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SUMMARY 20 

1. Statistical approaches for inferring the spatial distribution of taxa (Species Distribution 21 

Models, SDMs) commonly rely on available occurrence data, which is often non-randomly 22 

distributed and geographically restricted. Although available SDM methods address some of 23 

these problems, the errors could be more directly and accurately modelled using a spatially-24 

explicit approach. Software to implement spatial autocorrelation terms into SDMs are now 25 

widely available, but whether such approaches for inferring SDMs are an improvement over 26 

existing methodologies is unknown.  27 

2. Here, within a simulated environment using 1000 generated species’ ranges, we compared 28 

the performance of two commonly used non-spatial SDM methods (Maximum Entropy 29 

Modelling, MAXENT and Boosted Regression Trees, BRT) to a spatially-explicit Bayesian 30 

SDM method (Integrated Laplace Approximation, INLA), when the underlying data exhibit 31 

varying combinations of clumping and geographic restriction. Finally, we tested whether any 32 

recommended methodological settings for all methods were further impacted by spatially 33 

non-random patterns in these data. 34 

3. Spatially-explicit INLA was the most consistently accurate method, being most or equal 35 

most accurate in 5 out of 8 data sampling scenarios. Within high-coverage sample datasets, 36 

all methods performed fairly similarly, but when sampling points were randomly spread BRT 37 

had a 1-3% greater accuracy over the other methods and when samples were clumped, 38 

spatial-INLA had a 4%-8% better in AUC score. Alternatively, when sampling points were 39 

restricted to a small section of the true range, all methods were on average 10-12% less 40 

accurate, with higher variation among the methods.  None of the recommended settings for 41 
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the different methods were found to be sensitive to clumping or restriction of data, except the 42 

complexity of the INLA spatial term. 43 

4. INLA-based modelling approaches can be successfully used to account for spatial 44 

autocorrelation in an SDM context and, by taking account of random effects, produce outputs 45 

that can better elucidate the role of covariates in predicting species occurrence. Given that it 46 

is often unclear what the drivers are behind data clumping in an empirical occurrence dataset, 47 

or indeed how geographically restricted these data are, spatially-explicit INLA-based SDMs 48 

may be the better choice when modelling the spatial distribution of target species. 49 

Keywords: MAXENT, INLA, boosted regression trees, SDM, niche modelling, Laplace 50 

approximation, sampling bias 51 

  52 
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INTRODUCTION 53 

Development of quantitative methods to predict the spatial distribution of taxa from 54 

occurrence data is an active area of ecological research (Phillips, Anderson & Schapire 2006; 55 

Royle et al. 2012; Yackulic et al. 2013). Understanding where organisms are geographically 56 

located is key for many reasons: conservation scientists, for example, require knowledge 57 

about threatened species’ distributions to prioritise management efforts (Guisan et al. 2013). 58 

Alternatively, community ecologists need to know which species are likely to be present in 59 

the broader species pool to better understand the community assemblage process at a specific 60 

location (Pellissier et al. 2010; Thuiller et al. 2015). Within disease research, knowledge 61 

about pathogen distributions across a landscape can better inform understanding of spatial 62 

patterns of human disease risk (Peterson 2006; Redding et al. 2016).  63 

Statistical approaches for inferring the spatial distributions of taxa across landscapes are 64 

commonly termed ‘Species Distribution Modelling’ (SDM) or ‘Niche Modelling’. Rather 65 

than estimating niches per se or looking to create models to better understand the causative 66 

process behind spatial distributions, in most cases these statistical approaches are used as a 67 

spatial interpolation across a region of interest to overcome incomplete sampling and predict 68 

the probability of presence/absence at all unsurveyed locations. SDMs commonly rely on 69 

regression techniques which identify the correlative associations of species’ occurrence to a 70 

suite of explanatory and spatially extensive variables, e.g. temperature, altitude, and rainfall 71 

(Phillips, Anderson & Schapire 2006; Elith et al. 2011).  72 

Over the last decade there has been a significant uptake in methods that fit highly complex 73 

SDM models, for example using maximum-entropy based lasso regressions or boosted-74 

regression tree (BRT) approaches (Elith et al. 2006). This has been driven by the ability of 75 
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these methods to quickly produce models with high ‘in-bag’ predictive accuracy, as measured 76 

using, for instance, the ‘area under receiver operating curve’ (AUC) statistic (Qiao, Soberón 77 

& Peterson 2015). The availability of bespoke software packages such as MAXENT 78 

(Phillips, Anderson & Schapire 2006) and the R package ‘dismo’ (Hijmans 2013) have 79 

helped augment this methodological uptake, as these packages are computationally 80 

inexpensive, user-friendly, free-to-user and produce visually appealing outputs.  81 

The ease of use of these packages, however, can also drive a method-agnostic (or ‘standard 82 

settings’) approach to analysis (Yackulic et al. 2013).  By default, highly complex, ‘black 83 

box’ approaches can over-fit models to the data so that any predictions partially reflect the 84 

sampling biases of input datasets (Elith et al. 2006; Phillips, Anderson & Schapire 2006). 85 

Various methodological configurations have been suggested to prevent such problems 86 

arising, including: reducing the complexity of the final model by increasing penalties on 87 

additional parameters (Anderson & Gonzalez 2011), reducing the number of predictors 88 

(Syfert, Smith & Coomes 2013), accounting for the spatial patterns of samples by using 89 

background points generated with a similar spatial structure (Warton, Renner & Ramp 2013; 90 

Beck et al. 2014; Stolar & Nielsen 2015), or reducing the spatial autocorrelation of the 91 

sampling points in the analyses (Miller 2012; Record et al. 2013; Crase et al. 2014). 92 

A straightforward approach to control one aspect of sampling bias, i.e. the spatial patterning 93 

of samples, is to directly incorporate a spatially-structured random term into the model. 94 

However, until recently formally incorporating such a term into many commonly used SDM 95 

frameworks was prohibitively complex (Record et al. 2013). Integrated Laplace 96 

Approximation (INLA) Bayesian additive models have been recently implemented in the 97 

programming language R (Lindgren & Rue 2015), offering a highly flexible modelling 98 
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environment which can incorporate a variety of spatial effects into binomial presence/absence 99 

models. INLA methods analytically determine the posterior marginal distributions for 100 

parameters (Beguin et al. 2012), which affords a large reduction in computational time 101 

compared to ‘search’ based (e.g. MCMC) methods. This approach results in fast Bayesian 102 

models that have been shown to be effective in producing SDM-type spatial predictions 103 

(Beguin et al. 2012), and can additively incorporate many different complex terms to account 104 

for ‘random’ effects, such as spatial, observer and sampling bias. 105 

It is unclear, however, whether Bayesian methods that remove the effects of spatial 106 

autocorrelation are needed when inferring SDMs, and in what situations they might offer an 107 

improvement over existing approaches. Empirically collected samples are known to be often 108 

spatially biased due to anthropogenic drivers, such as: Spatially heterogeneous reporting rates 109 

around areas with high numbers of observers and biases towards areas with active sampling 110 

programmes (Hortal et al. 2008; Boakes et al. 2010), or, high disease detection rates where 111 

there are identification/diagnostic facilities (Bern, Maguire & Alvar 2008). However, some or 112 

all of the spatial patterning contained within any set of taxonomic samples could also be 113 

caused by the underlying suitability of the environment, rather than the impact of 114 

anthropogenic drivers, meaning the clumping of points itself would contain important 115 

information and should not be discounted. Here, therefore, we test the role that clumping and 116 

geographical bias have on the predictive ability of presence-background modelling methods, 117 

comparing a spatially-explicit Bayesian approach (INLA) to two common, non-spatial 118 

methods (MAXENT and BRT) on sets of simulated data that show high variation in clumping 119 

and bias. We also test, for all methods, if any of the ‘best-practice’ user settings previously 120 

recommended for optimum SDM analysis are sensitive to our measured data biases. Overall, 121 

we show how the processes behind the spatial patterns of the input data can dictate the 122 
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optimal choice of methods, showing that for the commonly encountered scenario of having 123 

clumped sample data, spatial Bayesian models are more consistently accurate than traditional 124 

methods.  125 

METHODS 126 

We tested the predictive performance of different SDM methods to reconstruct spatial 127 

presence, using simulated data sets with varying degrees of data clumping and geographical 128 

bias for 1000 hypothetical taxa. All analysis was performed using R (R Development Core 129 

Team 2015). For each taxon, we generated four sets of simulated data with which to 130 

reconstruct occurrence, as follows: 131 

(1) Covariate raster layers. We first generated 5 random covariates (to represent bio-132 

climatic data layers) across a hypothetical landscape of 1 degree grid cells covering the world 133 

(a common resolution for SDM models and input data) using two-dimensional vertical, 134 

horizontal or diagonally ‘sloped’, or, ‘bell-shaped’ gradients for each covariate across the full 135 

extent of the landscape. 136 

(2) True presence raster layer. We employed the covariates in a presence-absence 137 

binomial regression, with randomly generated slopes and intercept, to predict the true spatial 138 

distribution of each hypothetical taxon. The regression formula was generated using a 139 

random number of terms taken from a pool consisting of all linear and square terms for each 140 

covariate and first order interactions between each of the five terms, giving a total of 25 141 

possible terms in the most complex models. We generated the ‘true presence’ layer by then 142 

spatially predicting the generated regression model using the original covariate raster layers 143 

as inputs. After generating this layer, we added a small amount of random noise to each grid 144 

cell (jitter function; R Development Core Team 2015) to create a more realistic problem, 145 
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where exact covariates relationships are unknown (due to uncertainty in remotely-sensed 146 

data, for example).  147 

(3) Validation data. We sampled the true presence layer using 1000 random locations to 148 

create a validation data set of true presence and absence points, which we could use to 149 

evaluate the predictions from different SDM methods. 150 

(4) Spatially biased sample data. We then  created a ‘samples’ data set with differing 151 

amounts of clumping and geographical bias, analogous to a typical input data used in an 152 

empirical SDM analysis. To create the biases, we first selected a small random number of 153 

‘seed’ points from across the simulation landscape. These seed points were then filtered (i.e. 154 

removed or not) using a spatially heterogeneous ‘sample reporting’ layer reflecting that, at 155 

some locations, external factors would limit reporting of possible records. This reporting rate 156 

varied randomly between 0 and 1 within six, randomly-sized and placed, but contiguous, 157 

areas across the landscape. We then generated the final SDM input dataset by randomly 158 

drawing a set of ‘sampling’ points from around each remaining ‘seed’ points, with a random 159 

clumping coefficient (the mean of a Gaussian distribution, ranging from 1-50 with a standard 160 

deviation equal to the mean divided by 5) dictating how tightly clustered any secondary 161 

sampling points were around each seed point. The number of ‘samples’ around each ‘seed’ 162 

was constrained to be either conditionally dependent on the probability of true presence or 163 

unaffected by suitability of the landscape. We term these two processes ‘biological’ bias and 164 

‘random’, respectively.  Therefore, for random datasets, sampling density was entirely 165 

random with respect to the underlying habitat suitability, representing the situation where any 166 

spatially heterogeneous sampling effort is driven by convenience or other non-biological 167 

processes. For biological bias, the density patterns in the spatially-biased samples were driven 168 

by the probability of the taxon’s true presence, representing the situation where a greater 169 
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number of reports are made where there are more actual individuals to observe. All the 170 

secondary points (ranging between 25 and 500 points) were then used as the final sampling 171 

dataset to be brought forward to the SDM analysis. 172 

(5) Analysis. After simulation, we measured two aspects of the spatial pattern of the 173 

sample points in such a way that could be applied to a typical SDM input dataset, as follows: 174 

Clumping was defined as Clark-Evan’s dispersion coefficient of the samples (Baddeley, 175 

Rubak & Turner 2015) and split into high and low categories (clumped & even) by the 176 

median value; Geographical bias was calculated as the area covered by a convex hull 177 

containing all the biased samples divided by the range of occurrence of the true positive 178 

(validation) samples, again split into high and low categories (high coverage & restricted) 179 

using the median value. This latter measure represents when the state of knowledge, for a 180 

given species, is solely the distributional limits of its geographical range of occurrence. Each 181 

dataset was then assigned to one of four equal groups, termed: even & high coverage, 182 

clumped & high coverage, even & restricted, and clumped & restricted. For R code, see 183 

supplementary code S1. 184 

For each taxon, we reconstructed the geographic range of occurrence using the simulated 185 

sampling data set and the covariate raster layers using the following SDM methods: (1) 186 

Maximum Entropy (MAXENT, Phillips et al. 2004); (2) Boosted Regression Trees (BRT, 187 

Elith 2009); (3) a Bayesian additive spatially-explicit modelling approach with Integrated 188 

Laplace Approximation, INLA (Rue, Martino & Chopin 2009); and (4) a non-spatially 189 

explicit INLA Bayesian model (to ascertain whether the performance of previous INLA 190 

model (3) was due to the spatial random effect or other aspects of the INLA model). We then 191 

generated predictions for the probability of presence, for each species, at each of the locations 192 

of the 1000 validation data points, and used an AUC (Area Under operating Curve score) 193 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 6, 2017. ; https://doi.org/10.1101/105742doi: bioRxiv preprint 

https://doi.org/10.1101/105742
http://creativecommons.org/licenses/by/4.0/


 

Bayesian SDM methods for non-random data – Redding et al. 

 

 

approach to calculate the predictive accuracy of each method by comparing the validation 194 

data with the predicted presence value. AUC represents a calculation of predictive accuracy 195 

across all possible classification threshold values, such that a value below 0.5 indicates a 196 

predictive ability equal to random expectation and 1 perfect predictive ability (Qiao, Soberón 197 

& Peterson 2015). 198 

Finally, we tested whether any ‘best-practice’ configurations for setting up any of the 199 

methods were sensitive to clumping or geographical restriction of the data.  We employed a 200 

brute-force approach, testing all reasonable SDM method configurations (see Table 1) and 201 

ensuring that we included those previously identified method set-ups shown to improve 202 

predictive accuracy. 203 

RESULTS 204 

When comparing across sampling bias scenarios, spatial INLA was the most consistently 205 

accurate, being either the most accurate, equal most accurate or second most accurate method 206 

in 5 out of the 8 combinations examined here (Figure 1). The proportion of the simulated 207 

landscape covered by the sampling points was a key factor in dictating predictive accuracy, 208 

though presence of clumping did also confer a small loss in accuracy (Figure 1). Within the 209 

high coverage scenarios, when analysing datasets with low sample clumping (even & high 210 

coverage) all methods gave high predictive performance (Figure 1), but with BRT the most 211 

accurate (mean AUC 0.955 and 0.935 for biological and random clumping processes 212 

respectively), and with non-spatial INLA the least accurate (0.93 and 0.89 for biological and 213 

random clumping).  For high coverage datasets with significant clumping of points (clumped 214 

& high coverage), the most accurate method was the spatially-explicit INLA model for both 215 
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biological and random underlying processes (mean 0.929 and 0.901 AUC), again with the 216 

non-spatial INLA performing the poorest (mean 0.914 and 0.865 AUC) (Figure 1).  217 

Within low coverage sampling datasets (even & restricted and clumped & restricted), there 218 

were similar among method patterns, with an average low predictive accuracy compared to 219 

high coverage sampling data (0.71-0.84 AUC scores across all methods) and higher variance 220 

in scores. In both cases, the simplest modelling approach, non-spatial INLA models, tended 221 

to perform better (Figure 1), with spatial-INLA the next most accurate method. When 222 

comparing clumping processes, if clumping was driven by biological processes rather than by 223 

random processes predictive accuracy was generally higher (Figure 1).  224 

For most methods, there was no difference in terms of predictive accuracy when choosing the 225 

best set-up of analysis options across clumped and restricted sampling groups. For instance, 226 

in all cases, randomly placed pseudo-absences/background points (R - Table 1 & Figure 2) 227 

out-performed both spatially-weighted absence points (SW) and spatially-thinned presence 228 

points (ST) in our analysis (Figure 2). Reducing the number of covariates always reduced 229 

average predictive accuracy (average reduction of 0.068 AUC score across methods) and 230 

including interaction terms in the formulas resulted in no significant gains in accuracy, 231 

irrespective of the complexity of the function used to generate the simulated data (Figure S1). 232 

For INLA models comparing cut-off values from 0.5 to 8, we show that for high coverage-233 

high clumping datasets (Figure 3) the smaller the cut off (and therefore the more complex the 234 

resulting spatial term), the more accurate the final models are. For data with low clustering 235 

and high coverage and with both low coverage datasets (Figure 3), there appears to be the 236 

opposite relationship with highest accuracy at values at a cut-off of around 3 to 6. For 237 

MAXENT models, increasing the regularisation (beta) setting, which preferentially selects 238 
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less-complex models, generally resulted in less accurate results (Figure S2). Also, when 239 

manually specifying model ‘features’, the inclusion of ‘hinge’ factors was important for good 240 

predictive accuracy (Figure S3). None of the BRT initial set-up values (Figure S4-S7) 241 

produced any clear difference in predictive accuracy. 242 

DISCUSSION 243 

Choosing the best method to undertake species distribution modelling depends on the spatial 244 

patterning within the data. For instance, on even & high coverage datasets all methods 245 

performed well, especially boosted-regression trees. Such ‘ideal’ datasets are likely to be 246 

infrequently found but when they are, the ease of use and high accuracy of MAXENT and 247 

BRT mean these methods make them ideal choices. For all types of clumped data, the spatial 248 

INLA Bayesian model performed consistently well by assuming that any spatial patterning is 249 

noise and relying instead on covariate relationships.  250 

It is expected, and supported here, that clumping driven by underlying suitability has less of 251 

an impact on the predictive performance of the models than random clumping, but, 252 

importantly, not by a large amount. In the case where SDMs are inferred using data sources 253 

such as GBIF, the complex processes underlying any spatial patterns are often unclear (Beck 254 

et al. 2014), and it appears that a precautionary approach of using a spatially-explicit method 255 

would reduce the impacts of misidentifying the processes behind underlying spatial bias. 256 

Sampling restriction, however, had a much larger impact on predictive accuracy than 257 

clumping. Building a SDM for a whole species based on sampling just one part of the range 258 

risks biasing the underlying regression models, as opposed to clumping which will more 259 

likely just add ‘noise’. Here, the simple models produced by non-spatial INLA (and likely 260 
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GLM approaches) appear to do well, perhaps because they are less ‘fitted’ to any biases in 261 

the data, producing more general predictions.  262 

Our results, therefore, show that it is important to remain sceptical about SDM predictions 263 

with high ‘in-bag’ AUC scores if there is no explicit measure of the proportion of the known 264 

range that has been sampled. With restricted samples, within our study, results with ‘in-bag’ 265 

AUC scores >0.95 in our simulations often had a real AUC score of less than 0.75. Overall, 266 

without taking into account the data sampling scenarios examined here, and instead 267 

evaluating SDM methods using ‘ideal’ (even & high coverage) datasets, most analyses would 268 

prefer a BRT approach, which was a poor performer on the clumped and restricted datasets. 269 

In terms of evaluating ‘best-practice’ settings for each method, irrespective of the data 270 

sampling scenario, reducing the number of covariates to decrease collinearity was again 271 

shown to be an unuseful approach (Syfert, Smith & Coomes 2013). It seems that even 272 

variables with a minimal ability to explain the variation in the presence of species confers a 273 

benefit greater than any cost arising from increasing the complexity of the model, though we 274 

note covariate collinearity could still obfuscate any attempted model interpretation. 275 

Conversely the role of changing pseudo-absence patterns away from random did not repeat 276 

the results of previous work with thinning (Fourcade et al. 2014) and spatial weighting 277 

(Phillips et al. 2009) providing no clear gain in performance. The use of ‘pseudo-absence’ or 278 

‘background’ points is simply a pragmatic solution to the common problem of the lack of 279 

known non-occupied sites (i.e. input data contains only the recorded presence or ‘sightings’ 280 

of target species).  281 

Some recent developments have focussed instead on log-Gaussian Cox processes (Simpson et 282 

al. 2015) and Poisson point process (Renner & Warton 2013; Warton, Renner & Ramp 2013) 283 
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which, instead of using presence/absence data, use the spatial density of presence points as 284 

the dependent variable in a regression. Alternatively, “range bagging” (Drake 2015) looks to 285 

bootstrap the variation in the multi-dimensional, environmental limits of a species, given 286 

random subsets of covariates and presence points. With these presence-only modelling 287 

approaches it is still unclear how they deal with non-biological, anthropogenic drivers of 288 

point density. For systematically collected data this may not be an issue, but for large citizen-289 

science based or historic, museum-sourced databases unwanted spatial patterning of sample 290 

points may be a significant source of unresolved bias.  291 

The R-INLA package appears to offer additional benefits beyond spatially-explicit 292 

modelling. The combination of using a complex spatial latent field to capture spatial 293 

processes and an underlying simpler ‘regression’ equation for the species’ relationship to 294 

environmental variables, means that (when compared to boosted regression trees and lasso 295 

techniques) the fixed effects are more straightforward to interpret (i.e. per unit change in x 296 

results in per unit change in y). Another benefit of a Bayesian approach is the capturing of 297 

uncertainty for each predicted value, with predictive uncertainty an often ignored aspect of 298 

SDM modelling and prediction. R-INLA models are extremely flexible in their specification, 299 

with spatial autocorrelation and observer bias being straightforwardly incorporated as random 300 

effects, while standard error “families”  such as Gaussian, Poisson, binomial, and a variety of 301 

zero-inflated models, can be used interchangeably  (Rue, Martino & Chopin 2009). This 302 

method, therefore, has a built-in potential for extending SDM analysis away from simple 303 

binomial model by, for example, incorporating two or more types of data (Warton et al. 304 

2015) or hierarchical seasonal models (Redding et al. 2015). We hope that our study will aid 305 

the uptake of such fast spatial Bayesian methods, as this approach shows great promise for 306 
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other analysis throughout ecology and evolutionary biology, especially in situations where 307 

non-independent samples are commonly experienced. 308 
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Table 1. Options tested for four different species distribution model methods (for details see 432 

text). Numbers in ‘Setting’ columns indicate known precedence in the literature: 1 = (Merow 433 

et al. 2014), 2 =(Phillips et al. 2009), 3 = (Syfert, Smith & Coomes 2013), 4 =(Beguin et al. 434 

2012), 5=(Record et al. 2013), 6=(Elith, Kearney & Phillips 2010), 7 = (Fourcade et al. 2014) 435 

METHOD SETTING OPTIONS 

MAXENT 

 

Beta – regularization 

(BR)1  

 

Value of 1 to 20 

MAXENT Model complexity (MC)1 Any combination of: nolinear, noquadratic, 

noproduct, nothreshold, nohinge, 

noautofeature 

SPATIAL 

INLA 

Mesh complexity (CO)4 Cut off from 0.5 to 15 

BRT Bag Fraction (BF)6 0.5, 0.65, 0.75 

BRT Learning rate (LR)6 0.0001 to 0.1 

BRT Tree complexity (TC)6 2 to 8 

BRT No. of trees for prediction 

(NT)6 

First 200, first 400, Best guess 

   

ALL  Covariate choice (CC)3 Most parsimonious model chosen by minimal 

AIC 

ALL  Spatial thinning (ST) 7   Spatially-thinned presence points to reduce 

autocorrelation 

ALL  Spatial weighting of 

pseudo-absence (SW)2 

Spatially-correlated pseudo-absence pts  

ALL  Random pseudo-absence 

(R)2 

Random pseudo-absence pts 

   

 436 

 437 

  438 
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 439 

Figure 1. Comparison of the mean accuracy (AUC) of SDM models over 1000 simulated 440 

taxa. Sample clumping is caused by either biological bias or random processes. Panels show 441 

the predictive accuracy of data subsets binned into either high or low clumping and high or 442 

low coverage of the simulated “true” range. Points represent mean AUC scores from 1000 443 

validation points per taxa and whiskers 95% confidence intervals around each mean, where 444 

scores less than 0.5 represent no accuracy gain over random chance. Spatial INLA – Bayesian 445 

SDM inferred using Integrated Nested Laplace Approximation with a spatial autocorrelation 446 

term, Non-spatial INLA – Bayesian SDM inferred using INLA without a spatial 447 

autocorrelation term, BRT – boosted regression trees based SDM, MAXENT – maximum 448 

entropy based SDM. 449 
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450 

Figure 2. Comparison of the mean accuracy (AUC) of SDM models over 1000 simulated 451 

taxa when altering the pseudo-absence (background) point configurations and the effects of 452 

spatial thinning of presence points, on four SDM methods and across 4 types of dataset with 453 

different clumping and spatial bias. Panels show the predictive accuracy of data subsets 454 

binned into either high or low clumping and high or low coverage of the simulated “true” 455 

range. Where R represents random absence points, ST – spatial thinning, SW – spatially 456 

weighted absence points, B – both weighting and thinning (Table 1) and Spatial INLA – 457 

Bayesian INLA model with spatial autocorrelation term, Non-spatial INLA – Bayesian INLA 458 

model without spatial autocorrelation term, BRT – boosted regression trees, and MAXENT – 459 

Maximum entropy based model. Points represent mean AUC scores from 1000 validation 460 

points per taxa and whiskers 95% confidence intervals around each mean, where scores less 461 

than 0.5 represent no accuracy gain over random chance. 462 
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 463 

Figure 3. Comparison of mean accuracy (AUC) of spatial INLA-based SDM models on 1000 464 

simulated taxa when varying the complexity of the underlying spatial mesh. Colours show the 465 

predictive accuracy of data subsets binned into either high or low clumping and high or low 466 

coverage of the simulated “true” range. Points represent mean AUC scores across 1000 taxa 467 

and whiskers 95% confidence intervals around each mean, where scores less than 0.5 468 

represent no accuracy gain over random chance. 469 
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