described above.

The results of each method are displayed in Table 1. For Series 1, the Delta

point method significantly (p < 0.001) outperformed methods TY and LS in the

mean absolute difference (abs. diff.) of detection time, and had a significantly lower

MSE. This difference in performance is confirmed by a two sided t-test with a null

hypothesis that other methods do not have a significant mean abs. diff. from the

Delta point method. In our simulations, method L had a slightly smaller mean abs.

diff. (8.953) compared to the Delta point method (9.718), however the distribution of

declared changepoints had a larger standard deviation (12.783 compared to 9.881).

As well, the Delta point method had a lower MSE. The two sided t-test confirmed

that both methods had indistinguishable performance (p = 0.135). For Series 2, the

Delta point method significantly (p < 0.001) outperformed all methods. For Series

3, method TY performed the best, with the lowest mean absolute difference. Figures

1-3 display boxplots of the results of each method for Series 1-3, respectively.

Donoho-Johnstone Benchmark

To further analyze the performance of the Delta point method, we tested it and

the existing methods on the Donoho-Johnstone Benchmark non-stationary time

series [19]. The Donoho-Johnstone Benchmark is a classic collection of four non-
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stationary time series designed as a test for neural network curve fitting. The curves

are known as the Block, Bump, Doppler, and Heavisine, and are 2048 data points

in length each. We adapted the curves with the introduction of noise to test for

changepoint detection. As the Delta point method is not designed to function with

time varying periodic data, rather piecewise locally stationary time series, we did

not test with the Doppler and Heavisine curves.

For training for the Delta point method, we used a standard normal distribution

prior for the Gaussian process, and hazard rate parameter θh = −3.982. We set the

Delta point interval to 10 for the Bump curve due to its high variability, and 50

for the Block curve, as this curve had more well-defined changes. The training set

consisted of the first 800 data of each curve, to correspond to the rule of thumb of

using the first 35% to 40% of time series data for training [18].

The results of the methods for the Bump and Block curves are displayed in Table

2. The Delta point method performed very well in these cases, declaring the change-

point of interest very close to the user-labelled point. The Bump curve was a more

difficult curve to detect changepoints in, due to noise. The Delta point method and

LS curve have about the same performance for the bump curve (abs. diff of 5 and

4, respectively). The Delta point method outperformed methods TY, LS, and L

for accurate detection in the Block curve (abs. diff. 1 compared to 17, 22, and 24,

respectively).

Well-log and Nile recordings

The well-log data set consists of 4050 nuclear magnetic resonance measurements

obtained during the drilling of a well [20]. These data are used to deduce the geo-

physical structures of the rock surrounding the well. Variations in the mean reflect

differences in stratification of the Earth’s crust [17]. The well-log data set is a well

studied time series for changepoint detection [20, 17, 18]. We selected the largest

jump in the mean of the time series as the most significant change point (i = 1070).

The Nile river time series consists of a record of the lowest annual water levels

between 622-1284 CE, recorded on the Island of Roda, near Cairo, Egypt [21]. The

Nile river data set has been used extensively in changepoint detection [18], making it

an effective benchmark for the Delta point method. Geophysical records suggest the
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installation of the Nilometer in 715 CE, a primitive device for more accurate water

level measurements. As such, we selected this as the changepoint of significance.

For training for the Delta point method for both time series, we used a standard

normal distribution prior for the Gaussian process, and hazard rate parameter θh =

−3.982. For the well-log data, the Delta point interval was chosen as 30 due to the

length of the time series and sensor noise, and for the Nile river time series, the

Delta point interval was chosen to be 50, as the curve is smoother. The training set

consisted of the first 1000 data for the well-log series, and first 250 data for the Nile

river set.

The results of each method are displayed in Table 3. The Delta point method

performed better than the other methods TY, LS, and L for the well-log data set

(abs. diff. 2 compared to 13, 15, and 33, respectively). For the Nile river data set,

all methods performed well, with declared changepoints of interest very close to the

labelled installation of the Nilometer in 715 CE. The Delta point method for the

well-log set is displayed in Figure 4 (Top Panel), and the Delta point method for

the Nile river data set is displayed in Figure 4 (Bottom Panel).

ECG recordings

To determine the effectiveness of the Delta point method in detecting a significant

changepoint in short time series, we tested each method’s accuracy in detecting the

QRS complex, and the difference between the labelled beginning and detected time.

As each time series is short, and the QRS complex rapidly begins and ends in the

recording, accurate detection of the changepoint was considered very important.

For training for the Delta point method, we used a standard normal distribution

prior for the Gaussian process, and hazard rate parameter θh = −3.982. Due to the

short nature of these time series, the training set length was selected to be the first

30 data points; the training set never included the QRS complex for any of the 100

instances. The Delta point interval was set to 5, as the QRS complex is very short,

and occurs rapidly in the series. The time series rapidly changes here, so a shorter

interval performed best.

The performance of each method is displayed in Table 4. The Delta point method

significantly outperformed the TY and LS method in mean abs. diff. from the

labelled detection times of the complex (p < 0.001 CI = [−2.138,−1.002] and
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[−.1339,−0.0611], respectively). Method L had indistinguishable performance from

the Delta point method (p = 0.954 CI = [−0.709, 0.609]). The Delta point method

had the lowest MSE of all methods (14.13 compared to 32.2, 26.31, and 22.73, re-

spectively). A boxplot of the abs. diff. of all of the methods is displayed in Figure

5.

Fetal sheep model of human labour

We applied the Delta point method to a data set consisting of 14 experimental time

series of a measure of fetal heart rate variability (HRV) known as the root mean

square of successive differences (RMSSD) of R-R intervals of ECG recorded during

umbilical cord occlusions (UCO) [28, 29]. The RMSSD may be used a measure to

study the relationship between fetal systemic arterial blood pressure (ABP) and

fetal heart rate in a fetal sheep model of human labour [23, 24, 25]. RMSSD is

a sensitive measure of vagal modulation of HRV, and is known to increase with

worsening acidemia, a dangerous condition that may occur during labour [28, 29,

30, 31].

During UCO mimicking human labour, a hypotensive blood pressure response to

the occlusions manifests as the introduction of a new trend in the recorded time

series. This response is induced by the vagal nerve activation triggered by worsening

acidemia during UCO as discussed in [32]. These points are detected by expert visual

detection and are known as ABP sentinel points. These sentinel points are defined

as the time between the onset of blood pressure responses and the time when pH

nadir (ph < 7.00) is reached. A change point detection algorithm should be able

to detect these sentinel points from the non-invasively obtainable fetal heart rate

derived RMSSD signal in an online manner to assist in clinical decision making.

The experimental time series are short - less than 200 observations - and con-

founded with a large amount of noise due to experimental conditions and measure-

ment error. The time series are piecewise locally stationary, and contain naturally

occurring biological fluctuations due, for example, to non-linear brain-body inter-

actions [33]. These factors make the detection of the expert sentinel point difficult

for existing change point techniques [1, 2].

To avoid false alarms, we defined a clinical region of interest (ROI) of 20 minutes

before the sentinel point where a declared change point of interest is determined
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to be a success. We also took into account detections that are at most 3 minutes

posterior to the sentinel point, as this is one experimental cycle late. The defined

region of interest is to assist clinicians in decision making, as it provides a feasible

window of time to provide clinical evaluation, as well as reject false alarm. For

training for the Delta point method, we used a standard normal distribution prior

for the Gaussian process, and hazard rate parameter θh = −3.982. We trained the

Delta point method with 48 data points per time series, corresponding to two hours

of recording. The Delta point interval was set at 10 data, which corresponded to 25

minutes of experiment time. This interval was chosen to coincide with the clinical

ROI.

he Delta point method significantly outperformed competing methods, with 11 of

14 declared change points in the ROI, compared to 3 of 14 for TY with Fisher’s exact

test statistic 0.007028, 5 of 14 for LS with Fisher’s exact test statistic 0.054238, and

2 of 14 for L with Fisher’s exact test statistic 0.001838. The Delta point method

applied to one animal from the data set (ID473378) is displayed in Figure 6, and

the results and detection times of each method are shown in Table 5.

We also computed Bland-Altman plots for the experimental time series to compare

the Delta point method to each other method. In Figure 7(A), we display the Bland-

Altman plot for the Delta point method and TY with mean difference (6.93±89.03).

Figure 7(B) displays the Bland-Altman plot for the Delta point method and LS,

with mean difference (-1.36±62.6). Figure 7(C) displays the Bland-Altman plot for

the Delta point method and L, with mean difference (14.4±59.9). In Figure 7(D),

we display a modified Bland-Altman plot of the differences in detection times for

each method, along with the upper and lower ROI.

Discussion

The detection of change points in a non-stationary time series is a well studied

problem, which has produced many techniques [14, 8, 15, 17, 16]. Some of the

first work in change point detection is due to [14], where changes were detected by

comparing probability distributions of time series samples over past and present

intervals. This work was extended by Takeuchi and Yamanishi (method TY) [15],

who proposed a scoring procedure along with outlier detection, to compare past and

present probability distributions in real-time. The scoring method is based on an
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automatically updating autoregressive model, known as the sequentially discounting

autoregressive (SDAR) model. Points with scores above a user-defined threshold

are declared as change points. These scoring based methods, however, are unable

to automatically extract a single change point of interest, unlike the Delta point

method, as they require a user to observe all change points above the threshold.

Non-stationary time series may also be viewed as segments of piecewise locally

stationary time series [8]. We follow this spirit in our work for the Delta point

method. In [8], the locally stationary segments are broken into small pieces and the

distance between power spectra for two adjacent pieces are calculated. A variety of

distance measures such as the Kolmogorov-Smirnov distance looking at the distance

between cumulative power spectra, and the Cramer-Von Mises distance between

power spectra was used in [8]. An extension was proposed in [16] (method LS)

where the Kullback-Liebler discrimination information between power spectra is

used to identify change points. These power spectra methods are particularly well-

suited for time series with periodic structure, as they compare power spectra in the

frequency domain.

Recently, advances in real-time change point detection have been made in the

machine learning community with promising results, such as relative density ratio

estimation method [27] (method L). Relative density ratio estimation uses a diver-

gence measure to estimate the divergence between subsequent time series samples’

density ratios. The Delta point method does not require the need to estimate density

ratios between time points, as it instead considers the joint distribution of declared

change points and the time between each. By only considering the time between

change points, the Delta point method is able to infer the location of the change

point of interest.

With respect to our own testing and results, we observed that the Delta point

method is effective at finding changepoints of interest in piecewise locally stationary

time series of different types. For the simulated time series of our own design, the

Delta point method performed better or indistinguishably from the best performing

methods for Series 1 and Series 2. For Series 1, the Delta point method had the low-

est MSE, which suggested it is accurately identifying changepoints of interest. For

Series 2, the Delta point method significantly outperformed the competing methods

in terms of mean absolute difference in detection time for labelled changepoints of
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interest. Although method LS had a lower MSE for this series, its mean detection

difference is closer to 0. In Series 3, method L performed the best, with the smallest

mean absolute difference in detection time, and MSE. Series 3 consisted of the in-

troduction of the linear trend to the autoregressive moving average model, of which

the introduction of the trend was obscured by added noise. Since method L com-

pares density ratios of the time series, its good performance on this time series is

likely due to noticing these changing ratios before other methods noticed the trend.

For the Donoho-Johnstone Bump curve, the Delta point method performed nearly

as well as the best performing method - method Ls - with a much smaller abs. diff.

in detection time compared to the other methods, TY and L. The Delta point

method performance for the Donaho-Johnstone Block curve was better than the

other methods, exemplifying the strength of the Delta point method for piecewise

locally stationary time series. Our test results for the well-log data set also provides

evidence of the performance of the Delta point method for piecewise locally station-

ary time series. For the Nile river data set, as the installation of the Nilometer is the

most significant changepoint in the time series, and can even be noticed visually,

we expected that all methods should accurately detect this changepoint with little

variation. Indeed, our results confirm this hypothesis.

For the clinical ECG data set, ECGFiveDays, the Delta point method performs

significantly better than methods TY and LS, however has an indistinguishable

performance difference with method L, although the Delta point method has the

lowest MSE. Due to the rapidly varying nature of the time series when the QRS

complex begins, the ability of method L to compare density ratios between com-

ponents of the time series is beneficial and improves its performance compared to

other methods.

With regards to the fetal sheep experimental data set, the early detection of

acidemia is better than late detection from a clinical perspective. Hence, we de-

fined the clinical ROI according to expert physician input. The 20 minute window

before the expert-labelled sentinel point provides adequate warning to clinicians to

increase monitoring, or expedite delivery, while the 3 minute window posterior to

the expert-labelled sentinel point is sufficiently close to be included in the experi-

mental procedure. In clinical settings, we believe that earlier detection is better, as

it provides longer decision making time, and justification for increased monitoring.
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The novelty of the current work is that our method permits statistical-level pre-

dictions about concomitant changes in individual bivariate time series, simulated

or physiological such as HRV measure RMSSD and ABP in an animal model of

human labour. Our method is able to predict cardiovascular decompensation by

identifying ABP responses to UCO, a sensitive measure of acidosis. These predic-

tions are reliable even in the instances when the signals are noisy. This is based

on our observation that here, to mimic the online recording situation, no artefact

correction for RMSSD was undertaken as is usually done for HRV offline processing

[34]. The two hour training time used for the Delta point method is also acceptable

for delivery room settings, due to the typical time length of human labour between

6 to 8 hours on average ([35]). To our knowledge, no comparable statistical meth-

ods exist. Another benefit of the Delta point method is the ability to automatically

extract the change point of interest with minimal user interaction, as opposed to

other methods which require user specific thresholds and criteria.

Conclusion

We have developed a novel, real-time change point detection method for effectively

isolating a change point of interest in short, noisy, piecewise locally stationary time

series. Our method is able to effectively extract clinically relevant changes in real-

time, allowing informed decision making [34, 36]. By considering the joint distri-

bution of the between change points and the number of change points in disjoint

intervals, the Delta point method remains robust to signal artifacts and confounding

noise. We demonstrated our method on three simulated time series of our own de-

sign inspired by existing literature, curves from the Donoho-Johnstone benchmark

curve data set, nuclear magnetic resonance reading from well-log measurements of

geophysical drilling, annual water levels of the Nile river, a clinical ECG recording

data set, and an experimental data set of fetal sheep simulating human labour. We

compared the performance of the Delta point method to three existing changepoint

detection methods. The Delta point method displays useful performance benefits in

accurately extracting a meaningful change point automatically, with the need for

minimal user-interaction.
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Figures

Figure 1 Simulation Series 1 boxplot. Legend: TY = [15], LS = [16], L = [27]. Boxplot of

absolute differences of detected changepoints for 1000 simulations of simulation data set Series 1.

The true changepoint location is located at 0.
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Figure 2 Simulation Series 2 boxplot. Legend: TY = [15], LS = [16], L = [27]. Boxplot of

absolute differences of detected changepoints for 1000 simulations of simulation data set Series 2.

The true changepoint location is located at 0.
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Figure 3 Simulation Series 3 boxplot. Legend: TY = [15], LS = [16], L = [27]. Boxplot of

absolute differences of detected changepoints for 1000 simulations of simulation data set Series 3.

The true changepoint location is located at 0.
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Figure 4 Well-log and Nile River level Delta point method. Top Panel: Delta point method for

Well-log data set. The y-axis denotes NMR reading during well digging, and the x-axis denotes

the measurement instance. Suspected changepoints are denoted with red crosses, the user-labelled

changepoint with a black cross(1070), and the detected Delta point with an orange box(1072).

Bottom Panel: Delta point method for annual lowest levels of Nile River. The y-axis denotes the

water level (mm), and the x-axis denotes the years. Suspected changepoints are denoted with red

crosses, the installation of the Nilometer(715) with a black cross, and the detected Delta point

with an orange box (720).
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Figure 5 ECG (ECGFiveDays) boxplot. Legend: TY = [15], LS = [16], L = [27]. Boxplot of

absolute differences of detected QRS complexes for 100 short time series of ECG recordings. The

true changepoint is located at 0.
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Figure 6 Fetal Sheep ID473378 Delta point method. Delta point method for Fetal Sheep

ID473378 RMSSD time series. The y-axis denotes the RMSSD of the animal over the

experimental course, and the x-axis denotes experimental time. Suspected changepoints are

denoted with red crosses, the expert sentinel value with a black cross (6:13), and the detected

Delta point with an orange box (6:24).
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Figure 7 Bland-Altman plots of methods for Fetal Sheep dataset. Legend: TY = [15], LS =

[16], L = [27]. Panel A-C: Bland-Altman plot comparing Delta point method to TY, LS, L,

respectively. The y-axis displays the differences in the detection times, and x-axis displays the

means of detection times for the two methods for each observation. The means (red) and two

standard deviations (blue) are displayed with associated confidence intervals (maroon;navy). Panel

D: Modified Bland-Altman plot of difference of each method and expert labelled sentinel time.

Dashed black lines 20 minutes above and 3 minutes below sentinel time denote the clinical region

of interest. Observations within this region are classified as a success.
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Tables

Table 1 Simulation results

Method Abs. Diff. (mean ± st. dev.) MSE ×103 Significance (p-value) [CI]

Series 1

Delta 9.718 ± 9.881 0.192 N/A

TY 40.110 ± 28.367 2.413 1 (p <0.001) [-32.255, -28.539]

LS 8.953 ± 12.783 0.243 0 (p =0.135) [-0.237, 1.767]

L 59.459 ± 25.713 4.196 1 (p <0.001) [-51.449, -48.033]

Series 2

Delta 3.399 ± 12.099 0.158 N/A

TY 13.802 ± 10.7298 0.306 1 (p <0.001) [-11.906, -9.406]

LS 6.205 ± 9.6699 0.132 1 (p <0.001) [-3.7662, -1.8458]

L 27.728 ± 22.961 1.296 1 (p <0.001) [-25.938, -22.719]

Series 3

Delta 63.603 ± 30.762 4.991 N/A

TY 54.645 ± 39.358 4.534 1 (p <0.001) [5.860, 12.056]

LS 65.263 ± 63.469 8.284 0 (p =0.457) [-6.304, 2.714]

L 69.911 ± 30.418 5.812 1 (p <0.001) [-8.991, -3.625]

Legend: TY = [15], LS = [16], L = [27]. Comparison of methods for detecting significant

changepoint for 1000 simulations of simulated time series: Series 1, 2, 3, respectively; 500

observations in length each. Mean ± standard deviation of absolute difference (Abs. Diff.) between

labelled times and detected time of each method are given. Mean Square Error (MSE) of each

method is displayed where the lowest value displayed had the least detection error. Results of null

hypothesis two-sided t-test comparing absolute differences to Delta point method displayed with

p-values and confidence intervals [CI].

Table 2 Donaho-Johnstone Benchmark curves results

Method Detected time Abs. Diff.

Bump Labelled: 440

Delta 445 5

TY 475 34

LS 444 4

L 468 28

Block Labelled: 1331

Delta 1332 1

TY 1348 17

LS 1353 22

L 1335 24

Legend: TY = [15], LS = [16], L = [27]. Comparison of changepoint detection results for two

Donaho-Johnstone Benchmark curves (Bump and Block) with user-labelled changepoints.

User-labelled changepoints are selected to represent a drastic change in the time series (Bump), or a

significant shift in the mean (Block).
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Table 3 Well-log and Nile River results

Method Detected Time Abs. Diff.

Well-log Labelled: 1070

Delta 1072 2

TY 1083 13

LS 1085 15

L 1103 33

Nile river Labelled: 715

Delta 720 5

TY 723 8

LS 722 7

L 725 10

Legend: TY = [15], LS = [16], L = [27]. Comparison of detected changepoint of importance in

nuclear magnetic resonance measurements from a rock drill used to detect changes in rock

stratification, and lowest annual water levels of the Nile River from 622-1284. The changepoint of

importance is selected as the first significant jump in the mean, indicating the presence of a change in

the ground rock, and the instillation of the Nilometer, respectively.

Table 4 ECG (ECGFiveDays) QRS complex results

Method Abs. Diff. (mean ± st. dev.) MSE Significance (p-value) [CI]

Delta 3.51 ± 1.352 14.13 N/A

TY 5.08 ± 2.54 32.2 1 (p <0.001) [-2.138, -1.002]

LS 4.21 ± 2.944 26.31 1 (p <0.001) [-1.339, -0.061]

L 3.53 ± 3.221 22.73 0 (p =0.954) [-0.709, 0.609]

Legend: TY = [15], LS = [16], L = [27]. Comparison of methods for detecting onset of QRS complex

in 100 short time ECG recordings, 136 observations in length. Mean ± standard deviation of absolute

difference (Abs. Diff.) between labelled times and detected time of each method are given. Mean

Square Error (MSE) of each method is displayed where the lowest value displayed had the least

detection error. Results of null hypothesis two-sided t-test comparing absolute differences to Delta

point method displayed with p-values and confidence intervals [CI].
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Table 5 Fetal sheep experiment results

Animal Sentinel(HH:MM) Delta(HH:MM) TY(HH:MM) LS(HH:MM) L(HH:MM)

8003 15:56 00:07 -00:05 00:12 -00:15

473351 13:38 00:10 -00:43 -00:27 01:00

473362 11:05 00:02 -00:48 -00:03 -00:28

473376 12:36 -00:02 00:13 -01:02 -00:15

473726 12:04 00:14 00:25 00:20 -00:10

461060 12:43 00:12 -00:25 01:30 01:02

473361 12:51 00:15 -00:08 00:35 00:03

473352 13:17 00:24 00:36 00:17 -00:14

473377 12:12 -00:02 00:18 00:13 -00:13

473378 13:22 00:13 00:47 00:37 -00:12

473727 11:03 -00:07 00:05 -00:17 -00:45

5054 12:53 01:26 -00:30 01:14 00:44

5060 11:26 00:02 00:32 00:28 00:04

473360 13:59 00:07 01:07 -00:17 -00:42

Total 11/14 3/14 5/14 2/14

Legend: Sentinel = expert defined change point TY = [15], LS = [16], L = [27]. Comparison of

methods in detecting expert defined change point. Method times are displayed relative to expert

Sentinel time (HH:MM), with positive values representing change points of interest detected before

the Sentinel time, and negative values representing change points of interest detected after the

Sentinel time. Bolded results represent a change point of interest detected in the region of interest 20

minutes to and 3 minutes after the Sentinel time.
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Additional Files

Data and Codes

Data and codes associated with the manuscript may be found at the following sources:

BOCPD code:

https://sites.google.com/site/wwwturnercomputingcom/software/ThesisCodeAndData.zip?attredirects=0&d=1

Donoho-Johnstone data: ftp://ftp.sas.com/pub/neural/data/dojo medium.txt

Well-log data: http://mldata.org/repository/data/viewslug/well-log/

Nile river data: http://mldata.org/repository/data/viewslug/nile-water-level/

ECGFiveDays: http://www.cs.ucr.edu/ eamonn/time series data/

Simulation and fetal data: https://github.com/ngold5/fetal data
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