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ABSTRACT 
Motivation: iTRAQ reagent-based mass spectrometry (MS) is a commonly 
used technology for identification and quantification of proteins in 
biological samples. Such studies are often performed over multiple MS 
runs, potentially resulting in introduction of MS run bias that could affect 
downstream analysis. iTRAQ MS data have therefore commonly been 
normalized using a reference sample which is included in each MS run. We 
show, however, that such normalization does not efficiently remove 
systematic MS run bias. A linear model approach was previously proposed 
to improve on the reference normalization approach but does not 
computationally scale to larger data. Here we describe the NOMAD 
(normalization of mass spectrometry data) R package which implements a 
computationally efficient ANOVA normalization approach with protein 
assembly functionality. 
Results: NOMAD provides the same advantages as the linear regression 
solution but is more computationally efficient which allows superior 
scaling to larger sample sizes. Moreover, NOMAD efficiently removes bias 
which allows for valid across MS run comparisons. 
Availability: The NOMAD Bioconductor package: www.bioconductor 
.org 
Contact: ola.larsson@ki.se; carl.murie@ki.se 

1 INTRODUCTION  
Proteome wide identification and quantification of proteins is considered 
pivotal for elucidating mechanisms underlying biological systems and 
pathological states (Bantscheff et al., 2012; Hassanein et al., 2011). For this 
purpose tandem mass spectrometry (MS/MS)-based quantification using 
the iTRAQ isobaric tagging reagent (Ross et al., 2004) was introduced and 
is currently commonly used (approximately 320 publications in 2014, 
PubMed) (Wu et al., 2006; Aggarwal et al., 2006). In this technology, 
proteins are chemically labelled with isobaric chemical tags, producing a 
sample-specific reporter ion or channel within each MS/MS spectrum, 
which allows for simultaneous quantitative comparison of protein 
abundance across multiple samples within a single MS run. Current 
commercially available isobaric tags are limited to eight samples per run. 
Therefore larger sample sets need to be divided across several distinct MS 
runs due to the limited multiplexing power of iTRAQ. As a result, the 
technology offers challenges during normalization not only due to potential 
sources of bias from sample preparation but in particular because of the 
potential bias introduced across multiple MS runs. 
 
   At present iTRAQ data produced over multiple MS runs is commonly 
normalized using a reference approach. Thus, a reference sample is 
measured in one of the iTRAQ channels to allow for relative quantitation 
between each of the samples in the query channels to the reference. Such 
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relative measures (commonly referred to as iTRAQ ratios) are assumed to 
have controlled for bias between MS runs. However, in all data sets we 
have assessed we have observed strong MS run bias after normalization 
using the reference approach - which will hamper and potentially disqualify 
downstream analyses (MS run bias from two data sets generated in two 
different laboratories are shown in figure 1) (Sandberg et al., 2012; 
Bhargava et al., 2014). This inability in removing MS run bias could 
potentially be explained because each sample in an MS run uses the same 
reference for normalization, MS run bias may persist and even potentially 
be incorporated during normalization to such a reference. The use of 
reference samples enforces additional limitations including the subsequent 
reduction in the number of query samples per MS run and a doubling of the 
variance due to the calculation of abundance ratios (Kerr et al., 2000). 
 

 
 

Figure 1: Run Bias. Distribution of p-values produced from testing for a 
MS run bias on raw, ratio normalized, and NOMAD normalized protein 
abundance scores. The raw data (first column) show a strong MS run bias 
which reduces the efficacy of protein abundance comparisons across MS 
runs. The ratio normalization method reduces the MS run bias but the 
NOMAD normalization removes the MS run bias entirely. 

 
   As a result of these shortcomings, a linear regression approach has been 
proposed for normalization of iTRAQ data that is applicable to data sets 
generated over multiple MS runs (Hill et al., 2008; Oberg et al., 2008). 
Several sources of bias including MS run, iTRAQ label and peptide can be 
used as regression factors in the model. The residuals of the model are the 
peptide abundances after removing the bias from the regression factors and 
these can be used to calculate protein abundances. A significant issue for 
even relatively modestly sized studies performed across a few MS runs is 
the computational complexity of solving the linear model resulting in that 
the method cannot be applied (see results section). Some solutions to this 
problem have been proposed such as iterative or stagewise regression 
(Oberg et al., 2008) but to date there is no implementation of this approach. 
Here we provide the NOMAD (NOrmalization for MAss spectrometry 
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Data) R package implementing an ANOVA normalization method designed 
for iTRAQ mass spectrometry data in a computationally efficient manner. 

2 IMPLEMENTATION 
The NOMAD package provides two main functions. The first 
(nomadNormalization) applies an ANOVA model to remove the bias of 
multiple factors and produces normalized peptide abundances. The second 
(nomadProteinAsssembly) combines the normalized peptide abundances 
into summary protein abundances and the user is given multiple options as 
to how the proteins are assembled. Moreover, the nomadNormalization 
function allows for correction for imperfect synthesis of isobaric tags. A 
necessary preprocessing step is to reformat the peptide level output of the 
MS quantification software (e.g. Protein Pilot) so that it can be used as 
input in NOMAD. We did not implement a function for such pre-
processing (although we provide an example for a commonly used software 
in the NOMAD R vignette) because of the multitude of tailored software 
for such quantification. 
 
   The structure of the factorial design ANOVA model allows for a simple 
algebraic solution identical to the more computationally demanding matrix 
solution of a linear model. We use the following equation for a two-factor 
ANOVA design including an interaction to illustrate this (Draghici, 2012): 
 
���� � � � �� � �� � ���� � ����          (1) 
 
where � is the overall mean and � and � are factors used in normalization, i 
and j are the i-th and j-th levels of their respective factors, and k is the k-th 
data point in the ij-th cell. The residuals are defined as: 
 
���� � ���� 	 ���              (2) 
 
   In equation (2) each data point (����) belonging to a particular factor level 
has the mean of that factor level subtracted (µ��). The residual of each data 
point (���) is the residual after the means of all factor levels that data point 
belongs to have been subtracted.  This is done in a sequential process where 
the residuals after subtracting the level means for one factor are used as 
data for calculation and subtraction of level means of the next factor. This 
process can be extended to any number of normalization factors and their 
interactions with the remaining residuals used as the peptide abundances. 
   The default normalization factors used by NOMAD are the peptide 
identifiers, protein identifiers, MS run, and iTRAQ channel. We have found 
that to eliminate the MS run bias the interactions between MS run and the 
protein, peptide and iTRAQ factors must also be included in the ANOVA 
model. Users may add or remove any single or interaction factors (in the 
nomadNormalization function) thereby allowing for custom normalization 
of in principle any type of data. 
   Two diagnostic plot functions are included in the NOMAD package. 
nomadCheckLogTransform generates graphs assessing whether logging is 
sufficient to produce homogeneous variability and nomadCheckBias 
produces plots showing the extent of bias from individual factors. 

3 RESULTS 
A key feature of NOMAD is the ability to scale for larger data sets and we 
therefore compared the performance of the regression approach to 
NOMAD using data sets of different sizes (table 1). Because NOMAD is 
both more computationally efficient and scales better than the regression 
approach, normalization of even modestly sized data sets can only be 
performed with NOMAD. Moreover, normalization using NOMAD did, in 
contrast to the reference approach, eliminate MS run bias (figure 1). 
 

N proteins N peptides N data points NOMAD (t) Lm (t) 

10 435 6552 0.3s 44s 
100 1980 32072 1.6s 1hr 31m 
200 3360 53600 3s 9hr 32m 

300 5046 93920 7.5s 63hr 58m 
3857 72599 1144536 2m 32s cannot complete 

Table 1: Comparison of computation times between the regression ap-
proach and NOMAD. The number (N) of proteins/peptides/data points for 
each data set tested together with the associated computation times (t) using 
the linear regression approach (lm function in R) or NOMAD are shown. 
The data sets (Vulvar) were randomly sampled across 4 MS runs and used 
8 iTRAQ channels. Server: 2.00 GHz, 128G RAM, R version: 3.1.2 

4 CONCLUSION 
NOMAD implements a computationally efficient ANOVA normalization 
for iTRAQ MS data that scales well for even the largest studies. Moreover 
NOMAD is better able to address bias from multiple MS runs than the 
commonly used reference approach. Conveniently, reference samples are 
not required for NOMAD thus freeing all iTRAQ channels to be used for 
samples of biological interest. NOMAD thus allows for direct across-MS 
run comparisons of protein abundances. Therefore, experimental designs 
can now include more factors of biological interest and increased sample 
sizes while being normalized efficiently. 
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