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Abstract 

From whole organisms to individual cells, responses to environmental 

conditions are influenced by genetic makeup, where the effect of genetic variation on 

a trait depends on the environmental context. RNA-sequencing quantifies gene 

expression as a molecular trait, and is capable of capturing both genetic and 

environmental effects. In this study, we explore opportunities of using allele-specific 

expression (ASE) to discover cis acting genotype-environment interactions (GxE) - 

genetic effects on gene expression that depend on an environmental condition. 

Treating 17 common, clinical traits as approximations of the cellular environment of 

267 skeletal muscle biopsies, we identify 10 candidate interaction quantitative trait 

loci (iQTLs) across 6 traits (12 unique gene-environment trait pairs; 10% FDR per 

trait) including sex, systolic blood pressure, and low-density lipoprotein cholesterol. 

Although using ASE is in principle a promising approach to detect GxE effects, 

replication of such signals can be challenging as validation requires harmonization of 

environmental traits across cohorts and a sufficient sampling of heterozygotes for a 

transcribed SNP. Comprehensive discovery and replication will require large human 

transcriptome datasets, or the integration of multiple transcribed SNPs, coupled with 

standardized clinical phenotyping. 
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Introduction 

A substantial fraction of variability in gene expression is controlled by changes 

in transcription rates, mainly mediated by transcription factor (TF) proteins binding to 

specific DNA sequence motifs that define regulatory elements [1,2]. The abundance 

of such proteins and their regulatory co-factors may in turn be controlled by intrinsic 

mechanisms inherent to a cell, such as an individual's genetic makeup or regulatory 

programs specific to a cell type, as well as cellular responses to environmental cues. 

A regulatory element, defined by the DNA region recognized by a DNA-binding TF 

and other required transcriptional machinery, may be either intrinsic or environment-

dependent. In intrinsic elements, the TF and binding machinery is controlled by cell-

intrinsic mechanisms that operate within a closed system and are unresponsive to 

environment. By contrast, in environment-dependent elements the TF and binding 

machinery is responsive to an environmental stimulus. Both regulatory element types 

are susceptible to perturbation by genetic variation because the region recognized 

by the TF is encoded in the DNA sequence. 

Many genetic studies document the effects of genetic perturbations of 

regulatory elements on gene expression - expression quantitative trait loci (eQTL) 

[3–6]. Although it is possible to detect trans (different physical chromosome) effects, 

eQTLs are typically identified within a local window, centered on the transcription 

start site (TSS), and assumed to act via cis (on the same physical chromosome) 

mechanisms. Variation in intrinsic regulatory programs is expected to give rise to 

such “standard eQTLs”, identified by modeling genetic effects on gene expression. 

However, it is also likely that variation in environment-dependent elements will be 

detected in standard eQTL studies, as it is unlikely for a variant to change the 

relationship between gene expression and environment without altering the mean 
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gene expression levels for each genotype. Therefore we would expect a subset of 

eQTLs detected by modeling only genetic effects to also have effects unique to an 

environmental context. If one were to model the combined environmental and 

genetic effects on gene expression, such variants would exhibit interaction effects 

between genotype and environment (GxE) and could be described as GxE 

interaction quantitative trait loci (abbreviated as iQTLs in this paper), a specific type 

of eQTL whose effect changes according to an environmental context. To date, the 

overlap between standard eQTL and iQTL in human is largely unknown, as few 

studies have co-measured environmental and genetic effects at scale, and the 

technology for mapping such iQTLs is in its infancy. 

In human populations, several GxE signals have been reported across 

diseases for various quantitative traits (reviewed in [7]), but few have mapped 

transcriptional iQTLs on a large scale, treating gene expression as a molecular 

quantitative trait [8–17]. Indeed transcriptional GxE effects have primarily been 

studied in model organisms where the environment and genotype can be controlled 

[18–23]. The challenge of mapping iQTLs using transcriptomic data outside of 

controlled laboratory settings lies in the confounding effects of environmental, 

biological, and technical factors on gene expression data, and the difficulty in 

isolating and/or accounting for such effects while preserving effects of the 

environment of interest. 

However, such limitations may be mitigated if a study quantifies gene 

expression using RNA-seq technology because RNA-seq enables the measurement 

of allele specific expression (ASE), an alternative readout less prone to the 

confounders of gene level measurements [10,24]. By quantifying differences in 

expression between haplotypes in samples heterozygous for a transcribed allele 
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(abbreviated tSNP in this paper), ASE provides an internally controlled measurement 

where biological and technical exposures on the cells are essentially identical for 

both haplotypes. This makes ASE ideal for iQTL mapping since it minimizes batch 

effects while preserving cis-mediated environmental effects. 

Furthermore, when integrated with standard gene expression data between 

individuals (abbreviated to gene-level expression in this paper), the two data types 

can serve as orthogonal forms of signal to validate iQTLs. In cases of true cis 

regulation of gene expression, when a TF preferentially binds to one allele, we would 

expect to observe increased ASE in participants heterozygous for the regulatory 

SNP. As an example, Fig 1 shows the different types of potential regulatory elements 

and the impact of different polymorphisms in schematic form. At the gene expression 

level, we would expect an iQTL to have different effects across environmental 

contexts in a genotype specific manner. In the ASE data, we would expect 

correlation between ASE and the environment only in individuals heterozygous for 

both the iQTL-SNP and tSNP. As opposed to standard eQTLs, which can be 

summarized by box-plots stratified by genotype, we believe a 6-panel regression plot 

is the most informative, and examples of expected behavior are shown in Fig S1.  

In this study, we explore the opportunities and challenges for iQTL mapping 

and replication using gene-level expression and ASE data. We illustrate our 

approach using RNA-seq from 267 skeletal muscle biopsies from the Finland-United 

States Investigation of NIDDM Genetics (FUSION) tissue biopsy study [25], as this 

dataset features RNA-seq co-measured with rich clinical phenotypes spanning blood 

metabolites, anthropometric measurements, and medication (S1 Table). Collectively, 

we treat all clinical phenotypes as “environmental traits” since we model skeletal 

muscle gene expression and therefore the response of a population of cells to the 
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surrounding cellular environment - adjacent cells, extracellular matrix, blood plasma, 

and interstitial fluid - approximated by each phenotype. 

As one clear limitation is sample size, we reduce the multiple testing burden 

by only testing eQTLs for GxE signals, based on the assumption outlined above that 

at least some of the strongest iQTLs will also show effects on mean gene expression 

when stratified by genotype and be detected also as eQTLs. With a well-calibrated 

statistical test, we identify 12 GxE signals that span 10 candidate iQTLs at a trait-

specific FDR of 10%. Replication of such findings is challenging because of the lack 

of human studies on equivalent tissues with equivalent environmental 

measurements; however, two of the three testable traits shared with the larger GTEx 

study show non-random aggregate replication, although the need to restrict to 

heterozygous individuals limits the extent of this replication. This study highlights the 

utility of ASE based GxE analysis in observational studies, and emphasizes the need 

for large RNA-seq cohorts with standardized clinical phenotypes to enable study 

comparison and replication. 

 

Results and Discussion 

iQTL Results 

As candidate iQTLs for each gene, we tested the most significant skeletal 

muscle eQTL per gene for the 19,455 autosomal, protein coding genes with at least 

one significant eQTL from our previous study of 267 Finnish muscle samples [25]. 

We tested for interaction of these SNP-gene pairs with 17 clinical phenotypes (S1 

Table) by jointly modeling the impact of genotype effects on gene level expression 

and ASE levels (Methods). The resulting p-value distributions are well calibrated (S2 
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Fig), with the vast majority of tested SNPs consistent with the null distribution. Using 

a 10% FDR per trait, we identify 10 candidate iQTLs across 6 traits (12 unique gene-

environment trait pairs) (Fig 2; Table 1; S2 Table). Of the clinical variables 

considered, sex is unique in that GxE sex signals could be due to environmental (for 

example, circulating sex hormones) or intrinsic, within cell, effects due to differences 

in gene expression from the sex chromosomes.  

 

Table 1. iQTL results FDR 10%.  

Clinical 
Trait 

Gene Chr tSNP position iQTL 
alleles 
(ref/alt) 

iQTL 
position 

p-value 
ASE 

p-value 
gene 

p-value 
combined 

q-value 

Age PCNT 21 47786817 G/T 47823229 4.29x10-6 1.25x10-1 8.28x10-6 0.0735 

Sex BSG 19 582775 T/C 572878 1.75x10-5 1.00x10-1 2.50x10-5 0.0567 

Sex NRAP 10 115412793 C/T 115385650 1.65x10-7 5.61x10-1 1.59x10-6 0.0136 

BMI DAGLB 7 6449272 C/T 6476915 3.54x10-2 1.55x10-5 8.48x10-6 0.0753 

SBP ELP2 18 33750046 T/G 33743660 3.24x10-5 3.58x10-2 1.70x10-5 0.0607 

SBP FHOD3 18 34324091 T/C 33970347 2.82x10-4 5.07x10-3 2.06x10-5 0.0607 

SBP IGF2R 6 160453978 T/C 160379096 1.34x10-3 9.18x10-4 1.80x10-5 0.0607 

TC, 
fasting 

AGMAT 1 15909850 T/C 15918676 2.52x10-3 8.60x10-5 3.54x10-6 0.0315 

LDLc, 
fasting 

AGMAT 1 15909850 T/C 15918676 1.20x10-3 4.82x10-4 8.88x10-6 0.0501 

LDLc, 
fasting 

DEPTOR 8 121061879 G/T 120930135 4.43x10-2 1.69x10-5 1.13x10-5 0.0501 

LDLc, 
fasting 

FHOD3 18 34232657 T/C 33970347 6.78x10-3 4.54x10-4 4.21x10-5 0.0623 

LDLc, 
fasting 

TMEM261 9 7799653 A/G 7830189 8.31x10-5 1.39x10-2 1.69x10-5 0.0501 

 

Summary of most significant tSNP for each iQTL-gene pair. Coordinates based on 

GRC37/hg19. The three p-value columns record the ASE, whole gene expression 
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level, and combined p-value respectively. The combined p-values are used for q-

value calculation. Results with all iQTL-tSNP pairs are recorded in S2 Table.  

 

GTEx Replication 

We sought to replicate these results using skeletal muscle data from the 

GTEx study (http://www.gtexportal.org). Shared across studies, four traits were 

available for this purpose: age, sex, body mass index (BMI), and type 2 diabetes 

(T2D) status. Three of these variables: sex, BMI, and T2D status, had similar 

distributions in the GTEx and FUSION cohorts (S1 Table).  

Despite significant differences in cohort populations, laboratory techniques, 

and analysis pipelines, we observe a trend in the replication rate of BMI and sex that 

increases with the significance of the iQTL in the FUSION discovery dataset (Fig 3). 

This trend was not observed in T2D, perhaps due to different criteria for inclusion of 

individuals with T2D. The FUSION tissue study only included individuals with newly 

diagnosed T2D, not yet treated with antihyperglycemic medications (described in 

[25]). In contrast, GTEx individuals may have had longstanding and heavily treated 

T2D [26,27].  

Although this bulk replication is reassuring, closer inspection of the BMI and 

sex trends revealed that two pairs of genes are driving the observed trend in both 

BMI and sex, highlighting the need of large sample sizes for such GxE analyses. To 

this point, only two significant iQTL-tSNP pairs from FUSION met the tSNP filtering 

criteria in GTEx (Methods), neither of which showed similar GxE effects, potentially 

indicating false positives (S3 Fig).  
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Specific iQTL example: FHOD3 

Despite the small number of reported hits and replication challenges, we 

observe some putative iQTLs with clear, consistent GxE effects in both gene 

expression and ASE data. The most clear, consistent example is FHOD3, formin 

homology 2 domain containing 3. FHOD3 is essential for myofibril formation and 

repair, forming a doughnut shaped dimer, capable of moving along and extending 

actin filaments (reviewed in [28–30]). FHOD3 is critical for heart development and 

function in mouse [31,32] and fly [33] and exhibits tissue specific splicing patterns 

[34,35] shown to enable myofibril targeting in striated muscle [34,36].  

We observed a GxE effect for FHOD3 with both low-density lipoprotein 

cholesterol (LDLc) levels and systolic blood pressure (SBP) (Figure 4; S4 Fig). The 

LDLc association was discovered separately in the ASE of two tSNPs, spanning 

different exons (S Table 2; Figure 4; S4 Fig), while the SBP association was 

discovered with an additional tSNP, falling in an exon separate from the LDLc 

tSNPs. In addition, although not significant in the FUSION dataset, a GxE effect with 

BMI and FHOD3 was one of the main drivers of the observed GTEx BMI replication 

trend (2.47x10-4 FUSION and 8.40x10-4 GTEx - minimum combined p-value across 

tSNPs). Evaluation of the raw data showed modest replication of the FHOD3-BMI 

signal between the FUSION and GTEx datasets (S5 Fig).  

We previously calculated a muscle expression specificity index (mESI), 

comparing skeletal muscle expression to a reference panel of 16 diverse tissues, 

and binned these scores into deciles such that genes in the 1st decile are uniformly, 

lowly expressed and genes in the 10th decile are highly, specifically expressed in 

skeletal muscle [25]. We found FHOD3 expression to be highly specific to skeletal 

muscle (mESI decile of 9). The iQTL tag SNP, rs17746240, and rs2037043, an 
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additional SNP in high linkage disequilibrium (R2 = 0.99 in Finns from the GoT2D 

reference panel), overlap a skeletal muscle stretch enhancer (Fig 5A), a regulatory 

element shown to be a signature of tissue-specific active chromatin [37]. In addition, 

these variants fall in two distinct ATAC-seq peaks unique to skeletal muscle, an 

indicator of open chromatin (Fig 5B). 

Both SNPs affect predicted TF binding sites, as measured by the delta score 

(Methods). rs17746240 disrupts motifs for the GATA protein family, TBX5, and 

EP300 (Fig 5C). Within our skeletal muscle data, we find GATA2, GATAD1, 

GATAD2A, GATAD2B, and EP300 to be expressed (median FPKM > 1). The other 

variant, rs2037043, disrupts many motifs (Fig 5C) of which ZNF263, YY1AP1, YY1, 

SMAD4, SIN3A, RXRA, RAD21, NR2C2AP, NR2C2, NFIC, HES1, ESRRA, CTCF, 

and BDP1 are expressed in skeletal muscle (median FPKM > 1), making it difficult to 

identify a specific TF. 

Conclusion 

Understanding the genetic regulators of molecular responses to environment, 

both at the cellular and organismal level, is essential for a complete understanding of 

the relationship between genotype and phenotype. Environmental influences are a 

critical part of human disease etiology, but are far harder to study than intrinsic 

genetic factors. RNA-seq technology provides an information-dense molecular 

readout that includes ASE, an internally controlled experiment that minimizes 

technical artifacts by comparing read counts within samples instead of between 

samples [10,24]. Because ASE reduces confounding effects present in gene-level 

data that are difficult to distinguish from environmental effects, ASE is an ideal 

molecular readout for probing GxE effects. This study, which is amongst the first to 

leverage ASE in humans to map GxE effects [10,13], demonstrates both the 
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potential and the limitations for using ASE to unravel complex gene-environment 

regulatory structures. Using a well-calibrated model, we find a handful of iQTLs and 

show some level of bulk replication. Despite the low level of discovery in this study, 

which we believe is primarily limited by sample size, our success suggests that at 

least some eQTLs are likely to be in fact iQTLs. 

This study highlights several challenges associated with using ASE signal for 

mapping regulatory loci. Such analyses require sufficient sampling of double 

heterozygotes of the iQTL and tSNP, and therefore large sample sizes are required 

for a well-powered study. Another limitation of ASE is that it can only be used to 

identify cis-effects. Previous studies indicate that many iQTLs operate distally, in 

trans, on highly regulated genes with more opportunities in the regulatory chain for 

genetic perturbation [8,15,22,23]. Because our method requires ASE, we could only 

assay local, cis-effects, and therefore may miss many large trans-effects. 

In the future, we will need larger studies of specific human tissues with co-

measured genetic, molecular, and clinical information. The possibility of mapping 

iQTLs underscores the importance of detailed characterization of study participants, 

especially when integrating molecular and genetic data with detailed clinical 

information. This becomes particularly relevant for replication studies, and argues for 

the standardization of a core set of phenotypes and environmental exposures 

between large cohorts. In addition, further development of statistical models to boost 

power will be needed - for instance by simultaneously modeling total gene 

expression and ASE, as well as accommodating technology developments, such as 

the integration of perfectly phased tSNP allele counts within a gene, made possible 

by long reads. 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 3, 2017. ; https://doi.org/10.1101/105429doi: bioRxiv preprint 

https://doi.org/10.1101/105429
http://creativecommons.org/licenses/by-nd/4.0/


           13 

Materials and Methods 

Sample recruitment, muscle biopsy procedures, genotype processing, and 

RNA sequencing have been previously described [25].  

Ethics Statement 

The study was approved by the coordinating ethics committee of the Hospital 

District of Helsinki and Uusimaa. A written informed consent was obtained from all 

the subjects. 

Phenotype Processing 

Metabolites were measured after a 12-hour overnight fast, during a 4-point (0, 

30, 60, 120 min) oral glucose tolerance test (OGTT) [25]. Serum triglycerides, total 

and HDL cholesterol were measured by enzymatic methods with Abbott Architect 

analyzer (Abbott Laboratories, Abbott Park, IL, USA). LDL cholesterol concentration 

was calculated using the Friedewald formula [38]. Serum insulin and serum C-

peptide concentrations were assayed by chemiluminescent microparticle 

immunoassays using Architect analyzer. Patient medications were also recorded at 

time of OGTT. Patient medications were analyzed and categorized by physician 

review. All phenotypes considered are listed in S Table1. 

We inverse normalized all continuous traits. Blood pressure measurements 

were missing from 2 participants, whose samples were dropped when analyzing 

blood pressure traits. Prior to fitting models, we regressed all continuous traits on 

age, age2, and sex, except for age where we regressed only on sex.  

ASE Processing 

We quantified ASE in autosomal, protein coding genes as described 

previously [25], removing tSNPs that showed mapping bias based on simulated 
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reads. To obtain a high confidence ASE dataset, we removed tSNPs per sample with 

< 30 total reads. We subsequently required that tSNPs were heterozygous in >= 20 

samples. From the remaining 25,913 autosomal tSNPs, we discarded 1,254 tSNPs 

where one or more sample exhibited near mono-allelic expression, defined as | 0.5 - 

( count alternate SNP / count total ) | > 0.4.  Altogether, we considered 24,659 tSNPs to 

map candidate iQTLs. 

iQTL Discovery 

Using 19,455 autosomal, protein coding skeletal muscle eQTLs published in 

[25], we tested for GxE effects in the ASE and gene expression data across all 

clinical traits. For ASE data, we used EAGLE [10], which models count 

overdispersion using a random effect term with per tSNP variance vs with an inverse 

gamma prior IG(a, b). We learned the hyperparameters a, b for this distribution 

across all tSNPs after filters, estimating them to be 1.80, 0.0024 respectively. For 

sample i and tSNP s, we mapped GxE signals by fitting the model: 

𝑚𝑖𝑛(𝑦!",𝑛!" − 𝑦!")  |  𝛽, 𝜇!, 𝜖!" ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙[𝑛!",𝜎(𝑒!"𝛾!! + ℎ!"𝛾!! +   𝑒!"ℎ!"𝛽!!! + 𝜇! + 𝜖!")]   

Here nis and yis denote the total and alternative read count for individual i at tSNP s, 

eis the environment, his the indicator that the eQTL is heterozygous, µs an intercept 

term to take into account unexplained allelic imbalance unrelated to the environment, 

σ(x) = 1/(1 + e−x) the logistic function, εis|v ∼ N(0, vs) a per individual per locus 

random effect modeling overdispersion, and, 𝛾!
!, 𝛾!

!, and 𝛽!
!!the effect sizes of the 

environment, eQTL heterozygosity status, and SNP*environment interaction, 

respectively. We test the null hypothesis 𝛽!
!! = 0 using a likelihood ratio test. As 

covariates, we included the first two principal components (PCs) calculated across 

all genotypes, consistent with Scott et al. [25]. In our analyses we required ≥ 15 
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homozygous and ≥ 15 heterozygous samples for the eQTL tag SNP and, in the case 

of dichotomous variables, no group was formed with < 5 samples. With these filters, 

we could only test for iQTL effects in a subset of genes that differed according to 

clinical trait in the case of discrete variables where the total sample size was not 

constant due to missing data (S6 Fig). 

We also mapped GxE interaction effects for each candidate iQTL in total gene 

expression data using a linear model for expression levels, testing interactions for 

each gene-environment pair. Let yj be a vector of inverse normalized FPKMs for 

gene j across individuals. We consider the following linear genetic model of gene 

expression: 

𝑦! = 𝑍𝛼!   +   𝑒𝛾!! + 𝑔𝛾!
! + (𝑔⊙ 𝑒)𝛽! + 𝜓! ,        ∼ 𝑁(0,𝜎!!)   

Here Z denotes the matrix design of fixed effect confounding covariates, e and g the 

environment and genotype vector, g ⊙ e their element-wise product, 𝜓! Gaussian 

noise, and 𝛼!, 𝛾!
!,𝛾!

!, and 𝛽! the effects of covariates, environment, genotype, and the 

genotype*environment interaction respectively. 

To capture hidden variation in gene expression data, we used PEER [39,40] 

as described previously [25] to learn latent factors. For covariates in the GxE 

interaction model, we included sequencing batch, the first two genotype PCs, and 

the first two PEER factors, as a recent report suggests two PEER factors capture the 

majority of technical variation, preserving biological effects [41]. We additionally 

include age and sex as covariates when either trait was not considered as an 

environmental trait. We implemented the GxE model using the linear mixed model 

framework LIMIX (v0.7.6) [42,43]. 
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We combined the ASE p-values and gene expression p-values using Fisher’s 

combined test. We controlled for FDR per environment using the Benjamini–

Hochberg procedure [44]. Our method assumes 1) ASE and gene expression are 

independent measurements for GxE and 2) we have enough double heterozygous 

individuals to map the iQTL. 

GTEx Replication 

We conducted a replication study using genotype, gene expression, and ASE 

from the GTEx v6 dbGaP release (phs000424.v6.p1). ASE was calculated across 

imputed genotypes of 360 skeletal muscle samples. The GTEx samples were 

collected post-mortem and do not have available many of the traits assayed in the 

FUSION samples. Of the clinical variables measured in the FUSION dataset, four 

were also recorded in the GTEx dataset - age, sex, BMI, and T2D status - from 

which we excluded age as the distribution was significantly different between 

FUSION and GTEx (S Table 1). 

Notably, besides the differences in collected phenotype information and age 

distribution, the GTEx data differ from the FUSION data in four other relevant ways: 

1) FUSION is drawn from a more genetically homogenous population (Finland); 2) 

FUSION is sequenced to mean depth of 91.3M reads per sample compared to 

82.1M reads per sample in GTEx; 3) FUSION uses a 100bp strand specific, paired-

end read protocol for RNA-seq and GTEx uses 76bp non-strand specific, paired-end 

RNA-seq; and 4) the computational analysis pipelines are different for read mapping, 

expression abundance quantification, and ASE calculations [45]. 

Within the GTEx dataset, we tested for GxE effects with the FUSION eQTL 

SNPs, using the ASE interaction and gene expression interaction models described 

above. Because our goal was replication of the FUSION genotype-environment 
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interactions we did not require the eQTL to be significant. For the GTEx ASE 

interaction model, we including the first three genotype PCs as covariates, as was 

used previously by the GTEx consortium [45], and for the gene expression 

interaction model, we included age, sex, expression batch, the first three genotype 

PCs, and the first two PEER factors from the GTEx data release as covariates. We 

tested iQTL-tSNP pairs in GTEx with sufficient double heterozygotes to pass the 

filters described above. For genes with multiple tSNPs, we selected the minimum 

iQTL p-value per gene for the GTEx and FUSION datasets separately. Treating the 

FUSION data as a discovery dataset, we calculated the replication rate across 

varying p-value threshold cutoffs. We selected n FUSION hits at a given p-value 

cutoff from N total shared iQTLs without replacement, stopping when n < 10. At each 

cutoff, we calculated k, the number of FUSION hits that replicate in GTEx (GTEx p-

value < 0.01), out of the total number of nominally significant GTEx hits, K. Using the 

mean, K/N, and the hypergeometric distribution, we estimated two standard 

deviations from the null distribution. Because we select the minimum iQTL-tSNP pair 

per gene it is possible that genes with more tSNPs will be more likely to show 

significant results. We calculated the average tSNPs for the replicated and not 

replicated iQTL sets to explore if sampling from a larger number of transcribed SNPs 

was responsible for the observed trends (S7 Fig).  

Chromatin States 

We performed integrative chromatin state analyses as reported previously 

[37]. Briefly, we collected cell/tissue ChIP-seq (chromatin immunoprecipitation 

followed by sequencing) reads from a diverse set of publicly available data. 

Chromatin states were learned jointly by applying the ChromHMM (v1.10) algorithm 

at 200bp resolution to six data tracks (Input, K27ac, K27me3, K36me3, K4me1, 
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K4me3) from each of the cell/tissue types [46,47]. We elected a 13 state model as it 

provided sufficient resolution to identify biologically meaningful patterns in a 

reproducible way [37]. 

ATAC-seq Footprinting 

Assay for transposase-accessible chromatin (ATAC-seq) generates detailed 

maps of open, active chromatin and TF binding dynamics [48]. We used previously 

published ATAC-seq data in skeletal muscle [25]. 

Transcription Factor Binding Predictions 

To identify potential transcription factor binding sites (TFBS), with particular 

attention to those that may be affected by variants, we generated short sequence 

fragments around each of the biallelic SNPs and short indels discovered in 1000 

Genomes Phase 3 (release 5), by embedding each allele in flanking sequence (29bp 

on each side) from the hg19 human reference genome. We scanned the entire 

reference sequence, as well as these variant fragments, with a library of position 

weight matrices (PWMs) compiled from JASPAR [49], ENCODE [50], and Jolma et 

al. [51], using FIMO [52] from the MEME suite [53]. FIMO was executed using the 

background nucleotide frequency of the human reference (40.9% GC) and the 

default p-value cutoff, 10-4. 

To quantify the effect of SNPs on these motifs, we calculated a delta score, -

log10(palternate allele) - -log10(preference allele), for each SNP where at least one of the 

alleles passed our p-value cutoff of 10-4. In cases where a PWM hit was not detected 

for the second allele by FIMO at a threshold of 0.01, we use a value of 0.01 for that 

allele, so that the delta score will be conservative in these cases. 
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NGT. In some cases, the GTEx T2D status was missing (NA), therefore T2D fraction 

calculated over non-missing data.  
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Fig 1. Genetic and environmental effects on gene expression. Blood insulin levels represent a
cellular environment for tissues such as skeletal muscle. The left panel depicts a single genome with
color-coded genomic elements and various heterozygous sites. The right panel shows the relative transcript
abundance for the corresponding locus on the left panel. Some genomic elements contain genetic variants.
When the variant is the same color as the element, the element is active. In some cases the variant is black,
indicating that the variant renders the regulatory element nonfunctional and only basal transcription occurs.
The purple element represents a gene with a transcribed SNP (tSNP), shown in the transcripts. Allele
specific expression is calculated across both chromosomes and compared to the high and low environment.
(A) When regulated by an insulin-responsive element (green), gene expression changes according to insulin
concentrations in the extracellular environment. (B) When regulated by an insulin-independent element
(orange) containing genetic variation, gene expression changes according to the presence of a genetic variant
(eQTL), but not to insulin levels. The tSNP shows allelic bias due to the eQTL effect, but is not associated
with the insulin environment. (C) When regulated by both an insulin-responsive element and an
insulin-independent element containing genetic variation, the effects of the insulin environment and the
genetic variation on gene expression may be additive, although more complex relationships are possible. The
tSNP shows some imbalance due to the eQTL effect and is associated to insulin levels. Such cases may be
identified as weak iQTLs. (D) When regulated by an insulin-responsive element containing genetic variation,
there may exist an interaction effect between the genetic variant and insulin levels such that changes in gene
expression across insulin environments depend on the genetic variant. The tSNP shows allelic imbalance
associated with insulin levels due to the iQTL effect. One of several possible interaction effects depicted.
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Fig 2. GxE signals. Number of tSNP-environment associations per clinical variable at a 10% FDR.
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Fig 3. GTEx Replication. Replication rate (y axis) as a function of FUSION iQTL p-value cutoff (x
axis). Dashed line represents two standard deviations from the null distribution, calculated using the
hypergeometric distribution.
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(A) FHOD3 LDLc-iQTL
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(B) FHOD3 SBP-iQTL
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Fig 4. FHOD3 iQTL, rs17746240 (18:33970347). The data for each of the three possible iQTL
genotypes are presented in separate plots (columns). The top row plots show the relationship between gene
expression (y axis) and the clinical variable (x axis). The bottom row plots show the relationship between
the allelic imbalance of the tSNP and the clinical variable (x axis). Note the bottom row has fewer samples
because it is limited to samples heterozygous for the tSNP. (A) LDLc GxE effect with rs72895597
(18:34232657) as the tSNP (B) SBP GxE effect with rs2303510 (18:34324091) as the tSNP.
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Fig 5. FHOD3 locus. (A) Top wiggle tracks show ATAC-seq signal in multiple cell types, followed by
ChromHMM chromatin state tracks. Beneath are FHOD3 GWAS loci and the SNPs from this study (iQTL
and tSNP). The bottom track shows the FUSION FHOD3 RNA-seq signal. (B) ATAC-seq signal highlights
potential regulatory regions with the skeletal muscle stretch enhancer. (C) Effects of SNPs overlapping
ATAC-seq peaks in the iQTL haplotype on in silico predicted TF binding.
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(B) Genotype effect
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(C) Genotype-environment interaction effect
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S1 Fig. Examples of genetic and environmental effects. (A) Example of a pure environment effect
in SZRD1 - rs12568938 regulatory SNP (rSNP) and rs7529767 transcribed SNP (tSNP). SZRD1 expression is
associated with BMI, and the rSNP does not affect gene expression. The relationship between SZRD1 and
BMI does not change across the rSNP alleles, and BMI is not associated with allelic imbalance. (B) Example
of a pure genetic effect in RBM6 - rs9881008 regulatory locus and rs2023953 tSNP. BMI is not associated
with RBM6 expression or allelic imbalance. The rSNP alleles are associated with RBM6 expression and
allelic imbalance is increased in samples heterozygous for the rSNP. (C) Example of a GxE effect in FHOD3 -
rs17746240 regulatory locus and rs72895597 tSNP. The relationship between LDLc and FHOD3 expression
changes according to the rSNP allele as well as the overall expression abundance levels. LDLc is only
associated with allelic imbalance in heterozygous individuals, where preferential TF binding could occur.
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S2 Fig. QQ-plots across traits. QQ-plots of GxE signal discovery across clinical traits.
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(B) NRAP sex-iQTL GTEx (tSNP 115412793)
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(C) DAGLB BMI-iQTL FUSION (tSNP 6449272)
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(D) DAGLB BMI-iQTL GTEX (tSNP 6449272)
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S3 Fig. Comparison of candidate FUSION iQTLs to GTEx.(A) NRAP sex-iQTL in FUSION (B)
NRAP sex-iQTL in GTEx (C) DAGLB BMI-iQTL in FUSION (D) DAGLB BMI-iQTL in GTEx.
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S4 Fig. Additional FHOD3 LDLc-iQTL. Additional LDLc GxE effect with rs61735993 (18:34273279)
as the tSNP.
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(A) FHOD3 BMI-iQTL FUSION (tSNP 34310668)
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(B) FHOD3 BMI-iQTL GTEx (tSNP 34310668)
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(C) FHOD3 BMI-iQTL FUSION (tSNP 34324091)
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(D) FHOD3 BMI-iQTL GTEx (tSNP 34324091)
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S5 Fig. Comparison of FHOD3 BMI-iQTL in FUSION and GTEx. (A) FHOD3 BMI-iQTL in
FUSION with rs3744903 (18:34310668) as the tSNP (B) FHOD3 BMI-iQTL in GTEx with rs3744903
(18:34310668) as the tSNP (C) FHOD3 BMI-iQTL in FUSION with rs2303510 (18:34324091) as the tSNP
(D) FHOD3 BMI-iQTL in GTEx with rs2303510 (18:34324091) as the tSNP.
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S6 Fig. Total number of tested genes across traits. Total number of genes in FUSION considered for
each clinical trait.
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S7 Fig. FUSION-GTEx Replication. Average number of tSNPs in the genes with signals that
replicated (Replication group) and signals that did not replicate (No Replication).
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