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Abstract 
Summary: Although there are numerous algorithms that have been developed to identify structural 
variation (SVs) in genomic sequences, there is a dearth of approaches that can be used to evaluate 
their results. The emergence of new sequencing technologies that generate longer sequence reads 
can, in theory, provide direct evidence for all types of SVs regardless of the length of region through 
which it spans. However, current efforts to use these data in this manner require the use of large 
computational resources to assemble these sequences as well as manual inspection of each region. 
Here, we present VaPoR, a highly efficient algorithm that autonomously validates large SV sets using 
long read sequencing data. We assess of the performance of VaPoR on both simulated and real SVs 
with regards to various features including accuracy and sensitivity of breakpoint evaluation and report 
a high fidelity rate.  
Availability: https://github.com/mills-lab/VaPoR 
Contact: remills@umich.edu  
Supplementary information: Supplementary data are available at Bioinformatics online. 

 

 

1 Introduction  
Structural variants (SVs) are one of the major forms of genetic variation 
in humans and have been revealed to play important roles in various 
diseases including cancers and neurological disorders (Brand, et al., 
2014; Stankiewicz and Lupski, 2010). Various approaches have been 
developed and applied to paired-end sequencing to detect SVs in whole 
genomes (Layer, et al., 2014; Rausch, et al., 2012; Zhao, et al., 2016), 
however individual algorithms often exhibit complementary strengths 
that can be leveraged in aggregate. Subsequently, investigators typically 
apply and compare multiple algorithms to their samples and design their 
own selection strategy according to the sensitivity and specificity 
requirements of specific research, while using orthogonal evidence from 
each approach as the only evidence that an actual structural 
rearrangement is present (Sudmant, et al., 2015). The emergence of long 
read sequencing technology, eg. Single Molecule Real-Time (SMRT) 
sequencing from Pacific Biosciences (PacBio), can provide direct 

evidence for the presence of an SV. Current strategies make use of de 
novo assembly to create large contigs that can be cross-referenced with a 
putative SV using manual inspection of the subsequent recurrence (dot) 
plot (Huddleston, et al., 2016). These types of dot plots have been used 
for decades to examine the specific features of sequence alignments 
(Gibbs and McIntyre, 1970), however they require manual curation and, 
coupled with the computational costs of sequence assembly, are time-
consuming and inefficient at scale for the high throughput validation of 
large sets of SVs.  

Here, we present a high-speed long read based assessment tool, 
VaPoR, that scores each SV prediction by autonomously analyzing the 
recurrence of windows within a local read against the reference genome 
in both their original and rearranged format according to the prediction. 
A positive score of each read on the altered reference, normalized against 
the score of the read on the original reference, supports the predicted 
structure. A baseline model is constructed as well by interrogating the 
reference sequence against itself at the query location. We show that our 
approach is able to quickly and accurately distinguish true from false 
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positive predictions of both simple and complex SVs and is also able to 
assess the breakpoint accuracy of individual algorithms. 

2 Methods 
VaPoR takes in aligned sequence reads in BAM format and predicted 
SVs (>50bp) in various formats including VCF and BED. Evaluation of 
an SV is performed by comparing long reads that go through the event 
against reference sequences in two formats: (a) the original human 
reference to which the sample is aligned and (b) a modified reference 
sequence altered to match the predicted structural rearrangement. A 
recurrence matrix is then derived by sliding a fixed-size window with 
1bp step through each read to mark positions where the read sequence 
and reference are identical. The matching patterns are then assessed as to 
the validity of the SV as described below and a validation score is 
reported. Given the large variance of SVs lengths, each SV is stratified 
into one of two groups, each with respective statistical models 
implemented: smaller SVs that can be completely encompassed within 
multiple (>10 by default) long sequences and larger events that are rarely 
covered by individual long reads. VaPoR workflow is briefly 
summarized in Fig. 1.  
 
Small Variants Assessment: 
For an SV k in sample s that is covered by n reads, the recurrence matrix 
between each read and the reference sequences in original (Ro) and 
altered (Ra) format is calculated. The vertical distance between each 
record (xi,k,s,Rx, yi,k,s,Rx) in matrix x and the diagonal (xi,k,s,Rx, xi,k,s,Rx) line is 
calculated as di,k,s,Rx = abs(xi,k,s,Rx - yi,k,s,Rx), and the average distance of all 
records would be exported as the score of each matrix:  

௞,௦,ோ௫݁ݎ݋ܿܵ ൌ ෍ ݀௜,௞,௦,ோ௫  / ݉,

௠

௜ୀଵ

 

where m is the total number of records in the matrix. Sequences that 
share higher identity with the read shall have a lower Scorek,s,Rx, such that 
the score of each read is normalized as:  

௞,௦,ோ݁ݎ݋ܿܵ ൌ ௞,௦,ோ೚݁ݎ݋ܿܵ
௞,௦,ோೌ݁ݎ݋ܿܵ / 

െ 1, 

where a positive Scorek,s,R represents the superiority of the predicted 
structure versus the original and vise versa for negative Scorek,s,R, with 
one exceptional case where there exists a duplicated structure in the 
predicted SV such that the predicted structure would show higher 
Scorek,s,R due to the multi-alignment of duplicated segments. To correct 
for duplications, VaPoR adopts the directed distance di,k,s,Rx = xi,k,s,Rx - 
yi,k,s,Rx instead such that the distance contributed by centrosymmetric 
duplicated segments would offset each other. 
 
Large Variants Assessment: 
For larger SVs where there are few, if any, long reads that can transverse 
the predicted SV, VaPoR assesses the quality of each predicted junction 
instead using: 

௞,௦,ோ௫݁ݎ݋ܿܵ ൌ
∑ ܫ ൌ  ൜1, ௜,௞,௦,ோ௫ݔ൫ݏܾܽ ݂݅ െ ௜,௞,௦,ோ௫൯ݕ ൏ 0.15 ∗ ௜,௞,௦,ோ௫ݔ

0, ݁ݏ݅ݓݎ݄݁ݐ݋
௠
௜ୀଵ

݉
 ,  

where a larger Scorek,s,Rx represents higher similarity between the read 
and the reference sequence. The normalized scores of each read is then 
defined as: 

௞,௦,ோ݁ݎ݋ܿܵ ൌ ௞,௦,ோೌ݁ݎ݋ܿܵ
௞,௦,ோ೚݁ݎ݋ܿܵ / 

െ 1, 

 
VaPoR Score Calculation: 

With a score assigned to each read spanning through the predicted 
structural variants, the VaPoR score (ܵܿ݁ݎ݋௞,௦) is summarized as: 

௞,௦݁ݎ݋ܿܵ ൌ
∑ ܫ ൌ௡

ோୀଵ ൜
1, ௞,௦,ோ݁ݎ݋ܿܵ  ݂݅ ൐ 0

0, ݁ݏ݅ݓݎ݄݁ݐ݋
݊

 

to represent the proportion of long reads supporting predicted structure.  
The highest supportive score (max( ௞,௦,ோሻሻ݁ݎ݋ܿܵ  is also reported as a 
reference for users to meet the specific requirement of their study design, 
for which we recommend 0.1 as the cutoff.    
 
Flexible window size: 
By default, VaPoR uses a window size of 10bp and requires an exact 
match between sequences, though these can be changed to user-defined 
parameters. However, many regions of the genome contain repetitive 
sequences resulting in an abundance of spurious matches in the 
recurrence matrix, thus introducing bias to the assessment. To address 
this, VaPoR adopts a quality control step by iteratively assessing the 
reference sequence against itself and tabulating the proportion of 
matches along the diagonal. The window size initially starts at 10bp and 
iteratively increases by 10bp until either (a) the proportion of matches on 
the diagonal exceeds 40% and the current window size is kept or (b) the 
window size exceeds 40bp whereby the event will be labeled as ‘non-
assessable and excluded from the evaluation. 

 

Fig 1. Flowchart describing the VaPoR algorithm. As input, the algorithm requires 

a set of structural variants in either VCF or BED format, a series of long reads 

and/or sequence contigs in BAM format, and the corresponding reference 

sequence. VaPoR then interrogates each variant individually at its corresponding 

reference location, assesses the quality of the region and assigns a score. 

3 Results 

We have assessed performance of VaPoR on both simulated and real 

genomes from the 1000 Genomes Project to assess the following 
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characteristics: (a) sensitivity and false discovery rate on validating 

structural variants in simple and complex structures, (b) sensitivity of 

VaPoR on validating different levels of predicted breakpoint efficacy 

and (c) time and computational cost of VaPoR. 

3.1 VaPoR on Simulated Data 

Non-overlapping simple deletions, inversions, insertions and 

duplications as well as complex structural variants as previously 

categorized (Zhao, et al., 2016) were independently incorporated into 

GRCh38 in both heterozygous and homozygous states, excluding regions 

of the genome known to produce artifact signals as described from the 

ENCODE project blacklist (Consortium, 2012). Detailed descriptions of 

each simulated SV types simulated are summarized in Supplementary 

Tables 1- 3. We applied PBSIM (Ono, et al., 2013) to simulate the 

modified reference sequences to different read depth ranging from 2X to 

70X with parameters difference-ratio 5:75:20. length-mean 12000, 

accuracy-mean 0.85 and model_qc model_qc_clr.  
We applied VaPoR to the simulated SVs and first assessed the 

proportion of SVs that VaPoR is capable of interrogating (i.e. passed 

VaPoR QC) and found that VaPoR can successfully evaluate >80% of 

insertions, >85% deletion-duplications and >90% SVs in all other 

categories when the read depth is 10X or higher. We then assessed the 

sensitivity and false discovery rate at different VaPoR Score cutoffs and 

found that when looking into different types of SVs at a read depth of 

30X, most of the SV types achieve a sensitivity >90% with false 

discovery rate <10% at VaPoR Score cutoff of 0.1 for heterozygous and 

0.25 for homozygous events (Supplemental Figures 1-2). We further 

observed that there were no significant changes of sensitivity or false 

discovery rate once the read depth was at or above 20X (Supplemental 

Figures 3-4) and is consistent across different SV types (Supplemental 

Tables 1-3). 

3.2 VaPoR on 1000 Genomes Project Samples  

We also applied VaPoR to a set of diverse samples (HG00513 from 

CHS, HG00731 and HG00732 from PUR, NA19238 and NA19239 from 

YRI) that were initially sequenced by the 1000 Genomes Project (1KGP) 

and for which a high quality set of SVs were reported in the final phase 

of the project (Sudmant, et al., 2015). These samples were recently re-

sequenced using PacBio and therefore provides a platform for assessing 

VaPoR on known data. 

We examined SVs reported on chr1 of the 5 individuals to assess 

the sensitivity of VaPoR on real genomes (Table 1). We first observed 

that >95% of deletions and insertions could be successfully evaluated by 

VaPoR. For inversions there were a limited number of events reported 

but at maximum only 1 event failed the VaPoR quality control per 

individual. A sensitivity of >90% was achieved for deletions and  >80% 

for insertions. To examine the false validation rate of VaPoR, we 

modified the reported chr2 events to appear at the same coordinates on 

chr1 and assessed them as though they were real events using the same 

sequence data set. VaPoR validated very few deletions or inversion and 

<10% of insertions. 

 

 

3.3 Sensitivity to breakpoint accuracy 

We next assessed the performance of VaPoR to validate SVs with 

varying degrees of breakpoint accuracy. Real coordinates were 

artificially shiftied each direction by -1000 to 1000 base pairs and re-

assessed with VaPoR for both simulated and real samples. In both cases, 

VaPoR exhibited a robust validation score up to approximately 200bp 

overall, with some slight differences observed between different SV 

types (Supplemental Figures 6-8). 

3.4 Runtime 

The computation runtime of VaPoR was assessed using 2 Intel Xeon 

Intel Xeon E7-4860 processors with 4GB RAM each on both simulated 

and real genomes. The runtime of simulated event was observed to 

increase linearly with read depth (Supplemental Figure 9). For events 

sequenced up to 20X, VaPoR takes ~3 seconds to assess a simple SV and 

~5s for a complex event. The assessment of real samples sequenced at 

20X required ~1.4 seconds to assess a simple deletion or insertion and ~6 

seconds for an inversion (Supplemental Table 4). 
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Table 1. Sensitivity and false discovery rate of different SV types 

 deletion insertion inversion 

Sample Sens/FDR Sens/FDR Sens/FDR   
HG00513 0.96/0.00 (0.941) 0.80/0.05 (0.93) 0.50/0.00 (0.71) 

HG00731 0.94/0.00 (0.96) 0.85/0.07 (0.97) 0.60/0.00 (1.00) 

HG00732 0.92/0.00 (0.98) 0.92/0.08 (0.96) 0.33/0.00 (0.86) 

NA19238 0.90/0.00 (0.93) 0.88/0.10 (0.96) 1.00/0.00 (1.00) 
NA19239 0.87/0.02 (0.95) 0.73/0.09 (0.96) 0.33/0.00 (1.00) 

1Proportion of SVs that passed VaPoR QC, as determined for events on chr1 and 
chr2 together. 
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