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Abstract

Summary: CCLP (Cancer Cell Line Profiler) is a webserver for the prediction of
compound activity across the NCI60 panel. CCLP uses a multi-task Random Forest
model trained on 941,831 data-points that integrates structural information from
17,142 compounds and multi-omics data sets from 59 cancer cell lines. In addition,
CCLP also implements conformal prediction to provide individual prediction errors
at several confidence levels. CCLP computes compound descriptors for a set of
input molecules and predicts their activity across the NCI60 panel. The output of
running CCLP consists of one barplot per input compound displaying the predicted
activities and errors across the NCI60 panel, as well as a text file reporting the
predicted activities and errors in prediction.

Availability: CCLP is freely available on the web at cclp.marseille.inserm.fr.
Corresponding authors: isidrolauscher@gmail.com and pedro.ballester@inserm.fr

1 Introduction

Although cultured cancer cell lines do not fully recapitulate the complex tu-
mor microenvironment, they have proved versatile preclinical models to study
the pharmacology of anticancer drugs (lorio, 2016). Multiple initiatives have
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characterized thousand of cell lines at the molecular level, as well as their
response to large collections of small molecules (Barretina, 2012; Iorio, 2016;
de Waal, 2016). The Developmental Therapeutics Program (DTP) from the
United States National Cancer Institute (NCI) pioneered these efforts in the
early 1990s by assembling a collection of 59 cancer cell lines spanning 9 cancer
types (Shoemaker, 2006). This increasing wealth of in vitro sensitivity data
has fostered the development of drug sensitivity prediction algorithms. The
ultimate aim of these models is to predict the best pharmacological treatment
on the basis of the patients’ genomic makeup. Although much remains to be
done to realise this vision, the computational integration of pharmacological
and genomic data of cancer cell lines has proved useful to investigate the ef-
fect of genomic variability on compound activity, and to model the in vitro
activity of anticancer drugs (Cortés-Ciriano, 2016). Building machine learning
models to predict compound activity generally requires expert curation and
preparation of large amounts of data. While a plethora of studies have re-
ported predictive models of compound activity on cell lines using both single-
and multi-task learning strategies, reviewed in (Cortés-Ciriano et al., 2016),
no tool has been developed to date to enable the broader scientific community
to use drug sensitivity prediction algorithms trained on the NCI60 data with-
out requiring user knowledge of machine learning or descriptor generation. To
fill this gap we have developed an ad hoc webserver, namely the Cancer Cell
Line Profiler (CCLP). CCLP simplifies the use of drug sensivity prediction
algorithms by eliminating the need for downloading and processing cell line
sensitivity data, as it only requires a set of molecules as input, whose activity
across the NCI60 panel is predicted in the back end. To facilitate the visual-
ization of the predictions, CCLP also reports the results as a barplot accom-
panied by individual errors in prediction calculated with conformal prediction.

2 Results and performance

2.1 Cancer cell line sensitivity prediction

The models hosted by CCLP were trained on a data set comprising 941,831
50% growth inhibition bioassay end-points (GI50) of 17,142 compounds screened
against the NCI60 panel (matrix 93.08% complete) (Cortés-Ciriano, 2016). We
have previously shown that the integration of chemical and biological infor-
mation from multiple compounds and cell lines in multi-task learning models
improves the prediction of compound activity with respect to single-task mod-
els, where the activity of single compounds is modelled independently. There-
fore, we decided to use the multi-task learning paradigm proteochemometrics
to train the core models hosted in the CCLP (Menden et al., 2013; Cortés-
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Ciriano et al., 2015). Compounds were encoded with Morgan fingerprints given
their high performance in drug sensitivity prediction studies, whereas cell lines
were encoded with the average expression of the 1,000 canonical pathways dis-
playing the highest variability across the NCI60 panel. Each compound-cell
line pair was encoded by the concatenation of these two types of descriptors.
This modelling framework, resulting from throrough optimization of model
parameters and feature selection, has been shown to provide robust perfor-
mance in cross-validation, with RMSE values in the 0.56-0.58 pGI50 units
range (Cortés-Ciriano, 2016). Further assessment of this model revealed high
power to extrapolate the training data to new cell lines and, although to a
lesser extent, to new compounds as well, whereas the drug-pathway associ-
ations identified with the experimental data could be mostly retrieved using
the cross-validation predictions.

2.2 Calculation of confidence intervals with conformal prediction

In conformal prediction (Norinder, 2014), the similarity (i.e. conformity) of a
new data point to those used for training is quantified with a nonconformity
score, €.g. o = %, where y and y are the observed and the predicted val-
ues, respectively, calculated with a point prediction RF model, and p is the
predicted error calculated with e.g. an RF error model. The point prediction
model was generated using 10-fold cross validation on compound and cell-line
descriptors as covariates, and pGI50 values as the dependent variable. The
cross validation residuals of this model (y; —7;) served as the depedent variable
to train the error model, which was trained on the same covariates as the point
prediction model. The cross-validation predictions from these two models were
used to generate the vector of nonconformity scores for the training set, which
after being sorted in increasing order is defined as: ay, = {oy, 1}5\[ " where Ny,
is the number of datapoints in the training set. The o value associated to the
user-defined confidence level, a, is calculated as: a. = ay. ; if @ = | Ny * €|
where = indicates equality. Next, the errors in prediction, pye., and the pre-
dicted pGI50 values, Unew, for a new data point (x,.,) are predicted with the
error and the point prediction models, respectively. The individual confidence
interval (CI) for x,., is defined as Clert = |Yert — Yewt| = Qe * Pext. The confi-
dence region (CR) is finally defined as: CR = @yt + / — Cleyy. The interpre-
tation of the confidence regions is straightforward. For instance, a confidence
level of 80% means that the true pGI50 value will lie outside the predicted
confidence region in at most 20% of the cases.
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3 Implementation

The CCLP site has been implemented using the Django web framework
(https://djangoproject.com), whereas the core CCLP models have been de-
veloped using the Python programming language and the scikit learn library
(Pedregosa, 2011). To run CCLP the users need to upload a single molecule
file in smiles or sdf format. For those input molecules passing a validity check,
CCLP computes Morgan fingerprints, which are further assembled with pre-
computed cell line descriptors. These composite descriptors are input to the
core CCLP models to These predictions, as well as a barplot representation
thereof, are emailed to the user.

4 Conclusion

We present a webserver for the prediction of compound activity on the NCI60
panel. Given that the predictive capabilities of machine learning models are
restricted by the training data, we provide individual errors in prediction that
quantify the reliability of each individual prediction and are easy to interprete.
CCLP is designed to be useful to the broader scientific community, as users
with no experience in machine learning or bioactivity data curation can easily
obtain predictions for small molecules by uploading a single molecule file.
CCLP runs in a reasonable amount of time (~10 seconds and ~8 minutes for
1 and 1,000 molecules, respectively), and the performance of its core models
has been shown to be competitive with the state of the art. In the future, we
plan to make available additional drug sensitivity prediction models trained
on other data sets and extend the models currently hosted by the CCLP as
more cell line sensitivity and multi-omics data become publicly available.
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