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Abstract

Spatial models of vascularized tissues are widely used in computational physiology, to study for
example, tumour growth, angiogenesis, osteogenesis, coronary perfusion and oxygen delivery.
Composition of such models is time-consuming, with many researchers writing custom software
for this purpose. Recent advances in imaging have produced detailed three-dimensional (3D)
datasets of vascularized tissues at the scale of individual cells. To fully exploit such data there is
an increasing need for software that allows user-friendly composition of efficient, 3D models of
vascularized tissue growth, and comparison of predictions with in vivo or in vitro experiments
and other models. Microvessel Chaste is a new open-source library for building spatial models of
vascularized tissue growth. It can be used to simulate vessel growth and adaptation in response
to mechanical and chemical stimuli, intra- and extra-vascular transport of nutrient, growth factor
and drugs, and cell proliferation in complex 3D geometries. The library provides a comprehensive
Python interface to solvers implemented in C++, allowing user-friendly model composition,
and integration with experimental data. Such integration is facilitated by interoperability with
a growing collection of scientific Python software for image processing, statistical analysis,
model annotation and visualization. The library is available under an open-source Berkeley
Software Distribution (BSD) licence at https://jmsgrogan.github.io/MicrovesselChaste.
This article links to two reproducible example problems, showing how the library can be used to
model tumour growth and angiogenesis with realistic vessel networks.

Introduction 1

Spatial models of vascularized tissue are used to study the growth and response to treatment of 2

tumours [1], angiogenesis [2], osteogenesis [3], coronary perfusion [4] and tissue oxygenation [5]. 3

Such models typically comprise a combination of: i) agent-based or continuum representations of 4

migrating and proliferating cells, ii) line-based or spatially resolved representations of microvessels, 5

iii) the solution of blood, nutrient, growth factor and drug transport problems in vessel networks 6

whose geometry and connectivity may evolve, iv) the solution of growth factor and drug transport 7

problems in the evolving extravascular space and v) vessel formation and endothelial tip cell 8

migration in response to mechanical and chemical cues. 9

Composition of spatial models of vascularized tissue growth is a time consuming process, 10

with most researchers writing custom software. There are many examples of such models, which 11

have typically been implemented using MATLAB, C, C++ and Fortran, including Anderson and 12
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Chaplain [6], Alarcón et al. [7], Friboes et al. [8], Shirinifard et al. [9], Owen et al. [1], Perfahl et 13

al. [10], Welter and Rieger [11], Secomb et al. [2], and Boas and Merks [12]. The need to account 14

for many biological phenomena has made the development of more general software frameworks 15

challenging [13,14], with functionality for integration with experimental imaging data and model 16

benchmarking and cross-comparison also important [14,15]. Several groups, including Popel and 17

co-workers [16], Secomb and co-workers [2] and Beard, Bassingthwaighte and co-workers [17], 18

have produced software that focuses on general modelling and integration with imaging data. 19

Notable efforts in this area are being undertaken as part of the European Union’s Virtual 20

Physiological Human Project (http://www.vph-institute.org/) and the National Institute of 21

General Medical Sciences’ Virtual Physiological Rat (http://www.virtualrat.org/) program. 22

Microvessel Chaste is a new open-source Python/C++ library for composing spatial models 23

of vascularized tissues. It is a ‘plug-in’ for the Chaste C++ library for problems in com- 24

putational physiology and biology [18], integrating with existing cell-based and sub-cellular 25

models and partial differential equation (PDE) and ordinary differential equation (ODE) 26

solvers. Development has been motivated by the above mentioned vascularized tissue stud- 27

ies and software. However, there is an additional focus on providing a user-friendly, gen- 28

eral framework for model composition, in a manner similar to that in which Chaste [18], 29

CompuCell3D [19], EPISIM [20] and PhysiCell [21] can be used to compose tissue mod- 30

els with agent-based representations of cells. The primary strength of Microvessel Chaste 31

is that it provides a comprehensive Python interface. This facilitates integration with a 32

growing collection of scientific Python software for image processing (scikit-image (http: 33

//scikit-image.org/), ITK (https://itk.org/), VMTK (https://vmtk.org/), statistical 34

analysis (SciPy (https://www.scipy.org/), pandas (http://pandas.pydata.org/)), model 35

annotation (libSBML (http://sbml.org/Software/libSBML)) and visualization (matplotlib 36

(http://matplotlib.org/), VTK [22]). It allows easy extension by the user, who can compose 37

their own readers, writers and solvers without re-compiling the code. The library has facilitated 38

the integration of modelling with high resolution three-dimensional (3D) imaging data, as shown 39

in Grogan et al. [23] and below, and will be useful in future model cross-comparison studies. 40

The next section overviews the library design and implementation. This is followed by 41

example simulations of tumour growth, with a realistic vessel network, and a corneal micropocket 42

angiogenesis assay. 43

Materials and Methods 44

This section summarizes available algorithms by demonstrating how the library can be used 45

to construct a typical multi-scale tissue growth simulation. The library can be installed on 46

Linux using the Conda package manager (http://conda.pydata.org/), and used in a Jupyter 47

notebook (http://jupyter.org/). Alternatively, it can be built from source using CMake. 48

Docker images with a running Jupyter notebook server are available for Windows and MacOS. 49

Capabilities and implementation 50

Fig. 1 shows the stages involved in setting up a detailed multi-scale vascularized tissue growth 51

simulation using Microvessel Chaste. Simulations can be constructed in a flexible manner 52

thanks to the use of object-oriented programming. In this example, a simulation domain, vessel 53

network and cell population are first constructed. Cell and vessel locations and attributes can 54

be described using NumPy arrays (http://www.numpy.org/) and are automatically copied to 55

and from uBLAS vectors when interfacing with C++ routines. The user can easily implement 56

their own vessel network reading and writing modules in Python, which is useful as there is no 57

standard format for describing vessel network coordinates and connectivity. PDEs for transport 58

of diffusible chemicals through the tissue can be configured, and rules for vessel growth or 59

shrinkage due to blood flow defined, along with rules for vessel sprouting and endothelial tip 60
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cell migration. Custom PDE solvers can be used, with solutions returned to other solvers at 61

requested sample points through C++ or Python interfaces. 62

The domain, which is a geometrical feature (specifically a piecewise linear complex [24]) 63

in two dimensions (2D) or 3D, can be used to construct vessel networks and cell populations 64

through multiple space-filling or Boolean operations, and to generate a computational grid 65

(mesh) for use in the solution of PDEs. Geometries and meshes can be read and written in VTK 66

or STereoLithography (STL) formats. Sub-models can be collected in hierarchical structures, for 67

example a StructuralAdaptationSolver can manage a FlowSolver and is itself managed by 68

a MicrovesselSolver. Alternatively, sub-models can be executed in isolation, for example to 69

solve a nutrient PDE with cell location dependent sink terms. 70

Figure 1. A schematic showing the composition of a detailed multi-scale vascularized tissue
growth model using Microvessel Chaste. Multiple instances of certain components can be used,
for example to define a series of sequentially coupled PDEs.

The model can be solved using a suitable time-stepping scheme, available in Chaste. During 71

a time step, nutrient and angiogenic stimulus concentration fields can be updated. Cells can 72

migrate and progress through their cycle, and vessels can form sprouts, regress or alter their radii. 73

Cell and vessel data and PDE solutions can be visualized using built-in VTK-based rendering, 74

output in VTK format for visualization in Paraview, or returned as NumPy arrays for further 75

processing. 76
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Code layout and design 77

The components of the library are as follows: 78

• geometry: generation of 2D and 3D piecewise linear complex geometries for direct use 79

with Tetgen [24] meshing software; 80

• mesh: automated finite element meshing of 2D and 3D geometries and interpolation of 81

vessel and cell locations onto unstructured and structured grids; 82

• ode: ODE models for progress through the cell cycle; 83

• pde: PETSc [25] based finite difference and finite element solvers for steady-state reaction- 84

diffusion equations with discrete sinks and sources at vessels and cells; 85

• population: analysing, reading, writing and generating vessel networks and cell popula- 86

tions; 87

• simulation: flow, structural adaptation and angiogenesis solvers. Simulation modifiers 88

for integration with discrete cell simulations in Chaste; 89

• utility: dimensional analysis, a collection of literature parameters of interest for vascu- 90

larized tissue simulations and 3D visualization tools. 91

Object-oriented programming is used throughout. Python bindings are generated automati- 92

cally using Py++, exposing a significant amount of C++ functionality. Low-cost, compile-time, 93

unit checking is used to ensure dimensional consistency through the Boost Units framework [26]. 94

The library includes detailed API documentation (full Doxygen coverage) and includes over 80 95

C++ and Python unit test suites for individual components. Several reproducible C++ and 96

Python (Jupyter notebook) tutorials are available, including for the two example problems in 97

the next section. 98

Results 99

In this section tumour growth and angiogenesis problems are demonstrated; they are avail- 100

able for reproduction at https://jmsgrogan.github.io/MicrovesselChaste. A collection of 101

additional, simpler examples is also available at this location. 102

A 3D tumour growth simulation 103

The first example, shown in Fig. 2, is a 3D simulation of tumour growth in a vessel network 104

geometry obtained using multi-photon imaging after implantation of MC38 tumour cells in a 105

mouse [23]. The tumour growth model is similar to many in the literature [6, 8, 10, 27]. However, 106

the use of a large, realistic and evolving tumour vessel network distinguishes this example 107

from previous studies. The simulation is facilitated by recent advances in intravital imaging, 108

which allow in vivo observation of tumour growth at the scale of individual cells, and the new 109

pre-processing and modelling functionality in Microvessel Chaste. 110

The problem is initialized with a 3D region of the tumour vessel network. A regular lattice 111

is generated in the bounding box of the network geometry. A cellular automaton based cell 112

population fills all lattice sites, including those occupied by vessels. ‘Tumour’ cell types are 113

assigned to a central cylindrical region and ‘Normal’ types to the remainder. Cells far from 114

oxygen rich vessels experience low oxygen levels and, as a result, become hypoxic and release 115

Vascular Endothelial Growth Factor (VEGF). VEGF stimulates the sprouting and chemotactic 116

migration of new vessels from the existing vasculature. At later times, cells far from the vessels 117

become apoptotic. The surviving tumour cells gradually invade the domain at the expense of the 118
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Figure 2. (a) A 3D intravital image of a tumour microvessel network (red) is obtained and a
skeleton extracted as described in Grogan et al. [23]. A cylindrical region of interest with
diameter 1.2 mm is extracted for the example simulation. (b) A tumour growth simulation
using the extracted microvessel network and Microvessel Chaste. The predicted evolution of the
tumour over 25 hours is shown, including blood pressure in growing vessels, VEGF
concentrations in the extravascular space and discrete cells.

normal cells. This process is similar to those observed in the simulations of Perfahl et al. [10], 119

Anderson and Chaplain [6] and others. There are many potential extensions to models of this 120

type, including simulated administration of chemo-therapeutic and anti-angiogenic drugs [7] and 121

radiotherapy [23]. These cases can be simulated using the Microvessel Chaste library. 122

A 3D angiogenesis simulation in a curved domain 123

Our second example is a 3D, off-lattice simulation of angiogenesis in a curved geometry (see 124

Fig. 3). This example demonstrates geometry manipulation and the solution of PDEs on 3D 125

domains. The application is appropriate for the corneal micropocket assay that is widely used to 126

study angiogenesis [27]. Typical experimental results are shown in Fig. 3(a). 127

In this experimental assay a pellet containing an angiogenic growth factor (for example, 128

VEGF) is implanted in the cornea. VEGF diffuses from the pellet into the corneal tissue and 129

stimulates endothelial cells lining existing vessels at the base to form sprouts. The sprouts then 130

migrate toward the pellet along spatial gradients in VEGF. This example follows a common 131

modelling paradigm where agent-based representations of cells are not included, but individual 132

vessels are [2]. As shown in Fig. 3(b), the cornea is represented as a hemispherical domain 133

of radius 1.4 mm and thickness 0.1 mm. The pellet is a cuboid with side length 0.3 mm and 134

depth 0.1 mm, with a prescribed VEGF concentration of 3.0 nM on the boundaries. In practice, 135

the VEGF in the pellet will deplete. Vessels sprout from the limbal vessel and then follow a 136

persistent random walk with bias towards other vessel tips and up VEGF gradients. The VEGF 137

distribution is obtained by solving a reaction-diffusion PDE on the cornea at the start of the 138

simulation, and is fixed for the remainder. Vessels migrate toward the pellet, remaining within 139

the volume of the 3D cornea geometry. Possible extensions to this simple model include the 140

addition of discrete stromal cells, distinction between perfused and unperfused vessels, subcellular 141

signalling, VEGF depletion and consumption by cells, and the use of multiple vessel growth 142
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Figure 3. (a) Images from a cornea micropocket experiment showing microvessels (dark red) at
3-5 days post pellet implantation [27]. (b) Application of the Microvessel Chaste library in
modelling a similar experiment.

factors, as per Connor et al. [27]. 143

Conclusions 144

A new library for composing spatial models of vascularized tissues has been demonstrated, and 145

two reproducible sample problems in the areas of tumour growth and angiogenesis presented. 146

Additional functionality for semi-automated 2D and 3D image segmentation and meshing is 147

under development, to aid further integration with experimental studies such as those shown 148

in Fig. 2(a). Porting to Windows and MacOS is also of interest. At present most algorithms 149

operate in serial only, however all PDE and flow solvers are based on PETSc [25] structures and 150

vessel network components may be communicated across processors using existing serialization 151

functionality in Chaste [28]. The library is available under a permissive BSD license, with source 152

files and documentation available via the project Github page https://jmsgrogan.github. 153

io/MicrovesselChaste/. Contributions are welcome via Github pull requests and issues can 154

be reported via the Github issue tracker. The latest release, version 3.4.2, is archived at 155

doi.org/10.5281/zenodo.213148. 156

Author Contributions 157

JAG, AJC, PKM, HMB and JMPF designed the models and software. JAG, AJC and JMPF 158

developed the software. BM and RJM designed the experimental imaging. BM performed the 159

experimental imaging. JAG, AJC, BM, PKM, HMB and JMPF drafted and edited the article. 160

All authors read and approved the final article. 161

Acknowledgments 162

The research leading to these results has received funding from the People Programme (Marie 163

Curie Actions) of the European Unions Seventh Framework Programme (FP7/2007-2013) under 164

REA grant agreement No 625631 (BM) and the European Union’s Seventh Framework Programme 165

6

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 3, 2017. ; https://doi.org/10.1101/105692doi: bioRxiv preprint 

https://jmsgrogan.github.io/MicrovesselChaste/
https://jmsgrogan.github.io/MicrovesselChaste/
https://jmsgrogan.github.io/MicrovesselChaste/
https://doi.org/10.1101/105692
http://creativecommons.org/licenses/by/4.0/


for research, technological development and demonstration under grant agreement No 600841 166

(JAG, AJC, HMN, PKM, JMPF). BM and RJM acknowledge that this work was also supported 167

by Cancer Research UK (CRUK) grant number C5255/A18085, through the CRUK Oxford 168

Centre, by CRUK grant number C5255/A15935 and by CRUK/EPSRC Oxford Cancer Imaging 169

Centre (grant number C5255/A16466). The authors acknowledge helpful inputs from the Chaste 170

development team, in particular Jonathan Cooper, Alex Fletcher, James Osborne, Gary Mirams 171

and Martin Robinson. 172

References

1. Owen MR, Stamper J, Muthana M, Richardshon GW, Dobson J, Lewis CE, Byrne HM.
Mathematical modeling predicts synergistic antitumor effects of combining a macrophage-
based, hypoxia-targeted gene therapy with chemotherapy. Cancer Res. 2015;71(8):2826-
2837.

2. Secomb TW, Alberding JP, Hsu R, DeWhirst MW, Pries AR. Angiogenesis: an adaptive
dynamic biological patterning problem. PLoS Comp Bio. 2013;9(3):e1002983.

3. Carlier A, Geris L, Bentley K, Carmeliet G, Carmeliet P, Van Oosterwyck H. MOSAIC:
A multiscale model of osteogenesis and sprouting angiogenesis with lateral inhibition of
endothelial cells. PLoS Comp Bio. 2012;8(10):e1002724.

4. Smith AF, Shipley RJ, Gregory JL, Sands B, LeGrice IJ, Smith NP. Transmural variation
and anisotropy of microvascular flow conductivity in the rat myocardium. Ann Biomed
Eng. 2014;42:1966.

5. Beard DA, Bassingthwaighte JB. Modeling advection and diffusion of oxygen in complex
vascular networks. Ann Biomed Eng. 2001;29:298-310.

6. Anderson ARA, Chaplain MAJ. Continuous and discrete mathematical models of tumor-
induced angiogenesis. Bullet Math Bio. 1998;60:857-900.

7. Alarcon T, Owen MR, Byrne HM, Maini PK. Multiscale modelling of tumour growth and
therapy: the influence of vessel normalisation on chemotherapy. Computat and Math
Method in Med. 2006;7(2-3):85-119.

8. Frieboes HB, Lowengrub JS, Wise S, Zheng X, Macklin P, Bearer E, Cristini V. Computer
simulation of glioma growth and morphology. Neuroimage. 2007;37(Supl 1):S59-S70.

9. Shirinifard A, Scott Gens J, Zaitlen L, Poplawski J, Swat M, Glazier JA. 3D multi-cell
simulation of tumor growth and angiogenesis. PLoS One. 2009;4(10):e7190.

10. Perfahl H, Byrne HM, Chen T, Estrella V, Alarcon T, Lapin A, Gatenby R, Gillies RJ,
Llord MC, Maini PK, Reuss M, Owen MR. Multiscale modelling of vascular tumour growth
in 3D: the roles of domain size and boundary conditions. PLoS One. 2011;6(4):e14790.

11. Welter M, Rieger H. Interstitial fluid flow and drug delivery in vascularized tumors: a
computational model. PLoS One. 2013;8(8):e70395.

12. Boas SEM, Merks RMH. Tip cell overtaking occurs as a side effect of sprouting in
computational models of angiogenesis. BMC Systems Bio. 2015;9(86):DOI 10.1186/s12918-
015-0230-7.

13. Connor AJ, Cooper J, Byrne HM, Maini PK, McKeever S. Object-oriented paradigms for
modelling vascular tumor growth: a case study. In: The Fourth International Conference
on Advances in Systems Simulation. Simul 2012. Iaria, Lisbon,74-83.

7

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 3, 2017. ; https://doi.org/10.1101/105692doi: bioRxiv preprint 

https://doi.org/10.1101/105692
http://creativecommons.org/licenses/by/4.0/


14. Rieger H, Welter M. Integrative models of vascular remodeling during tumor growth.
WIREs Syst Biol Med. 2015;7:113-129.

15. Osborne JM, Fletcher AG, Pitt-Francis JM, Maini PK, Gavaghan DJ. Comparing
individual-based approaches to modelling the self-organization of multicellular tissues.
bioRxiv. 2016;DOI:10.1101/074351.

16. Liu G, Qutub AA, Vempati P, Mac Gabhann F, Popel AS. Module-based multiscale
simulation of angiogenesis in skeletal muscle. Theor Biol Med Model. 2011;8(6):DOI:
10.1186/1742-4682-8-6.

17. Beard DA, Neal ML, Tabesh-Saleki N, Thompson CT, Bassingthwaighte JB, Shimoyama
M, Carlson BE. Multiscale modeling and data integration in the virtual physiological rat
project. Ann Biomed Eng. 2012;40:2365.

18. Mirams GR, Arthurs CJ, Bernabeu MO, Bordas R, Cooper J, Corrias A, Davit Y, Dunn
S, Fletcher AG, Harvey DG, Marsh ME, Osborne JM, Pathmanathan P, Pitt-Francis
J, Southern J, Zemzemi N, Gavaghan DJ. Chaste: an open source C++ library for
computational physiology and biology. PLoS Comp Bio. 2013;9(3):e1002970.

19. Swat M, Thomas GL, Belmonte JM, Shirinifard A, Hmeljak D, Glazier JA. Multi-scale
modeling of tissues using CompuCell3D. Method in Cell Biol. 2012;110:325-366.

20. Sutterlin T, Kolb C, Dickhaus H, Jager D, Grabe N. Bridging the scales: semantic
integration of quantitative SBML in graphical multi-cellular models and simulations with
EPISIM and COPASI. Bioinformations. 2013;15(29):223-229.

21. Macklin P, Edgerton ME, Thompson AM, Cristini V. Patient-calibrated agent-based mod-
elling of ductal carcinoma in situ (DCIS): From microscopic measurements to macroscopic
predictions of clinical progression. J Theor Biol. 2012;301:122-140.

22. Schroeder W et al.. The Visualization Toolkit, 3rd Edition. Kitware Inc.. 2003.

23. Grogan JA, Markelc B, Connor AJ, Muschel R, Pitt-Francis JM, Maini PK, Byrne HM.
Predicting the influence of microvascular structure on tumour response to radiotherapy.
IEEE Trans Biomed Eng. 2016:DOI:10.1109/TBME.2016.2606563.

24. Si H. TetGen, a delaunay-based quality tetrahedral mesh generator. ACM Trans. on
Mathematical Software. 2015;41(2):DOI:10.1145/2629697.

25. Balay S et al.. PETSc users manual revision 3.5. Technical Report, Argonne National
Laboratory (ANL). June 2014.

26. Boost Development Team. Boost Units Reference Guide. Web. Oct 2016: http://www.

boost.org/doc/libs/1_61_0/doc/html/boost_units.html.

27. Connor AJ, Radoslaw P, Nowak EL, Thomas M, Hertig F, Hoert S, Quaiser T, Schocat E,
Pitt-Francis J, Cooper J, Maini PK, Byrne HM. An integrated approach to quantitative
modelling in angiogenesis research. J R Soc Interface. 2015;12:e20150546.

28. Harvey DG, Fletcher AG, Osborne JM, Pitt-Francis JM. A parallel implementation of
an off-lattice individual-based model of multicellular populations. Comput Phys Comm.
2015;192:130-137.

8

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 3, 2017. ; https://doi.org/10.1101/105692doi: bioRxiv preprint 

http://www.boost.org/doc/libs/1_61_0/doc/html/boost_units.html
http://www.boost.org/doc/libs/1_61_0/doc/html/boost_units.html
https://doi.org/10.1101/105692
http://creativecommons.org/licenses/by/4.0/

