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ABSTRACT 12 

Therapeutic options for the treatment of an increasing variety of cancers have been expanded by the introduction of a new 13 

class of drugs, commonly referred to as checkpoint blocking agents, that target the host immune system to positively 14 

modulate anti-tumor immune response. Although efficacy of these agents has been linked to a pre-existing level of tumor 15 

immune infiltrate, it remains unclear why some patients exhibit deep and durable responses to these agents therapy while 16 

others do not benefit. To examine the influence of tumor genetics on tumor immune state, we interrogated the 17 

relationship between somatic mutation and copy number alteration with infiltration levels of 7 immune cell types across 18 

40 tumor cohorts in The Cancer Genome Atlas. Levels of cytotoxic T, regulatory T, total T, natural killer, and B cells, as well 19 

as monocytes and M2 macrophages, were estimated using a novel set of transcriptional signatures that were designed to 20 

resist interference from the cellular heterogeneity of tumors. Tumor mutational load and estimates of tumor purity were 21 

included in our association models to adjust for biases in multi-modal genomic data. Copy number alterations, mutations 22 

summarized at the gene level, and position-specific mutations were evaluated for association with tumor immune 23 

infiltration. We observed a strong relationship between copy number loss of a large region of chromosome 9p and 24 

decreased lymphocyte estimates in melanoma, pancreatic, and head/neck cancers. Mutations in the oncogenes PIK3CA, 25 

FGFR3, and RAS/RAF family members, as well as the tumor supressor TP53, were linked to changes in immune 26 

infiltration, usually in restricted tumor types. Associations of specific WNT/beta-catenin pathway genetic changes with 27 

immune state were limited, but we noted a link between 9p loss and the expression of the WNT receptor FZD3, suggesting 28 

that there are interactions between 9p alteration and WNT pathways. Finally, two different cell death regulators, CASP8 29 

and DIDO1, were often mutated in head/neck tumors that had higher lymphocyte infiltrates. In summary, our study 30 

supports the relevance of tumor genetics to questions of efficacy and resistance in checkpoint blockade therapies. It also 31 

highlights the need to assess genome-wide influences during exploration of any specific tumor pathway hypothesized to 32 

be relevant to therapeutic response. Some of the observed genetic links to immune state, like 9p loss, may influence 33 

response to cancer immune therapies. Others, like mutations in cell death pathways, may help guide combination 34 

therapeutic approaches. 35 

INTRODUCTION 36 

Checkpoint blocking cancer therapeutics, such as ipilimumab, nivolumab, pembrolizumab and atezolizumab, act by 37 

targeting immune cell signaling molecules rather than targeting the tumor directly. The molecular targets of these agents, 38 

CTLA-4, PD-1, and PD-L1, are components of pathways that inhibit T cell function[1]. Clinical experience with checkpoint 39 

blockade monotherapy and combinations has demonstrated dramatic tumor shrinkage and long-term durable, often drug-40 

free, survival in some patients; however, many patients do not appear to benefit[2,3]. A number of different parameters 41 

have been explored to predict and explain the heterogeneity of patient benefit, within and across different cancer types. 42 

These include differences in the activation state of the tumor-immune infiltrate[4], differences in antigencity of the cancer 43 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 4, 2017. ; https://doi.org/10.1101/106039doi: bioRxiv preprint 

https://doi.org/10.1101/106039
http://creativecommons.org/licenses/by/4.0/


 2

cells due to differential expression and presentation of neo-antigens[5–8], and differences in composition of intestinal 44 

flora[9,10]. One of the most extensively studied potential biomarkers for checkpoint blocking agents is the cell surface 45 

expression of PD-L1, which is induced by interferon gamma from infiltrating lymphocytes and may be a surrogate for 46 

inflammatory state[11,12]. 47 

In addition to passenger mutations which can lead to expression of neo-antigens, the genetic history of tumorigenesis, 48 

manifest in the pattern of driver mutations and other necessary changes acquired during development, may affect the 49 

inflammatory state. Tumor driver pathways, such as WNT/Beta-catenin and FAK, have been recently linked with immune 50 

state in human tumors and identified as specific modulators of immune function in animal tumor models[13,14]. However, 51 

these studies have focused on specific cancer driver pathway hypotheses, and have yet to report their results in the 52 

context of a systematic genetic analysis. Rooney et. al. have reported a landmark study describing many tumor 53 

parameters, including genetic, that influence the strength of a 'cytotoxic T cell signature' in tumors across The Cancer 54 

Genome Atlas (TCGA, TCGA Research Network: http://cancergenome.nih.gov/ )[15]. Porta-Pardo and Godzik have also 55 

studied the association of cancer mutations with a general estimate of immune infiltrate across TCGA[16]. Mutations 56 

associated with the interferon gamma signaling and antigen presentation pathways have recently been associated with 57 

acquired resistance to PD-1 blockade[8]. We sought to discern whether tumor genetic profiles could generally be 58 

correlated with the composition of specific subtypes of tumor immune infiltrate. 59 

We have performed a systematic interrogation of the complex associations of cancer mutation and copy number 60 

alterations (CNA) with levels of immune infiltrate across solid TCGA tumors. Immune cell levels were estimated using 61 

novel transcriptional marker sets for major immune cell types, which were trained to resist interference from the cellular 62 

and transcriptional complexity of tumors. We also attempted to address several of the biases that introduce complexity in 63 

multi-modal TCGA data analysis in our analytical models. We have identified both previously reported and novel 64 

mechanisms by which tumor genetics may influence immune state. Additionally, we observed changes that suggest some 65 

tumors may genetically adapt to ongoing immune responses in ways that may broaden our definitions of immuno-66 

editing[17]. Other associations of genetic changes with immune dynamics may reflect the evolutionary history of tumor 67 

subtypes in indirect ways, serving as a proxy for the tumors' latent characteristics. 68 

RESULTS 69 

In our experience, many transcriptional marker sets for immune cells derived from the literature or trained from data on 70 

cell-sorted peripheral blood immune cells perform poorly when applied to data derived from tumor samples. Sometimes, 71 

even markers viewed as canonical for immune cell types are not specific in RNA-seq data. For example, data from sorted 72 

human immune populations within the Immunological Genome Project suggests that CD4 transcription is higher on 73 

monocytes than on CD4+ T cells in RNA-seq data (http://immgen.org)[18,19]. Also, in principle, if members of an immune 74 

marker set are cell-type specific, their transcript levels should be correlated with each other when examining a panel of 75 

tumors. We evaluated RNA expression correlation across TCGA solid-tumor cohorts for various immune cell marker sets 76 

obtained from the literature and from RNA-seq of sorted immune cells[20]. Our analysis often revealed very low 77 

correlation for expression of the genes within each given immune marker set, indicating that transcripts with coordinated 78 

expression in sorted immune cells are often heterogeneously expressed in more complex tissue samples. For example, a 79 

regulatory T cell (Treg) signature utilized in Rooney et al. was composed of seven genes, including the FOXP3 80 

transcription factor, whose expression is a hallmark of CD4+ regulatory T (Treg) cells[15,21]. Pearson correlation analysis 81 

of the other members of this signature with FOXP3 across TCGA tumors revealed only 1 marker with correlation above 0.5 82 

(CTLA4, 0.76) and two markers with correlation below 0.1 (IL4, 0.05; IL5, 0.01). Other possible candidate markers for 83 

Treg cells include TIGIT, PTPRC (CD25), and TNFRSF18 (GITR). TIGIT exhibited high correlation to FOXP3 (0.79). 84 

However, TIGIT's correlation to CD8A (a marker for CD8+ T cells) was higher (0.8). Finally, CD25 and GITR correlations to 85 

FOXP3 were modest (FOXP3-CD25, correlation 0.56; FOXP3-GITR, correlation 0.55). 86 

We therefore created alternative sets of transcriptional markers for immune cell types, designed to be appropriate to 87 

study of complex tumor samples. We did this by demanding that members of a set retain correlation with each other when 88 

examining TCGA tumors, and also that they are highly ranking neighbors of each other when looking at correlations of all 89 

transcripts in TCGA RNA-seq data. These sets were derived by first evaluating co-expression of candidate sentinel markers 90 

that displayed selectivity of RNA expression for the target cell type (CD8A for CD8+ T cells, FOXP3 for Tregs, etc) with all 91 

transcripts across TCGA solid-tumor cohorts (details in Methods). We then used a stringent metric of mutual rank distance 92 
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to identify gene neighbors for the sentinel markers[22] (Table 1). The principle of the mutual rank metric is that that 93 

highest scoring gene neighbors are not only highly correlated with each other but are each other's highest ranking match, 94 

and a penalty is applied as as these mutual ranks become lower. These methods were employed to try to limit the 95 

inclusion of transcripts that are present in a more diverse range of cell types than the sentinel (manuscript in 96 

preparation). Figure 1 presents one example, a view of the (mutual rank) co-regulatory network around around FOXP3. 97 

Transcript abundances for CCR8 and CCR4 possessed a both a strong as well as selective correlation to FOXP3 when 98 

compared to other neighbors, including transcripts probably more reflective of pan-T cell content (CD3 epsilon/CD3E, 99 

CD2), or markers correlated with both FOXP3 and pan-T markers (TIGIT, ICOS). FOXP3, CCR8, and CCR4 were ultimately 100 

chosen as a signature set for Treg estimation. Simple means or medians of each marker set were used as a signature score, 101 

once each marker's expression was normalized to a standard distribution (details in Methods). 102 

Table 1. RNA-seq based marker sets created and used in this study to estimate immune cell levels in tumors. 103 

Signature Membership Description 

TCD8 CD8A, SLA2 CD8+ T cell 

Treg FOXP3, CCR8, CCR4 Regulatory T cell 

Tcell SIRPG, CD3E T cell (general) 

Bcell CD19, CD79B, MS4A1 B cell 

NK KIR2DL1, KIR2DL3, KIR2DL4, KIR3DL1, KIR3DL2, KIR3DL3, KIR2DS4 Natural killer cell 

Mono CD86, CSF1R, C3AR1 Monocyte 

MFm2 CD163, VSIG4, FOLR2 M2 Macrophage 

TregCD8 Treg, TCD8 Treg versus CD8+ T cell 

NKCD8 NK, TCD8 NK versus CD8+ T cell 

Figure 1. Mutual rank-based co-regulatory network around FOXP3. All solid tumor samples in the TCGA pan-cancer 104 

data release were used to create the mutual rank correlation network. Color saturation and thickness of lines represent 105 

strength of correlation. CCR4 and CCR8, in addition to FOXP3, were chosen to create a regulatory T cell (Treg) signature 106 

for estimating Treg content in tumors. 107 

Linear regression methods were used to identify tumor genetic changes associated with altered immune state across the 108 

tumor cohorts of non-hematopoeitic origin in TCGA, using our RNA-based cellular signatures to estimate relative levels of 109 

each immune cell type. For study of association with mutation, the estimated overall mutational burden of each tumor was 110 

used as a covariate in order to control for the increased likelihood of any specific mutation in tumors with a high 111 

mutational load as well as expectation of increased immune infiltrate in highly mutated tumors. For each gene, a gene-112 

level aggregated mutation score as well as position-specific mutations were tested for association with estimates of 113 

immune content. For gene-level copy number alterations (CNA) we applied estimates of tumor purity, derived from a 114 

meta-analysis of TCGA tumors, as a covariate to adjust for possible biases in GISTIC estimates depending on tumor 115 

purity[23]. For a given gene, the association of copy number gains and losses on immune state were assessed 116 

independently. 117 

We observed mutations, focal CNA, and large scale CNA, some spanning hundreds of millions of bases, associated with 118 

changes in estimated levels of immune cell types in tumors (Fig 2). For example, copy number loss of large regions of 119 

chromosomes 3, 5, and 6, among others, were in association with decreases in estimates of CD8+ T cells (TCD8), general T 120 

cells (Tcell), and other immune cell types. Mutations in BRAF (chromosome 7, 140 megabases) and TP53 (chromosome 121 

17, 7.5 megabases) were associated with higher estimates of Tregs. 122 

Figure 2. Landscape of interactions between genetic alterations and immune content in cancer. Signatures scores 123 

estimating levels of B (Bcell), T (Tcell), CD8+ T (TCD8), CD4+ regulatory T (Treg), monocyte (Mono), M2 macrophage 124 

(M2mf), and natural killer (NK) cells were used as response variables in a linear model to look for associations with tumor 125 

copy number alterations and mutations. Chromosomal location is shown on the horizontal axis with each data point 126 

representing the results for a locus. The negative log(10) of the multiplicity-corrected model P value is plotted on the 127 

vertical axes; negative values indicate a negative effect on the cellular estimate. Data are shown for loci where -logP > 1 128 

and effect size is indicated if -logP > 3. 129 

Among the well-studied drivers of oncogenesis we observed a strong link between copy number loss of the CDKN2A 130 

region of chromosome 9p and estimates of many immune cell types. CDKN2A is a tumor suppressor/negative regulator in 131 
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the CDK4/Rb pathway, and is frequently lost and/or mutated in melanoma, pancreatic cancers, and other tumor 132 

types[24]. We observed a marked reduction in estimates of CD8+ T cells, Tregs, B cells, and the general T cell population 133 

linked to loss of the chromosome 9p region (Fig 3A-B). The associations between 9p loss and decrease in the estimated 134 

levels of infiltrate were observed in several tumor types, with the strongest associations seen in melanoma, pancreatic, 135 

and head/neck cancer cohorts (Table 2). The region of association spans a large part of chromosome 9p and includes 136 

many loci in addition to CDKN2A (Fig 4). The genes in this region include a large cluster of genes encoding alpha-137 

interferons and MTAP, a protein involved in adenosine metabolism that can also regulate STAT signalling[25]. The genes 138 

encoding PD-1 ligands CD274/PD-L1 and PDCD1LG2/PD-L2, as well as nearby Janus kinase JAK2, are sometimes 139 

contained within the region of 9p loss. The largest effect size on CD8+ T cell estimates were not at CDKN2A. We attempted 140 

to further dissect the region of association by analysis of significance, effect size, correlation of transcription with CNA, 141 

and concordance of these signals across multiple tumor types. For example, we examined chromosome 9 across 142 

melanoma, head/neck, and pancreatic cancer, using effect size rather than significance as a measure, and also studying a 143 

mean-based summary of the three indications (S1 Fig). The analysis did not result in discovery of a peak of association 144 

that would suggest a candidate mediator, but the multi-indication analysis may have limited the list of top candidates to a 145 

smaller region of 9p. Finally, amplification of PD-L1 (CD274) on chromosome 9p by neoplasms is well documented in 146 

Hodgkin lymphoma; one might hypothesize that, considering its known immuno-supressive role, amplification of the PD-147 

L1 genomic region could be an active immuno-evasion mechanism in multiple tumor types[26]. We did not observe 148 

evidence for significant association of PD-L1 copy number gains with altered immune estimates in melanoma (P = 1), lung 149 

adenocarcinoma (P = 1), or any other cohort in the solid tumors studied. 150 

Figure 3. Association of CDKN2A CNA and TP53 mutation with immune estimates in tumors. (A-B) Relationship of 151 

CDKN2A copy number estimates to B and T cell estimates across TCGA melanoma. The horizontal scale is the log2 GISTIC 152 

CNA estimate (0 = diploid, -1.3 = homozygous loss). The signature scores are measured in units of standard deviation of 153 

the signature's variation across TCGA tumors. Independent tests of association were performed for CNA > -0.1 and CNA < 154 

0.1. The lines drawn are the linear regressions of the gain/loss CNA with the immune estimate, with shading to indicate 155 

the 95% confidence interval around the line's slope (without model covariate adjustments or multiple test corrections). 156 

(C) Relationship of TP53 mutation to regulatory T cell (Treg) estimates across breast cancer. (D) Relationship of TP53 157 

mutation to CD8+ Tcell estimates in head and neck cancer. 158 

Table 2. Associations of loss of CDKN2A with estimates of immune cell types in tumors. 159 

Signature Bladder Breast Head Neck Kidney Clear Lung Adeno Lung Squamous Melanoma Pancreatic Stomach 

Bcell -0.38 (2.9) -0.38 (3.3) -0.62 (12.5)  -0.44 (3.2) -0.35 (1.5) -0.87 (22.9) -1.03 (9.6) -0.5 (3.2) 

MFm2 -0.33 (2.1)       -0.56 (1.5)  

Mono   -0.35 (2.6)    -0.34 (1.6) -0.59 (1.7)  

NK   -0.38 (4.7)       

NKCD8       0.5 (7.9)   

TCD8   -0.6 (12.5)    -0.76 (18.3) -0.76 (4.6)  

Tcell   -0.53 (9.7)    -0.8 (20.6) -0.63 (2.6)  

Treg   -0.57 (12.4) 0.55 (2.1)   -0.55 (9.5) -0.6 (2.4)  

TregCD8  0.27 (1.5)        

Values are reported as Effect Size with associated P values in parenthesis (-log10 P). The units of effect size are change in 160 

signature score (units of standard deviation) per unit of GISTIC (log2) CNA change. 161 

Figure 4. Relationship between chromosome 9 genetic changes and immune cell abundance estimates in TCGA 162 

melanoma. Chromosomal location is displayed on the horizontal axis, and effect size is displayed on the vertical axis. Each 163 

data point represents the results for a given locus, with significance (negative log(10) P value) indicated by the size of the 164 

data point. The negative log(10) of the multiplicity-corrected model P value is plotted on the vertical axes; negative values 165 

indicate a negative effect on the cellular estimate. Data are shown for loci where -logP > 1 and effect size is indicated if -166 

logP > 3. A large region of chromosome 9p, when lost, is in association with the changes in cellular estimates for many 167 
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immune cell types. The horizontal axis is the physical coordinate on chromosome 9 in units of 106 bases. The vertical axis 168 

is the negative log(10) of the model P value, with negative numbers used to indicate associations that decrease the 169 

immune estimate being tested. 170 

TP53 mutation is the most common mutation in cancer, and loss of TP53 function leads to overall genetic instability and 171 

resistance to DNA damage-mediated apoptosis. We found greater immune cell abundance estimates in TP53 mutant 172 

breast cancer (Table 3, Fig 3C). However, TP53 mutation was associated with lower T, B, and NK cell abundance estimates 173 

in head and neck cancer (Fig 3D). 174 

Several position-specific TP53 mutations were also found to be in association with estimates of T and NK cells. These 175 

mutations included R249S mutations, which have been linked to aflatoxin and hepatitis-associated liver cancer, and were 176 

associated with high estimates of NK cells in lung adenocarinoma[27]. Mutations in synaptonemal complex protein 2 177 

(SYCP2), a protein involved in meiosis, were associated with lower estimates of Treg cells (-logP = 2.8, effect size -1.21) 178 

and the Treg/CD8 T cell ratio in head and neck cancer (Fig 5A.)[28]. 179 

Table 3. Associations of TP53 mutations with estimates of immune cell levels across TCGA cohorts. 180 

Cohort Sig Variant Association 

Bladder Cancer NK TP53 G245S 2.63 (4.2) 

Breast (Basal) NK TP53 W91 stop 2.91 (1.6) 

Breast Cancer Bcell TP53 mutant 0.28 (2.9) 

Breast Cancer NK TP53 W91 stop 3.24 (1.9) 

Breast Cancer NK TP53 mutant 0.26 (3.7) 

Breast Cancer TCD8 TP53 mutant 0.25 (2) 

Breast Cancer Tcell TP53 mutant 0.33 (5.5) 

Breast Cancer Treg TP53 mutant 0.41 (10.6) 

Colon (MSS) NK TP53 S94 stop 3.38 (6.3) 

Colon Cancer NK TP53 S94 stop 3.17 (3.5) 

Head and Neck Cancer Bcell TP53 mutant -0.51 (6.7) 

Head and Neck Cancer NK TP53 mutant -0.48 (8.3) 

Head and Neck Cancer TCD8 TP53 mutant -0.57 (9.3) 

Head and Neck Cancer Tcell TP53 mutant -0.48 (6.2) 

Head and Neck Cancer TregCD8 TP53 N239D -2.42 (4) 

Head and Neck Cancer TregCD8 TP53 mutant 0.35 (4.5) 

Lung Adenocarcinoma NKCD8 TP53 R249S 4.06 (4.2) 

Lung Adenocarcinoma NKCD8 TP53 E224 splice 5.13 (9.2) 

Lung Adenocarcinoma NK TP53 E224 splice 4.5 (6.7) 

Lung Adenocarcinoma NK TP53 R249S 5.31 (7.5) 

Lung Squamous Cell Carcinoma NK TP53 R158H 3.14 (2.6) 

Stomach Cancer NKCD8 TP53 I195N 2.75 (2.2) 

Stomach Cancer NK TP53 I195N 2.49 (2.8) 

Values are reported as Effect Size with associated P values in parenthesis (-log10 P). The units of effect size are change in 181 

signature score (units of standard deviation) for mutant versus wild type. 182 

Figure 5. Association of SYCP2, ARID2, and FGFR3 with immune estimates in tumors; correlation of chromosome 183 

9p copy number (CDKN2A) with FZD3 RNA expression. A: Relationship between SYCP2 mutation and Treg - CD8 ratios 184 

in head and neck cancer. B: Relationship between ARID2 mutation with CD8+ T cell (TCD8) estimates in colon 185 

adenocarcinoma. C: correlation of FZD3 (log2) RNA expression with CDKN2A copy number. D: Relationship between 186 

FGFR3 mutation and macrophage (MFm2) estimates in bladder cancer. 187 

Among genes that may directly or indirectly modulate tumor immune state via interferon signaling or antigen 188 

presentation pathways, we observed that tumors harboring mutations ARID2, a tumor supressor that also regulates 189 

inteferon response genes, contained higher estimated CD8+ T cell content in colon adenocarcinoma (Fig 5B)[29]. Eight out 190 

of the 13 observed mutations in ARID2 were observed in the high-microsattelite instability (MSI-H) subtype. Zaretsky et 191 
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al. describe loss-of-function mutations in Beta-2 microglobulin (B2M) and the JAK2 kinase as candidate mechanisms of 192 

acquired resistance to immunotherapy in the clinic[8]. B2M mutations were associated with higher estimates of NK cells 193 

in melanoma (effect size 1.3, -logP = 1.8) and lung adenocarcinoma (effect size 1.3, -logP = 2). In micro-satellite stable 194 

(MSS) colon cancer we observed a similar positive association of JAK2 mutations with NK cell estimates (effect size 1.3, -195 

logP = 1.7). 196 

Recent reports suggest that activation of elements in the WNT/beta-catenin pathway lead to a suppressed immune micro-197 

environment in melanoma models and possibly in human melanomas[13]. No significant association of beta-catenin 198 

(CTNNB1) mutations with estimates of immune levels was observed in our study, although there was a negative 199 

association between mutation and markers of fibroblast content in liver cancer (data not shown) Mutations of APC, a 200 

tumor suppressor in the WNT/beta-catenin pathway, were linked to lower levels of monocyte, macrophage, and CD8+ T 201 

cell estimates in colon adenocarcinoma and higher NK cell estimates in kidney papillary cell cancer (Table 4). Although 202 

one can observe negative correlations between MYC copy number gains and CD8 T cell estimates in melanoma (Pearson 203 

correlation: -0.2) and some other tumor types, the MYC copy number levels are also highly correlated with purity 204 

estimates (melanoma Pearson correlation: 0.33). We did not observe a significant association of MYC copy number gains 205 

with immune estimates in melanoma in our models that include purity estimates as a covariate, but did observe 206 

associations of small effect size in head/neck, stomach, and the Luminal B subtype (LumB) of breast cancer (Table 4). 207 

Finally, we noticed a strong correlation between WNT receptor Frizzled 3 (FZD3) expression and 9p loss in melanoma (Fig 208 

5C.) 209 

Table 4. Associations of APC mutation and MYC copy number gains with estimates of immune cell levels. 210 

Variant Signature Breast (LumB) Colon Head and Neck Kidney Papillary Cell Stomach 

APC mutant MFm2  -0.72 (5.1)    

APC mutant Mono  -0.77 (5.2)    

APC mutant NK    5.09 (9.5)  

APC mutant NKCD8    4.66 (8)  

APC mutant TCD8  -0.57 (2)    

MYC gain Bcell     -0.25 (3.7) 

MYC gain Mono 0.19 (1.7)     

MYC gain TCD8     -0.21 (1.9) 

MYC gain Treg   -0.23 (1.7)   

Values are reported as Effect Size with associated P values in parenthesis (-log10 P). The units of effect size are change in 211 

signature score (units of standard deviation) for mutant versus wild type in the case of mutations. For copy number 212 

changes the effect size is in S.D. units per change in GISTIC2 score. 213 

Mutations in genes in the RAS/RAF pathway were associated with changes in immune estimates, but, despite the 214 

frequency of their occurence in different tumor histologies, we observed associations in limited tumor types. BRAF V600E 215 

mutations were associated with higher T cell and other immune cell estimates in thyroid cancer. (Table 5). Despite the 216 

high frequency of BRAF mutations in melanoma, we did not observe assocation of BRAF mutation with any immune 217 

signature there. Among the RAS family members, NRAS mutations were also linked to levels of T cells and Tregs in thyroid 218 

cancer. However, the direction of association was reversed from that of the BRAF mutations, with NRAS mutant tumors 219 

having lower estimates of CD8+ T, Treg, and pan-T cells. 220 

Table 5. Association of RAS/RAF oncogene family member mutations with estimates of immune cell types across 221 

TCGA. 222 
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Variant Signature Bladder Colon Head and Neck Testicular Thyroid 

BRAF mutant MFm2     0.41 (3.5) 

BRAF mutant Mono     0.45 (3.9) 

BRAF mutant NK  0.58 (1.5)    

BRAF mutant NKCD8     -0.42 (6.3) 

BRAF mutant Tcell     0.48 (6.1) 

BRAF mutant Treg     0.68 (15.9) 

BRAF mutant TregCD8     0.42 (8) 

BRAF V600E MFm2     0.46 (4.2) 

BRAF V600E Mono     0.54 (5.2) 

BRAF V600E NKCD8     -0.44 (6.5) 

BRAF V600E Tcell     0.61 (10.8) 

BRAF V600E Treg     0.77 (20.7) 

BRAF V600E TregCD8     0.44 (8.5) 

HRAS mutant TregCD8   -0.55 (2)   

KRAS G12V MFm2 -2.61 (2.3)     

NRAS mutant TCD8     -0.67 (1.9) 

NRAS mutant Tcell     -0.83 (4.7) 

NRAS mutant Treg     -0.84 (5.6) 

NRAS Q61R NK    1.64 (2.4)  

NRAS Q61R Tcell     -0.83 (3.1) 

NRAS Q61R Treg     -0.74 (2.7) 

Values are reported as Effect Size with associated P values in parenthesis (-log10 P). The units of effect size are change in 223 

signature score (units of standard deviation) for mutant versus wild type. 224 

Mutations in the PIK3CA oncogene were associated with higher estimates of CD8+ T cells and NK cells, along with 225 

decreased Treg/CD8 ratios, across multiple tumor types (Table 6). We observed association with both gene-level mutation 226 

calls as well as position-specific mutations, many of which have been characterized as activating mutations in PIK3CA[30]. 227 

Mutations in FGFR3 were associated with decreased estimates of multiple immune infiltrate types in bladder cancer and 228 

increased NK cell estimates in head and neck cancer (Table 7 and Fig 5D). Many of the FGFR3 mutations introduce 229 

cysteines into the receptor that result in covalent dimerization and activation of the receptor[31] while others are 230 

reported to inhibit receptor internalization and enhance signalling[32]. 231 

Table 6. Relationship of PIK3CA oncogene mutations with estimates of immune cell types across TCGA. 232 
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Cohort Signature Variant Association 

Breast (Basal) TregCD8 PIK3CA M1004I -2.39 (1.9) 

Breast Cancer NK PIK3CA E81K 2.43 (2.4) 

Cervical Cancer NK PIK3CA H1047R 3.53 (3.3) 

Colon (MSS) NK PIK3CA R88Q 1.16 (1.7) 

Head and Neck Cancer TregCD8 PIK3CA K111E -3.32 (4.2) 

Stomach Cancer TCD8 PIK3CA mutant 0.63 (3.2) 

Testicular Cancer NK PIK3CA mutant 1.9 (2.1) 

Values are reported as Effect Size with associated P values in parenthesis (-log10 P). The units of effect size are change in 233 

signature score (units of standard deviation) for mutant versus wild type. 234 

Table 7. Association of FGFR3 mutations with estimates of immune cell types across TCGA. 235 

Variant Signature Bladder Head and Neck 

FGFR3 mutant Bcell -0.63 (3.7)  

FGFR3 mutant MFm2 -0.97 (13.3)  

FGFR3 mutant Mono -1 (12.5)  

FGFR3 mutant TCD8 -0.58 (2.7)  

FGFR3 mutant Treg -0.71 (6.7)  

FGFR3 G382R NK  4.61 (5.1) 

Values are reported as Effect Size with associated P values in parenthesis (-log10 P). The units of effect size are change in 236 

signature score (units of standard deviation) for mutant versus wild type. 237 

Finally, non-synonymous mutations in two distinct regulators of cell death were linked to altered immune state. Caspase 8 238 

(CASP8) mutations were associated with higher T and NK cell estimates and lower Treg/CD8 ratios in head/neck cancer, 239 

and a specific Q156 nonsense mutation was associated with higher NK cells in breast cancer. (Fig 6A and Table 8). Death 240 

inducer-obliterator 1 (DIDO1) mutations were similarly associated with higher NK cell estimates (Fig 6B) in head/neck 241 

cancer. The pattern of mutations in across these genes was generally consistent with loss of function (data not shown), 242 

although some CASP8 mutations have been shown to increase nuclear factor kappa B signalling in tumor models[33]. 243 

Figure 6. Mutations in cell death pathways. A: Relationship between CASP8 mutation with CD8+ T cell (TCD8) 244 

estimates in head and neck cancer. B: Relationship between DIDO1 mutation and NK estimates in head and neck cancer. 245 

Table 8. Association of mutations in cell death pathway genes CASP8 and DIDO1 with estimates of immune cell 246 

types across TCGA. 247 

Variant Signature Breast Head and Neck 

CASP8 mutant TCD8  0.61 (3.5) 

CASP8 mutant TregCD8  -0.54 (5.4) 

CASP8 Q156 stop NK 3.14 (1.4)  

DIDO1 mutant NK  1 (7.2) 

Values are reported as Effect Size with associated P values in parenthesis (-log10 P). The units of effect size are change in 248 

signature score (units of standard deviation) for mutant versus wild type. 249 

DISCUSSION 250 

Investigating the association between between cancer genetics and tumor immune infiltrate requires quantitative 251 

estimates of intra-tumoral immune cell content. Of the various high-throughput data available in TCGA, RNA-seq data on 252 

transcription of immune markers is an obvious starting point, but not without challenges. Signature sets derived from 253 

RNA-seq of sorted immune cell populations from peripheral blood, such as FANTOM consortium studies, offer one way to 254 
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estimate immune levels[20]. We were discouraged by our observation that only a fraction of markers derived from 255 

FANTOM data were well correlated with each other across tumors in TCGA. Markers derived from RNA-seq on sorted 256 

immune cells must demonstrate selectivity of expression not just versus other immune cells, but also across diverse tumor 257 

cells, tumor-associated stroma, and vasculature. A related challenge observed with immunological markers selected from 258 

the literature is that they are often derived from flow cytometry data; unfortunately we do not have the luxury of gating 259 

for a particular cell type with gross tumor RNA-seq data. Even a marker as canonical as CD4 is not a selective 260 

transcriptional marker for CD4+ T cells. Newman et al. recently reported a compelling support vector machine model that 261 

was trained with mixtures of immune and tumor cells and successfully predicts immune composition in tumors, but the 262 

published methods have not been trained for use on RNA-seq data[34]. 263 

We chose to re-derive immune signature marker sets directly from TCGA tumor data using a handful of sentinel markers 264 

(FOXP3, CD8A, CD19, etc.) for immune cells and utilizing mutual rank distance metrics to expand the local gene expression 265 

neighborhoods[22]. The use of mutual rank distance measures is one effective way to identify strict gene neighbors in the 266 

context of a large overall correlation structure of immune markers in tumors. The principle of this metric is similar to the 267 

widespread use of 'reciprocal best hits' in DNA and protein sequence analysis to define gene orthologs across species[35], 268 

but applied here to gene expression neighbors in RNA-seq data. Alternatively, one could have used partial correlation 269 

theoretical methods to derive similar sets of strict gene neighbors[36]. We purposely kept these signature sets small 270 

(usually 2-3 genes/signature) and the mathematical model simple (usually a median of z-scored gene expression values). 271 

Larger set sizes and more complicated models could conceivably result in better predictors, but as signatures become 272 

more complex it also becomes more difficult to understand the nature of their failures. Because these sets were derived 273 

from correlation within tumors, rather than from isolated immune cell populations, they have demonstrated some level of 274 

resistance to interference from expression by the complex cellular environment of tumor and stroma. As a final 275 

conservative measure, we excluded tests of association of immune signatures with genetics for any given cohort when the 276 

median Pearson correlation within the marker set was less than 0.45. Work is ongoing to acquire a compendium of tumor 277 

RNA-seq data combined with flow-cytometry based quantitation of tumor immune content, which can serve as a gold 278 

standard for further assessment and validation of our immune cell type signatures. 279 

Of the major genetic events that were in association with T cell levels in tumors, we found that loss of the chromosome 9p 280 

genomic region (driven by p16/CDKN2A) was the most significant. This result is in agreement with a report by Linsley et 281 

al. that demonstrated a link between interferon gene cluster loss (adjacent to CDKN2A) and decreased levels of several 282 

immune signatures in melanoma[37]. These effects were not reported by Rooney et al. as associated with their cytotoxic T 283 

cell signature, possibly because a strong effect is only observed in a handful of cohorts across TCGA[15]. 284 

In general, we see no reason to presume that the driver of a tumor CNA is necessarily also the driver of the immune effect. 285 

The region of association we observed for 9p loss is present across the entire chromosome arm. In addition to the 286 

presence of the adenosine-modulating enzyme MTAP and the alpha interferon cluster, PD-L1, PD-L2, and JAK2 CNA are 287 

often in linkage with CDKN2A loss. Zaretsky et al. have recently reported a genetic study focused on patients that relapse 288 

during the course of pembrolizumab (anti - PD-1) therapy[8]. Although the study was limited to a few patients, they 289 

observed homozygous loss-of-function mutations in JAK2 in a relapsed patient, and in vitro studies demonstrated that cell 290 

lines lacking JAK2 were incapable of responding to gamma-interferon. The effect of homozygous loss of 9p regions that 291 

include JAK2 will lead to the same loss of function, suggesting that there may be therapeutic consequences to the changes 292 

we observe in 9p. 293 

Our study independently assessed the effects of copy number gains and losses. We reasoned that the biological driver of 294 

copy number gains and losses observed in any chromosomal region could often be distinct. This allowed an analysis of 295 

copy number gains of PD-L1(CD274) and PD-L2(PDCD1LG2) on chromosome 9p, despite the partial linkage with nearby 296 

CDKN2A loss that would have resulted in a spurious association in a combined analysis. Expression of PD-L1 in tumors is 297 

associated with response rates to anti - PDCD1 therapy[38]. Amplification of PD-L1 by neoplasms is well documented in 298 

Hodgkin lymphoma, and one might hypothesize that amplification of the PD-L1 genomic region could be an active 299 

immuno-evasion mechanism in multiple tumor types[26]. However, we observed no compelling evidence for association 300 

of PD-L1 amplification with any immune cell abundance estimate tested. 301 

We observed several other very large chromosomal regions whose copy number estimates were associated with 302 

abundance estimates for many immune cell types. Most of these events, such as CNA on the long arm of chromosome 5, 303 

are copy number losses linked to decreased estimates of lymphocyte abundance (Fig 2). This common pattern of CNA loss 304 
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leading to decreased immune estimates might suggest that immuno-editing could be taking place. Further work will be 305 

needed to confirm our attempted removal of the bias that tumor purity introduces to GISTIC estimates, a bias that would 306 

lead to aberrant association of all CNA with lower estimates of immune infiltrate. The commonly observed amplification of 307 

12p in testicular cancer is the only large scale amplification event associated with a change (decrease) in T cell, NK cell, 308 

and other immune cell estimates. 309 

One might have expected that the genetic instability of tumors with inactivated TP53 would be associated with higher 310 

immunogenicity of tumor and higher immune infiltrate. We did not observe a general correlation of TP53 mutations with 311 

immune cell estimates in tumors across TCGA cohorts, but associations were present in breast and head/neck cancers. 312 

TP53 mutations were associated with higher estimates of immune infiltrates in breast cancer. However, we found that in 313 

head and neck cancers the presence of TP53 mutations was associated with lower estimates of various immune infiltrates. 314 

As TP53 mutation has been shown to be inversely correlated with human papilloma virus infection (HPV) status in head 315 

and neck cancer, we believe that TP53 mutation status may be serving as an inverse marker of viral infection in this tumor 316 

type, with the HPV-infected tumors displaying a higher estimate of immune infiltrate[39]. In some cases we observed 317 

effects of specific TP53 mutations, such as the R249S mutation in lung adenocarcinoma, previously described in hepatitis 318 

and aflatoxin-associated liver cancer, that alter TP53 function in ways more subtle than simple loss of function and also 319 

suggests that some genetic-immune interactions could be related to environmental and/or viral insults[27]. 320 

Our study confirmed the report of Rooney et al. that caspase-8 mutations are associated with altered immune content 321 

estimates in some tumors. This is not an independent confirmation, as the data in our analyses both come from only 322 

modestly different releases of TCGA. However, in our study we observed a significant association only in head/neck and 323 

breast cancer[15]. CASP8 is one of the terminal elements in the cellular apoptosis pathway. CASP8 mutations were 324 

associated with higher CD8+ T and NK cell levels, in a mutational pattern suggesting loss of function. One possibility is that 325 

mutations of CASP8 are adaptations to an established immune response, providing resistance to T and NK cell-mediated 326 

cell killing. However, the switch from apoptotic to necroptotic cell death pathways can be associated with higher 327 

immunogenicity, especially when nuclear factor kappa B activity is present in the dying cells, which should lead to higher 328 

infiltrate[40]. It has also been reported that many CASP8 mutations, while loss of function in some aspects, result in 329 

increases in nuclear factor kappa B signaling and general tumor inflammatory state[33]. 330 

We also found that mutations in the cell death modulator DIDO1 (death obliterator-inducer 1) manifest a similar pattern 331 

in to CASP8 in head and neck cancer, with DIDO1 mutations associated with higher estimates of natural killer cells. The 332 

increased estimates of CD8+ T cells in colon adenocarcinomas harboring mutations in ARID2, a tumor supressor that also 333 

regulates the expression of interferon responsive genes[29], is another case where genetic adaptation to immune 334 

response could be taking place, particularly in the context of microsatellite instability. Finally, we observe mutations in 335 

beta-2 microglobulin (B2M), a necessary component of antigen presentation, associated with high estimates of NK cells in 336 

melanoma, and JAK2 mutations with higher NK levels in colon cancer. These results are thematically in line with recent 337 

report of mutations in beta-2 microglobulin and JAK kinases as escape mechanisms in patients that have relapsed during 338 

pembrolizumab therapy[8] and consistent with the previous report of B2M association with immune state by Rooney et 339 

al.[15]. 340 

Although we saw some evidence of genetic changes in the WNT/beta-catenin pathway in association with immune 341 

estimates, the results are mixed. We did not observe compelling evidence for the association of any CTNNB1 (beta-342 

catenin) mutation on immune estimates in our study. We did observe a link between the presence of APC mutations and 343 

decreases in estimates of myeloid and CD8+ T cells in colon adenocarcinoma, but increases in NK estimates in kidney 344 

papillary carcinoma were observed. Although amplification of MYC is inversely correlated with T cell estimates in some 345 

tumor types and Spranger et al. report a strong relationship between MYC expression and T cell estimates in 346 

melanoma[13], once we included estimates of tumor purity as a covariate in the analysis we did not observe association of 347 

MYC CNA with immune estimates in melanoma, and limited association elsewhere. We did, however, observe a strong 348 

correlation between FZD3 receptor expression and 9p loss in melanoma, suggesting that there may be a link between 349 

chromosome 9p loss and beta-catenin pathway status. To more thoroughly test WNT/beta-catenin hypotheses, multi-gene 350 

and multi-positional genetic signatures may need to be created to capture beta-catenin pathway activation via diverse 351 

genetic changes. 352 

Although our study attempts to be comprehensive, it is limited in several aspects. A number of TCGA cohorts are still not 353 

large enough to expect sensitive identification of genetic-immune interactions, and even for large cohorts associations 354 
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with rarer genetic changes will be too infrequent to sensitively measure. Although the rarer mutations and CNA might not 355 

be practically useful for patient stratification, they could still be a source of biologically rich information about the 356 

interactions of tumor genetics with immune state. 357 

We attempted to adjust for two of the major possible biases in TCGA datain our models. First, one might expect that 358 

tumors with higher overall mutational burdens will have increased immune infiltrate, and this is observed in some tumor 359 

types[15,41]. We tried to control for this by using the observed total mutational burden of each sample as a covariate in 360 

our studies of mutation. It is possible that these corrections are over-conservative in cases where high mutational load 361 

and immune response leads to genetic adaptation by tumor, consistent with the observations of ARID2 mutations in colon 362 

cancer and the B2M mutations reported by Rooney et al.[15], where we observe a more limited strength of association in 363 

our model. Second, the GISTIC2 estimates of copy number alteration will be attenuated by the diploid nature of any non-364 

tumor cell within the tumor. Left uncorrected, this bias can result in the prediction that any high level amplification or 365 

deletion will be immunosuppressive. We similarly chose to include an estimate of tumor purity as a covariate in our CNA 366 

model to try to adjust for this bias, despite the possibility the adjustment is overly conservative, as immune infiltrate is 367 

one component of tumor impurity. Finally, more intricate regression models than the ones described here could be 368 

devised that include factors such as clinical stage, sex, and more detailed tissue origin into the models. 369 

It is important to highlight that we cannot infer cause and effect, in either direction, from any results in the current study. 370 

More conventional studies of human genetic effects on immune state usually are usually grounded in the assumption that 371 

the genetic variation is the cause of the immune change[42]. We cannot rely on that assumption in cancer. Although it is an 372 

intriguing hypothesis that the mutations in cell death pathways (CASP8, DIDO1) observed in head/neck cancer could be a 373 

tumor adaptation to ongoing immune activty, additional experiments will be necessary to establish this. There's also the 374 

possibility that the genetic changes we observed are part of a rich history of tumor or tumor subtype evolution that 375 

ultimately and only indirectly lead to the immune change, i.e. we are identifying a latent tumor subtype. The observed 376 

association of TP53 mutations with lower immune estimates in head/neck cancer may be a reflection of the HPV origin of 377 

many of the TP53 wild-type tumors in the cohort. In thyroid cancer, the fact that activating BRAF and NRAS mutations are 378 

associated with immune changes in opposite directions, despite a common ability to activate the RAS/RAF/MEK/ERK 379 

pathway, may be another example where our analysis is identifying tumor subtypes rather than identifying cause-effect 380 

relationships. All of the above points mean that even for oncogene mutations linked to decreased infiltrate, like FGFR3 in 381 

bladder cancer, there is no assurance that inhibition of the oncogene's signalling pathway will alter tumor immune 382 

dynamics. However, the FGFR3 result is at least one case where the cause and effect hypothesis is directly testable by 383 

study of FGFR3 inhibitors in cancer models. 384 

An additional challenge, not uncommon in genome-wide association studies, is the sometimes very large chromosomal 385 

regions (CNA) found to be in association association with the phenotype (estimates of immune infiltrate). Although in 386 

some cases these CNA possess a peak when inspected for significance and/or effect size, in many cases the regions of 387 

association span millions of bases. The attempt to dissect the 9p region is one example: extensive study of the region 388 

across multiple tumor types failed to yield a clear candidate mediator of the effects (assuming a cause-effect relationship 389 

exists). 390 

The reported trends for higher immunotherapy response rates in tumors with higher infiltrate suggests that our results 391 

might be used to guide therapeutic options, regardless of our understanding of cause and effect relationships[4]. One 392 

could hypothesize that genetic markers associated with infiltrate, such as chromosome 9p loss and FGFR3 mutation, could 393 

be used in patient stratification approaches. We don't yet know to what extent these genetic markers would provide the 394 

fidelity necessary for a diagnostic. 395 

From comparison between all position-specific mutations across the TCGA cohorts and T cell estimates, there is little in 396 

our results to suggest that we have identified recurrent T cell neoepitopes from tumors that lead to consistently altered 397 

lymphocyte levels. The BRAF V600E mutation is distinctly associated with higher T cell estimates, but this is only 398 

observed in thyroid cancer, despite the prevalence of this mutation in melanoma and occurence in other tumor types. 399 

CONCLUSION 400 

Our study of the relationship between tumor genetics and immune infiltrate is a starting point toward understanding how 401 

tumor evolution shapes the immune response and immune evasion, and possibly vice versa. We have identified some of 402 
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the major genetic events linked to immune cell levels in tumors, some of which will likely influence response to 403 

immunotherapy. We developed a set of transcriptional markers for estimating relative levels of various immune cell types 404 

via a network correlation approach that was designed to resist interference from the heterogenetity of tumor tissue. We 405 

observed a strong relationship between copy number loss of a large region of chromosome 9p and decreased lymphocyte 406 

estimates in melanoma and several other tumor types. Although we could not identify specific loci on 9p responsible for 407 

the association, the recent reports of mutations in inteferon signalling pathways that lead to resistance to immunotherapy 408 

suggests that both the alpha-interferon cluster as well as JAK2 are candidate mediators. We also noted associations of 409 

several cancer driver mutations in genes such as PIK3CA, BRAF, RAS family members, and FGFR3, with estimates of 410 

immune infiltrate, although these associations were often observed in limited tumor types. Finally, we observed that 411 

mutations in two distinct cell death pathway genes, CASP8 and DIDO1, were associated with higher immune infiltrate in 412 

head and neck cancers. We believe that examination of the combination effects of agents that stimulate or modify cell 413 

death pathways with checkpoint blocking agents is warranted. 414 

We also discovered some of the complexities in working with immune signatures and multi-modal tumor data. The large 415 

regions of association of many copy number alterations with immune estimates will require further studies to ascribe 416 

cause and effect on immune state to any particular loci. Biases in genomic data due to tumor purity and other possible 417 

factors can give strong association signals; when we removed some of these biases many signals (such as MYC 418 

amplification) were diminished or disappeared. Finally, the complexity of tumor composition and the highly correlated 419 

nature of immune infiltrate in tumors means that care must be taken to find markers as specific as possible for a given cell 420 

type. Efforts are underway to refine our marker sets as well as to acquire experimental data crucial to adding validation 421 

beyond our current criteria of mutual-rank correlation in tumors (manuscript in preparation). 422 

Our genome-wide association analysis provides a baseline to compare against emerging hypotheses about tumor genetics 423 

and immunotherapy. As an example, in the case of WNT/beta-catenin pathway activation in melanoma, we were able to 424 

identify a relationship between what we view as a dominant effect of chromosome 9p loss with FZD3 receptor expression. 425 

We hope our work will help to guide future mechanistic studies on the influence of specific cancer pathways on immune 426 

state and response to immunotherapy, placing new hypotheses in the context of global tumor genetic - immune 427 

interactions. 428 

METHODS 429 

TCGA DATA 430 

Data from TCGA (TCGA Research Network: http://cancergenome.nih.gov/ ) was obtained from the University of California 431 

Santa Cruz Xena TCGA Pan-Cancer (PANCAN) repositories (http://xena.ucsc.edu/public-hubs/). Gene expression: UCSC 432 

Xena team, HiSeqV2_PANCAN, 2015-10-29. Values are log2(x+1) transformed RSEM gene-level expression estimates. CNA 433 

data: UCSC Xena team, TCGA_PANCAN_gistic2, 2015-10-26. Values are estimated using the GISTIC2 algorithm, the TCGA 434 

Firehose pipeline produced segmented CNV data, which was then mapped to genes to produce gene-level estimates. Gene-435 

level Mutation data: UCSC Xena, TCGA_PANCAN_mutation_xena_gene, 2015-11-11. Genes are annotated as 0 (wt) or 1 436 

(mutant) if they contain a non-silent mutation (nonsense, missense, frame-shift indels, splice site mutations, and stop 437 

codon read-throughs). Mutation were assigned a value of 0.5 if two different samples from the same tumor were analyzed 438 

and a single sample contained a non-silent mutation call. Position-level mutation data: UCSC Xena, 439 

TCGA_PANCAN_mutation_xena, 2015-11-11. Cancers of hematopoietic orgin (leukemias, lymphomas, gliomas, and 440 

thymomas) were excluded from the analysis. 441 

Tumor subtype information for colon and breast cancers was taken from the corresponding phenotype annotation files 442 

from UCSC. Subtype classification for gastric cancer was obtained from the TCGA gastric cancer publication[39]. 443 

Analyses were performed in the R language for statistical computing [43]. The plyr package was used for data 444 

manipulation[44], ggplot2 was used for plotting[45], and limma was employed for model fitting and hypothesis 445 

testing[46,47]. The qgraph package was used for network plotting[48]. Knitr was used for manuscript generation from R 446 

Markdown[49–51]. 447 
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Transcript co-regulation was measured using a 3-way mutual rank distance, an extension of the method described by 448 

Huttenhower et al. across all transcripts in the TCGA RNA data set, tumor only[22]. Each loci's transcript expression 449 

values from TCGA PANCAN were first individually fitted to a standard distribution within cohort, then all cohorts were 450 

combined into a single data set. Pearson correlation was then used to rank all neighbors for each gene. All possible gene 451 

trios were evaluated for the minimum product of their six mutual ranks. Each gene-gene distance was expressed as the 452 

base 10 logarithm of this minimum score. 453 

SIGNATURES THAT ESTIMATE IMMUNE CELL CONTENT IN TUMORS 454 

Signature scoring: Signature estimates were constructed as the median of z-scored (log2) expression values of each 455 

signature gene component except for the NK markers (see below). 456 

TCD8 (CD8+ T cells): (CD8A, SLA2) Source: Mining of immune signatures in tumors using CD8A as sentinel marker. 457 

Reciprocal-Mutual-Rank methods were used to identify transcripts most intimately associated with sentinel markers. 458 

Caveats: CD8A is also expressed in a fraction of dendritic cells, some NK cells, and occasionally (rarely) in tumors. 459 

Treg (Regulatory T Cells): (FOXP3, CCR8, CCR4) Source: Mining of immune signatures in tumors using FOXP3 as sentinel 460 

marker. Reciprocal-Mutual-Rank methods were used to identify transcripts most intimately associated with sentinel 461 

markers. Caveats: Although CCR4 and CCR8 seem to be most predominantly co-expressed with FOXP3 in tumors, in sorted 462 

immune cells these receptors can also be seen in activated populations of CD4+ and CD8+ T cells. 463 

Tcell (Pan T-Cell): (SIRPG, CD3E) Mining of immune signatures in tumors using CD3 family members as sentinel markers. 464 

Reciprocal-Mutual-Rank methods were used to identify transcripts most intimately associated with CD3 epsilon (CD3E). 465 

Bcell (B-cell): (CD19, CD79B, MS4A1) Source: Mining of immune signatures in tumors using CD19 as sentinel marker. 466 

Reciprocal-Mutual-Rank methods were used to identify transcripts most intimately associated with sentinel markers. 467 

Mono (Monocyte lineage): (CD86, CSF1R, C3AR1) Source: Examination of correlation between antigen presenting cell-468 

related genes across TCGA. Caveats: may not discriminate well between monocytes, macrophages, and other related 469 

members of the lineage. 470 

M2mf (M2 Macrophage): (CD163, VSIG4, FOLR2) Source: cross-referencing of Fantom/Hacohen/Rooney macrophage 471 

marker sets with mutual rank distance measures across TCGA[20]. The initial set was expanded with neighboring genes, 472 

cross-referenced with the literature and Mouse Immunological Genome Project (http://immgen.org) expression profiles 473 

to reduce to a small list of macrophage markers. 474 

NK (Natural Killer cells): (KIR2DL1, KIR2DL3, KIR2DL4, KIR3DL1, KIR3DL2, KIR3DL3, KIR2DS4) Source: Mutual-rank 475 

correlation analysis of Natural Killer Group (NKG) and Killer-Cell Immmunoglobulin-Like Receptor (KIR) receptor families 476 

in TCGA tumor data revealed co-regulation of multiple members of the KIR family. However, any specific KIR gene was 477 

often observed to be at the lower limit of detection set by the TCGA RNA-seq pipeline. Compared to other cellular 478 

signatures, a larger collection of (KIR) markers was selected, a mean instead of median summarization was used to 479 

estimate NK cell content, and a small gaussian noise component was added (mean 0.16, standard deviation 0.08) to 480 

improve the normality of the NK signature score distribution. 481 

TregCD8 and NKCD8 signatures were constructed by subtracting the TCD8 estimate from Treg estimate, or the TCD8 from 482 

the NK estimate, respectively. 483 

ANALYTICAL MODELS 484 

Associations between gene mutations and immune signatures were estimated by the linear regression models of the form: 485 

                �         �       �         :       �                

where 'Total Mutation' is the total number of observed mutations in the sample (log2 scaled), used as a covariate. 486 

'Mutation' is considered a numeric variable in the model, with possible values of 0 (no mutation observed), 1 (mutation 487 

observed in TCGA sample), 0.5 (mutation observed in 1 of multiple TCGA samples available for that tumor). 488 

Associations between gene copy number alterations and immune signature scores were estimated linear regression 489 

models of the form: 490 
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                �            �       �            :       �                 

where copy number is a continuous-valued (log2) estimate obtained from GISTIC2 analysis of Affymetrix SNP 6 SNP/CNV 491 

array data, processed by TCGA[52]. 492 

Associations between copy number gains were performed with all data where GISTIC estimates were > -0.1 (log2 493 

transformed GISTIC values). The associations with copy number losses were performed with data where GISTIC estimates 494 

were < 0.1. 495 

Purity estimates were derived from data from the tumor purity meta-analysis published by Butte et al[23]. An RNA 496 

expression-based linear model was rederived from the Butte et al. purity estimates by fitting a 50 marker linear model of 497 

transcripts positively correlated with purity estimates, and applying the model to all samples in the study. 498 

Mutation and CNA candidates: The top 3200 most frequently mutated genes across TCGA were used in the mutation 499 

analysis. All gene-level CNA were used in the analysis in order to allow finer mapping of association peaks. P values 500 

reported are corrected for multiple testing using p.adjust in R and the holm method[43] following the limma algorithm's 501 

eBayes adjustment for multiple tests of immune signatures[46]. For mutation, the 3200 mutations in the analysis were 502 

used as the number of tests. For CNA, where groups of markers are often highly correlated, we single-linkage clustered all 503 

CNA data and identified 1023 separate groups that displayed pearson correlation less than 0.95 with each other. We used 504 

1023 as the effective number of tests for the correction. In all of the models, we excluded tests of association of a 505 

particular immune signature with genetics for any given cohort when the median Pearson correlation within the marker 506 

set was less than 0.45. 507 
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the magnitude of effect of copy number change on CD8+ T cell estimates (rather than -logP, as in the main figures) is 518 

displayed on the vertical axis. Each data point represents the result for a given locus, with significance (negative log(10) of 519 

P value) indicated by size of the data point. The unit of effect size is the change in TCD8 signature score (units of standard 520 

deviation of signature score across all TCGA tumors) per (log2) unit of GISTIC copy number change. Individual panel: 521 

association between loss of a given chromosomal region and CD8+ T cell estimates in melanomaoma, pancreatic, head-522 

neck cancer. Mean panel: a combined analysis across the three cohorts (mean effect size). 523 

Supplementary Data SData1.csv.gz A compressed, comma-delimited file containing all the genetic association results 524 

contained in this study. Column key: "Cohort", TCGA tumor type or sub-cohort tested; "Sig", immune cell signature; "Type", 525 

type of genetic change (CNA/cnv, mutation/mut, position specific mutation/fmut); "Variant", mutation or CNA tested; 526 

"Chr", chromosome of variant; "Pos", position of variant(megabases); "minP", minimum uncorrected P value from any 527 

tumor type among contrasts tested in model; "P", corrected -log(10) P value; "Effect", effect size; "Dir", direction of effect 528 

size; "P.orig", P value corrected for multiple tests of signatures by limma but not for multiple tests of genetic changes. 529 

A snapshot of the UCSC Xena team's November 2015 release of TCGA data used in this work, along with the R and R 530 

markdown code used to perform the analysis and generate this manuscript, is available at http://fiveprime.org/GENIO . 531 
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