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Summary

1. Technological advances have greatly simplified to take and analyze digital images and videos, and

ecologists increasingly use these techniques for trait, behavioral and taxonomic analyses. The de-

velopment of techniques to automate biological measurements from the environment opens up new

possibilities to infer species numbers, observe presence/absence patterns and recognize individuals

based on audio-visual information.

2. Streams of quantitative data, such as temporal species abundances, are processed by machine learning

(ML) algorithms into meaningful information. Machine learning approaches learn to distinguish classes

(e.g., species) from observed quantitative features (phenotypes), and in-turn predict the distinguished

classes in subsequent observations. However, in biological systems, the environment changes, often

driving phenotypic changes in behaviour and morphology.

3. Here we describe a framework for classifying species under dynamic biotic and abiotic conditions using

a novel sliding window approach. We train a random forest classifier on subsets of the data, covering

restricted temporal, biotic and abiotic ranges (i.e. windows). We test our approach by applying the

classification framework to experimental microbial communities where results were validated against

manual classification. Individuals from one to six ciliate species were monitored over hundreds of

generations in dozens of different species combinations and over a temperature gradient. We describe

the steps of our classification pipeline and systematically explore the effects of the abiotic and biotic

environments as well as temporal effects on classification success.

4. Differences in biotic and abiotic conditions caused simplistic classification approaches to be unsuccessful.

In contrast, the sliding window approach allowed classification to be highly successful, because

phenotypic differences driven by environmental change could be captured in the learning algorithm.

Importantly, automatic classification showed comparable success compared to manual identifications.

5. Our framework allows for reliable classification even in dynamic environmental contexts, and may help

to improve long-term monitoring of species from environmental samples. It therefore has application in

disciplines with automatic enumeration and phenotyping of organisms such as eco-toxicology, ecology

and evolutionary ecology, and broad-scale environmental monitoring.

Key words: video analysis, microbial ecology, microcosm, trait-based ecology, environmental monitoring
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1 Introduction

Society is presently in the midst of an automation revolution that was initiated in the middle

of the 20th century by the invention of the Turing machine. Tasks once performed by humans

are steadily being relinquished to computers that are more efficient at tedious jobs than their

human counterparts. Likewise, ecologists are increasingly relying on semi- or fully automated

monitoring systems to collect images, videos and sounds to characterize environments and

biological interactions. The field of animal biometrics develops quantitative approaches to

describe and identify species and individuals, using morphological traits and behaviours from

audio-visual sources (Kühl and Burghardt 2013). Examples include species monitoring using

audio (Russo and Voigt 2016, Depraetere et al. 2012) or visual information (Weinstein 2015,

Swinnen et al. 2014), identification based on patterns such as color or shape (Karanth et al.

2006), or behaviour from movement trajectories and associated accelerator data (Nathan

et al. 2012). Whereas these approaches show promise for cataloging different aspects of

biodiversity (MacLeod et al. 2010), they require careful optimization to accurately measure

species abundance and phenotypic variation (Russo and Voigt 2016).

Digital image and video analysis comprises a set of techniques to perform time intensive

tasks, including counting, measuring and tracking individuals (Pennekamp and Schtickzelle

2013, Dell et al. 2014). Given the ongoing development of such automation analyses, image

analysis is primarily used under controlled laboratory conditions, whereby populations

and individuals are phenotyped (e.g., using movement patterns) to conduct a variety of

ecological and evolutionary experiments (Pennekamp and Schtickzelle 2013, Mallard et al.

2013). Nevertheless, in natural systems, image and video based techniques have applied to

identify plankton species in marine surveys (Bell and Hopcroft 2008, Culverhouse et al. 2006)

and to monitor microorganisms in waste water treatment plants (Amaral et al. 2008; 2004).

The wealth of data produced by image and video analysis is both a blessing and a curse.

Processing and analysis of the data can become overwhelming when hundreds or thousands
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of videos are processed and when manual steps are needed as to optimize or supplement the

automated work flow (Kühl and Burghardt 2013).

Regardless of whether images, videos or sounds are used, making information available to

researchers requires transforming the raw data (e.g., pixel intensity, movement trajectories

or frequency and length of calls) into biologically meaningful information (e.g., number

of species observed, the individuals present in a specific area, or behavioural patterns).

This transformation can be achieved by machine learning techniques such as classification or

regression (Tarca et al. 2007, Peters et al. 2014). Machine learning algorithms use quantitative

properties such as the pixel intensity, or features of the objects identified by the image analysis

step (e.g., size or shape) to predict the class of an object (e.g., to which species an individual

belongs). Supervised learning algorithms are trained on data whose class is known (i.e.,

labeled) and the goal is to accurately predict unknown (i.e., unlabeled) observations. An

important prerequisite for training classifiers is hence that the training data adequately

describes the properties of the unknown data.

Populations and communities often show considerable interspecific variation in abundance

and intraspecific variation in phenotypic traits (Ozgul et al. 2009), both of which may impair

reliable species level identification. Phenotypic variation is influenced by intraspecific response

to the abiotic and biotic environment, which may induce phenotypic changes in other species

within a given community (McGill et al. 2006). Predation, for instance, can alter prey

size distributions (Travis et al. 2014, Blumenshine et al. 2000), induce the development of

defensive traits (Agrawal 2001), or induce changes in movement strategies (e.g., emigration,

diapause) (Preisser et al. 2005). Changes in phenotypic expression may also occur as a

response to the abiotic environment as well as species interactions occurring at the same

trophic level (Agrawal 2001). Consequently, visual species identification methods need to

account for dynamic changes in phenotypes to provide accurate biological classifications.

Microcosms are widely used experimental systems to assess ecological and evolutionary

influences on temporal and spatial population and community dynamics (Altermatt et al.
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2015, Jessup et al. 2004, Benton et al. 2007), and have been instrumental in testing ecological

theory (Cadotte et al. 2005, Altermatt et al. 2015). They have been widely used to test the

effects of inter- and intraspecific interactions (Jiang and Kulczycki 2004, Leary and Petchey

2009) and phenotypic plasticity (Pennekamp et al. 2014, Hammill et al. 2010).

Here we develop, apply and validate a novel framework to automate species classification

which can account for shifting phenotypic traits in response to environmental change. We

examine whether accounting for trait differences of individuals from differing biotic and abiotic

environments can permit individuals to be correctly categorized as species in a reasonably

complex community. Our approach considers the dynamic nature of the classification, which

complements previous attempts that focused on classification of ciliates in simpler communities

without environmental variation (Pennekamp et al. 2015, Soleymani et al. 2015).

2 Materials and methods

2.1 Experimental set up

We used microcosms with six bacterivorous ciliate species (i.e., Colpidium striatum, Dexios-

toma campylum, Loxocephalus sp., Paramecium caudatum, Spirostomum teres, and Tetrahy-

mena thermophila). The six species were cultured in standard protist medium, along with a

common freshwater bacterium, Serratia fonticola, as a food source. The medium consisted of

protist pellets (Carolina Biological Supplies, Burlington, NC) at a concentration of 0.55 g L−1

of Chalkley’s medium, and two wheat seeds for slow nutrient release (Altermatt et al. 2015).

Two weeks prior to the start of the experiment, we established fresh protist cultures for

each of the six species. A sample of 10mL of stock protist culture was added to 1000mL of

fresh protist medium in previously autoclaved 1000mL glass bottles (GL 45, Schott Duran,

Germany). Populations were checked to ensure carrying capacity was reached prior to the

start of the experiment. During the experiment, communities were kept in 250mL glasses

bottles.
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Single species replicates (species richness 1) were started at a density of three individuals

mL−1 in 100mL volume. Multispecies communities were initiated by first making 40mL

of medium from stock cultures. For a species richness of 2, this was made up of 20mL of

each species; for three species there was 13.3mL of each species, and so on, up to 6.66mL of

each species in six species treatments. This was topped up to 100mL by addition of 60mL

bacteria inoculated protist medium. The starting densities hence were standardized to a

fixed fraction of the species specific carrying capacity, which differed across richness levels

(see table S1). Controls (species richness equaling 0) contained 100mL of protist medium

with Serratia fonticola. Experimental units were randomized for each temperature treatment

and placed in climate controlled incubators (Pol-Eko Aparatura, Wodzislaw, Poland).

2.2 Experimental design

We designed a randomized blocking experiment with 720 experimental microcosms (i.e., 250

ml Duran® bottles) whereby we assessed the effect of ecological complexity (i.e., species

richness) and temperature on the abundance and automated identification of six ciliate

species. Ecological complexity included seven levels of ciliate species richness (0-6), where 0

level species richness was used as a control group. Since the total number of possible species

combinations exceeded the number of feasible experimental units, we randomly selected

species combinations for the 3, 4 and 5 species richness levels. The same species richness

combinations were repeated in each of the three temperature blocks. We replicated each level

of species richness and composition twice for all levels including an additional replication for

the two lowest and the highest levels of complexity (Table 1) resulting in 120 experimental

units per temperature (15 ◦C, 17 ◦C, 19 ◦C, 21 ◦C, 23 ◦C and 25 ◦C) .

2.3 Video sampling, particle tracking and processing

Sampling of each experimental unit occurred every day for the first 7 days, then 3 times

per week for the following 50 days and a final sampling 7 days later. Sampling took place
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richness unique combinations replicates experimental units inoculum (in ml)
0 1 5 5 0.00
1 6 3 18 < 1*
2 15 2 30 20.00
3 10 2 20 13.33
4 15 2 30 10.00
5 6 2 12 8.00
6 1 5 5 6.66

*inoculum size differed among the six species to adjust to density of 3 individuals mL−1

Table 1 – Overview of the experimental design: richness levels, number of unique species
combinations per richness level, number of replicates, total of experimental units and inoculum
size to start treatments.

in two parallel blocks such that half of the experimental units (360 units, 3 temperature

blocks) were sampled in sequence on consecutive days. For each sampling event, culture

medium was gently agitated, and a subsample of 700 µl was taken, mounted onto a glass slide

and covered with a glass lid. The height of the sampling chamber was 600 µm and the area

filmed 68.7mm2 resulting in a sampled volume of 41.2µL. Five second videos (at 25 frames

per second) were taken using a stereomicroscope (Leica M205 C) with a 16× magnification

mounted with a digital CMOS camera (Hamamatsu Orca C11440, Hamamatsu Photonics,

Japan).

We used the BEMOVI package (version 1.0.2) and the statistical computing environment R

(R Development Core Team 2016) to process the 18 720 videos collected during the experiment

and extract the raw trajectories (Pennekamp et al. 2015). Global segmentation and tracking

parameters were defined for automated processing of videos. The difference lag was defined

to be 2 s, particle size was restricted to 20 µm to 8100µm (corresponding to an input of 5

to 2000 pixel in the BEMOVI locate_and_measure_particle function), and the intensity

threshold was set to 10. For particle linking, we specified a link range of 0.12 s (3 frames)

and a displacement of 81 µm (20 pixels). These settings were optimized using a subset of

videos (spanning sampling dates of all single, two and six species combinations at 15 ◦C,

21 ◦C and 25 ◦C). Video settings were optimized to err on the side of including false positives

rather than exclude true positives at this step, with exclusion of false positives later in the
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processing pipeline. For further details regarding video processing, please refer to Pennekamp

et al. (2015).

After tracking, trajectories were filtered to remove artifacts such as spurious trajectories

(e.g., floating debris). Trajectories for analysis were required to show a minimum net

displacement of at least 50 µm, a duration greater than 0.2 seconds, a detection rate of 80

percent (for a trajectory with a duration of 10 frames the individual has to be detected on at

least 8 frames), a median step length greater than 2 µm and a minimum mean speed of 50

pixels per second.

2.4 Automated species classification in multi-species communities

across temperature environments

In supervised classification, data with known classes (i.e., training data, single species cultures

in our study) is used to train the classifier (Peters et al. 2014). Training means that the

classification algorithm "learns" how to distinguish among known classes based on some

quantitative feature such as body size. After training, the classifier can be used to predict the

classes of unknown data (i.e., test data, multi-species communities in our study). Reliable

training data is hence crucial to construct the classifier. Variation in the training data

should only represent biologically meaningful variation, whereas random variation, due to

uncontrolled factors, should be minimized. Whereas in small scale experiments, a small

number of videos can be individually inspected, in large scale experiments, this is not feasible

due large numbers of videos produced. Therefore, our automated species classification pipeline

consists of multiple steps (Fig 1). The first three steps were applied in the same way to all

videos and can be considered as the data filtering and quality assurance phase. The last three

steps are the application of the classification procedure. We apply this procedure using a

range of different settings to determine the sensitivity of our results to choices made when

performing the machine learning.
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Figure 1 – Six steps of the classification pipeline.

2.4.1 Careful curation of training data

During the video recording, microcosms were carefully checked manually for cross-contamination

among treatments (e.g., ciliates present in controls, cross-contamination of Paramecium mono-

culture with Tetrahymena etc.), and suspect microcosms checked with additional samples.

Ten of the 720 of microcosms were contaminated and excluded from further analysis.

A major problem in the analysis of videos is the detection of background (e.g., debris)

caused by flow of the sample liquid during videoing. As movement is used to identify the

foreground (i.e., the ciliates), spurious observations due to moving background will contribute

to incorrect training data. To account for this problem, we implemented a combination of

automatic and manual cleaning procedures for the training data. First, we applied more

stringent selection for training data by restricting automated trajectory classification to

particles moving at speeds greater than 200 µms−1 as moving debris is usually moving at

low speed. For classification, all individuals moving faster than 50 µms−1 were considered.

Second, we plotted the mean trait values of area and aspect ratio through time to detect

outliers and checked these videos manually. After reviewing suspect videos, we excluded

inappropriate data. We also used scatterplots of the mean size to define boundaries for each

species accounting for the change in morphology through time (see table S2).

2.4.2 Feature selection and feature pre-processing

Features are the quantitative descriptions of the raw trajectories that can be used to distinguish

between the different classes by the classifier (Sommer and Gerlich 2013). A large number

of features could be calculated from the morphology and trajectory data with some being

9

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 2, 2017. ; https://doi.org/10.1101/105395doi: bioRxiv preprint 

https://doi.org/10.1101/105395
http://creativecommons.org/licenses/by-nc/4.0/


potentially informative (e.g., size and speed) and others being non-informative (e.g., trajectory

length and direction of movement). We identified 10 potential classification features based

on our knowledge of characteristics that allow us to discriminate between species. Our

10 classification features were further aggregated at the trajectory level (mean, standard

deviation, minimum or maximum), resulting in 15 features (table 2). These 15 features were

a subset of features used in previous classification efforts (Pennekamp et al. 2015) and do

not include those based on advanced movement features which require substantially longer

trajectories for calculation (Soleymani et al. 2015).

All selected variables were checked to have non-zero variance and no missing data. We

scaled all features to have zero mean and unit standard deviation, and performed Box-Cox

transformation to normalize the data (Kuhn and Johnson 2013). Transformations were

applied to the training data for a given community rather than applying the transformations

to all individuals at once. Principal component analysis (PCA) was then use to reduce

the number of predictor variables under consideration, by obtaining uncorrelated principal

components (Quinn and Keough 2002).

2.4.3 Identification of noise and artifacts with Gaussian mixture models (GMMs)

and exclusion of background noise

Although the initial filtering removed many data points which reflect background noise, some

spurious trajectories remain in the training data and are mixed with the ciliate trajectories.

To identify these, we used the control cultures, which were recorded, but did not contain any

ciliates and hence only contained spurious trajectories (e.g., due to moving background or

changes in light conditions). We trained a Gaussian mixture model (GMM) on the trajectories

in the target culture, and identified clusters of spurious trajectories by comparison with the

known spurious trajectories from the control cultures.

Depending on the classification algorithm chosen, outliers can have potentially detrimental

effects. Given the amount of data available for training the classifier, we decided to only
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include observations in our training data that fit into the 90% confidence ellipse of a bivariate

normal distribution fitted to the first two principal components.

2.4.4 Sub-setting species, date and temperature range for training using a slid-

ing window

Due to environmental change, phenotypes change over time and between environments. This

creates a dynamic classification context in which individual features of each category vary

spatially and temporally. First, we compared models differing in the number of species used

for training. We fitted a model, which contained all the species used in the experiment and

an additional noise class that represents the spurious trajectories from the controls, yielding

a maximum of seven different classes. We also built a customized model only containing

the species we expect in a community plus the noise class, based on our knowledge of the

experimental design. Second, we only selected training data within a certain distance in time

and temperature (via a sliding window) of the community to be classified. We compared

different window sizes (10, 30 and 60 days, i.e. 17%, 50% and 100% of the sampling time)

and the temperature range (train based on the temperature of target community vs. all

available temperatures). Fig 2 summarizes and illustrates the sliding window approach.

2.4.5 Reduction of imbalance by randomly selecting observations for training

The different ciliate species used in the experiment show variation in cell densities and growth

dynamics (Altermatt et al. 2015), hence the number of individuals (i.e., species abundance)

differed among species. Imbalance in the number of observations for different classes in the

training data can severely decrease the performance of the classifier for the rare class (e.g.,

low abundance species) (Sommer and Gerlich 2013). Various techniques were developed to

deal with this important problem (Kotsiantis et al. 2006). We used a random under-sampling

scheme to the majority class to achieve balanced numbers of observations for all classes in the
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training data. We compared the effect of considering either 250 or 1000 randomly selected

observations per species on the classification success.

2.4.6 Fitting the random forest classifier

We used the random forest classifier (RF), as it is computationally efficient and robust,

yielding more reliable results than the Naive Bayes and Support Vector Machines, which were

also tested (results not presented). Random forest is a widely used classification algorithm

based on ensembles of decision trees (Breiman 2001). We used the implementation in the

randomForest package in R (Liaw and Wiener 2002). Decision trees are based on binary

thresholds that divide the observations into classes, with the goal of the purest possible

classes at the end nodes. Features of individuals whose class is known a priori are used

to train the classifier. The robustness of RF against over-fitting is due to a constrained

number of observations and variables used when building individual decision trees, effectively

de-correlating trees within the larger ensemble. Each decision tree in the ensemble will

predict the class of the unknown event and the final class is based on the majority vote of

the ensemble (Cutler et al. 2007).

As there was no association between the replicate of the training data and the test data,

we pooled replicates of a given community for training and testing . We grew an ensemble

of 500 decision trees for each target community and species identities were assigned to each

trajectory according to the majority vote of the ensemble. At each split the RF classifier

choose the square root of available variables, and we set the minimum number of observations

in each terminal node to one.

2.5 Evaluating automatic classification and sliding window approach

We use the out-of-bag classification success in the training data as our response (Breiman 2001).

The out-of-bag-success states how well the classification model performs on observations

not included in training the model (i.e., a out-of-sample prediction) and hence represents
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an unbiased measure of classification success. The proportion of individual in the total

population correctly predicted as a given species was the response. For the statistical analysis,

we used generalized linear mixed models using the lme4 package (Bates et al. 2015) in R (R

Development Core Team 2016). Predictor variables were centered and scaled to compare

effect sizes and to assist numerical convergence of the models.

First we fitted a model to understand the effect of temperature and species richness on

classification success across the full dataset: temperature and richness were modeled as fixed

effects; species nested in community composition was included as a random effect to account

for the repeated measurements. We also added an individual level random effect (based on

the microcosm ID) to account for the over-dispersion in the data (Harrison 2015).

To understand the effect of using sliding windows only including part of the training data,

we used contrasts among species pool, temporal and temperature window, as well as number

of trajectories randomly sampled. For these contrasts, only classification success from the

pairwise interactions was used. Training and classifying all combinations (> 2 species) would

haven taken an excessive amount of time (up to a week for each contrast) and hence only

using pairwise interactions allowed us to screen the parameter space in a reasonable amount

of time. For each of our four window treatments, we fitted a separate model: temperature

and sliding window selection were modeled as fixed effects. As before, species nested in

community composition was included as a random effect and an individual level random effect

(based on the microcosm ID) accounted for excessive over-dispersion in the data (Harrison

2015).

2.6 Validation against manual classification

The automatic classification approach was validated against manual identification of species

by experts. We randomly selected 3 trajectories for each species, from richness level 3

using samples from days 14, 25 and 37 after the start of the experiment and from three

temperatures (15 ◦C, 21 ◦C and 25 ◦C). Three experts independently assigned individuals
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(i.e. trajectories) to species. We used a majority vote (e.g., majority of votes of the different

human observers and the automatic identification) as the reference against which we tested

the identifications of each expert. The majority vote was not always unanimous. In 613

of 661 trajectories a majority vote was established, whereas in the remainder no majority

vote was found and hence trajectories discarded from further analysis. 37.5% of these cases

were IDs divided between Tetrahymena/Dexiostoma, Dexiostoma/Loxocephalus (14.5%) and

Colpidium/Loxocephalus (12.5%).

We evaluated the sensitivity and specificity for each species by comparing each voter

against the consensus vote using the confusion matrix (Kuhn 2008).

In a two species classification, sensitivity is defined as:

number of individuals predicted to be species x
number of individuals known to be species x

(1)

whereas specificity is defined as:

number of individuals not predicted to be species x
number of individuals known not to be species x

(2)

3 Results

3.1 Video processing and analysis

Of the 18 720 acquired videos, 165 were excluded to due to contamination resulting in a total

of 18 555. 18 320 of these were successfully processed to provide particle morphology (species

identification) and movement features (Fig S1). The 235 unprocessed videos contained

excessive debris (many thousands of particles per frame) compared to the processed videos,

causing the particle tracking algorithm to fail. These high particle numbers resulted from

directional flow of liquid in the microscope slide generally caused by improper handling or
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external disturbances during the video recording. The dataset from the processed videos

contained 1 702 138 177 observations across 43 267 551 trajectories.

3.2 Training data curation

Monocultures were used for training the classifier and hence needed to be of the highest

quality. We removed an additional 45 videos from the controls, and 164 from the monocultures

to exclude videos with moving background or videoing errors, resulting in a total of 18 111

videos for the final analyses.

The stronger filtering applied to the training data resulted in removal of 3 897 680 out

of 4 214 617 trajectories (92% reduction). Most of the removed trajectories were very short

and represented random noise associated with floating debris or very short trajectories. The

morphological boundaries for each species (see table S2) applied to the remaining 316 937

trajectories removed another 22 230 trajectories from the monoculture data resulting in

294 707 trajectories analysed for training the classifier.

3.3 Feature selection and pre-processing

Seven principal components (PCs) accounted for about 95% of the variability in the data.

PC1 is strongly associated with the eight features relating to cell size, all having positive

associations (Fig 3). PC2 is related to variability in turning angles, size and shape. PC3 is

strongly negatively associated with speed features. PC4 captures mostly the mean aspect

ratio, whereas PC5 to PC7 are only weakly associated with original features.

3.4 Noise identification with Gaussian mixture models (GMMs)

and exclusion of background noise

Noise was removed from each subset of data used for training. Trajectories from control

cultures (no ciliates), occupied a distinct area of PC1 versus PC2 feature space (S2). The
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Figure 3 – Correlations among original features and principle component scores.
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presence of these trajectories in the communities with ciliates sometimes created two relatively

distinct clouds of trajectories (e.g., Paramecium), and sometimes overlapping clouds of

trajectories (e.g., Dexiostoma), respectively in Fig S2. Importantly, despite noise distributions

overlapping certain species distribution in a subset of dimensions, its location was likely to

be different in some of the other dimensions (not plotted).

The GMM was able to identify noise and ciliate populations (Fig S3). Trajectories from

the training data ("Tetra" or "Loxo") falling into the area with spurious trajectories from the

empty communities ("none"), were re-classified as noise. Reclassification resulted in fewer

trajectories from the training data residing in the "noise region" of feature space (Fig S3).

The 90% confidence ellipse fitted around the observations helped to remove extreme outliers

and improved the species boundaries in multivariate trait space (see Fig S4) .

3.5 Effects of temperature, species richness, and sliding window on

classification success

Overall, increased temperature (b = -0.129, SE = 0.016, p < 0.001) and species richness (b

= -0.852, SE = 0.119, p < 0.001) decreased classification success across species combinations,

whereas their interaction was non-significant (b = -0.012, SE = 0.016, p = 0.47; table 3). The

richness effect was about seven-fold stronger than the temperature effect (table 3 and Fig 4).

Looking at the contrasts, classification success decreased when all species were included in

the training species pool compared to only the known species comprising the community (b

= -0.871, SE = 0.003, p < 0.001). Temperature decreased classification further (b = -0.127,

SE = 0.023, p < 0.001) and the interaction between temperature and species pool was also

negative (b = -0.032, SE = 0.004, p < 0.001; table S3).

Increasing the temporal window size decreased classification (b = -0.080, SE = 0.004, p

= 0.001), supporting that smaller temporal windows are beneficial because they capture the

temporal dynamics. However, the effect was weaker than the temperature effect (b = - 0.104,
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Model 0
(Intercept) 3.056 (0.119)∗∗∗

temperature −0.129 (0.016)∗∗∗

richness −0.852 (0.119)∗∗∗

temperature:richness −0.012 (0.016)
Num. obs. 24248
Num. groups: ID 282
Num. groups: combination:predicted.species 156
Var: ID (Intercept) 0.063
Var: combination:predicted.species (Intercept) 2.153
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 3 – Model output comparing effect of temperature and species richness on classification
success

SE = = 0.041, p < 0.05) and not further mediated by temperature (b = -0.0003, SE = 0.004,

p = 0.93; table S4).

Including more temperatures in the training data decreased classification success (b =

-0.072, SE = 0.004, p < 0.001), and the effect size was similar to the temperature effect itself

(b = -0.076, SE = 0.019, p < 0.001). The interaction between temperature and number of

included temperatures was positive suggesting that these effects cancel out (b = 0.075, SE =

0.005, p < 0.001; table S5).

Finally, classification success increased with the number of trajectories included (b =

0.141, SE = 0.004, p < 0.001), whereas the temperature effect was negative (b = -0.135,

SE = 0.052, p < 0.001). No interaction effect was found meaning that higher numbers of

trajectories generally were beneficial across temperatures (b = 0.006, SE = 0.004, p = 0.11;

table S6).

3.6 Validation against manual classification

When we compared the classification success for automatic and manual classification, we

observed high classification success (sensitivity and specificity) for both manual and automatic

classification of the six ciliate species (Fig 5). Manual classification is often slightly better
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than automatic classification, but automatic classification can outperform manual observers

for some classes (e.g., Tetrahymena) (Fig 5). Although we included trajectories from different

combinations and temperatures, species classification success remained above or close to 80%,

even for species like Tetrahymena whose accuracy was lower in the out-of-bag validation.

Furthermore, the data suggests that sensitivity is correlated between manual and automatic

classification, i.e. that they experience the difficulties with the same species.

Automatic classification did less well in identifying spurious trajectories (i.e., noise), with

Tetrahymena (39%) and Paramecium (11%) being the most confounded classes. Although

this shows that some noise escapes our cleaning procedure and that the error is non-randomly

distributed across species, overall we found a strong positive correlation between automatic

and manual counts of ciliates (Pearson correlation coefficient = 0.86).

4 Discussion

Here we introduce a methodological framework to automate species identification from indi-

vidual phenotypes in dynamic contexts. We show that we can reliably classify species from

video recordings using interspecific phenotypic variation in morphology and movement, while

accounting for environment dependent intraspecific phenotypic variation. We developed and

optimized our approach on identifying ciliates in aquatic microcosm communities, but the

techniques generalize to a wide range of study systems, including aquatic algae and zooplank-

ton. Our results highlight the importance of the dynamic context of biotic interactions and

abiotic environment for accurate species level classification. Overall, increased temperature

and species richness reduced classification success, with species richness inducing an order

of magnitude greater decrease than temperature. Importantly, sub-setting training data

according to ranges of time, temperature and species richness yielded increased classification

success and mitigated the problem of imbalance.
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Figure 5 – Comparison of manual and automatic classification success for each of the species.
Panel A shows the sensitivity, whereas Panel B shows the specificity against the consensus
vote. Different colours show different experts, whereas different shapes show manual versus
automatic identifications. The automatic classification behaves very similar to the experts
both in terms of sensitivity and specificity for the six ciliate species.
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4.1 The need to account for dynamic trait change in communities

Intraspecific variation in phenotypic expression is routinely observed across the kingdom

of life and is attributed to a wide range of abiotic and biotic environmental factors (Ozgul

et al. 2009). Specifically, phenotypic plasticity is the mechanism organisms use to cope with

environmental variation that allows for changes in morphology, physiology or behavior and

may encompass acclimation or epigenetic responses (Price et al. 2003). We used ciliates as

study organisms, as they show large variation in phenotypic response to environmental factors,

for instance smaller body size to increased temperature (Atkinson et al. 2003) or changes in

movement/feeding behavior to the presence of predators/competition (Kusch 1993). Despite

these changing characteristics over time and space, we show that our automated pipeline

can accurately identify species across considerable ecological complexity. This highlights

the importance of accounting for the range of phenotypes when identifying species based on

morphology (Vrijenhoek 2009).

4.2 Improved trait resolution due to dynamic sliding windows

The dynamic sliding window approach was superior to models that include global information

(e.g., using all species, all dates, or temperatures for training purposes), when classifying

multi-species communities. The smallest temporal window showed higher classification success

compared to using all dates to determine classes. Additionally, limiting the classification to

specific species and temperatures improved classification. Improved classification performance

is due to the ability of our framework to capture changes in traits (i.e. phenotypes) due

to the environment (e.g. species interactions and temperature) in the training subsets. In

contrast, if data were pooled without considering the environment, systematic changes would

be swamped by the overall trait variability.

Our finding can be easily illustrated with a trait like body size. Imagine two species

that initially differ in mean body size, that shrink through time, but at different rates (i.e.

resulting in overlapping body sizes). If all data were pooled, the classifier would consider
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individuals within the whole range of body sizes observed over the experiment for the two

species, due to the overlapping body sizes. However, a classifier that only considers body

size at a given time point exploits temporally non-overlapping sizes more efficiently and may

hence have higher classification success.

4.3 Community context and potential to tell apart similar species

The model including only the expected species in a community performed far better than

the model including all species. This is expected, as classifiers tend to perform less well

with increasing numbers of classes to predict (Kuhn and Johnson 2013). The corollary is

that if the presence of certain species can be ruled out (as in our experimental design), it is

better to work with a more specific classifier. This may not work under non-experimental

settings where the expected species are unknown and also has costs in terms of re-training

the classifier multiple times. If the species to be expected in a community are unknown,

training the classifier on all possible species may be a better choice.

Our results highlighted difficulties in telling the two smallest species apart ( T. thermophila

and D. campylum). This effect was pronounced at higher temperatures, potentially due

to decreased size at higher temperatures (Atkinson et al. 2003). A higher magnification

for communities containing the smallest ciliates has potential to improve classification as

individual traits such as cell shape may be better resolved. However, higher magnifications

entail a decrease in the volume sampled and hence this trade-off needs to be carefully balanced.

Another avenue for telling phenotypically similar species apart could be to apply active

learning approaches to the training of the classifier (Sommer and Gerlich 2013). Active learning

can improve the boundaries between classes by using user input on decisive observations.

Instead of just increasing the overall amount of observations available, this technique identifies

observations that are critical in assigning a large number of other observations to a given

class. The active learning algorithm selects observations autonomously and presents them to

the human expert for annotating (Jones et al. 2009). The manual validation has shown that
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experts can provide reliable identifications from videos, and the costs of manual identifications

may be paid off by substantial gains in classification success when decisive training observations

would be manually confirmed.

4.4 Data curation, cleaning, feature selection and dimension reduc-

tion

Much of the data cleaning involved careful validation of the raw data, identifying potential

problems with the data and designing steps to subsequently clean the data in a more automated

fashion. Fundamentally, the classifier is only as good as the training data, meaning that

foremost the quality and then the quantity is important. Observations accidentally labeled

as another class (e.g., spurious trajectories due to moving background confounded with

ciliate individuals) may seriously hamper the classification. Our cleaning pipeline therefore

deliberately discarded a large amount of trajectories (> 92%) in the first step. This amount

is nevertheless comparable to other automatic classification pipelines, for instance, for marine

planktonic organisms, where more than 95% of particles were discarded (Bi et al. 2015)

before target objects are classified.

Reducing the number of features had the advantage of requiring less computing time when

training the classifier, especially when predictors are highly correlated and hence contain the

same information. An excessive number of features may have also decreased the accuracy of

the classification, a phenomenon known as the curse of dimensionality (Sommer and Gerlich

2013). Albeit RF classification does not require feature reduction and transformations to

work, better numerical stability is expected when features are on the same scale (Kuhn and

Johnson 2013).
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4.5 Down-sampling data for training

Randomly sampling a number of trajectories from the subsets (training data) reduces the

chance of over-fitting as well as removes bias from the random forest classifier because

all classes have approximately the same number of training cases. This proved to be a

problem in previous applications of RF (Pennekamp et al. 2015, Soleymani et al. 2015),

where minority classes often had lower classification success than majority classes. Whereas

some classifiers are more robust to imbalance (e.g., support vector machines), here we show

that sub-sampling the population circumvents the imbalance issue. However, sufficient

observations of the minority class are still needed. Increasing the number of observations

increased classification success, though with computational cost. Training the GMM on

1000 instead of 250 trajectories led to a four-fold longer training time in the two species

combinations, and potentially much longer training in more species rich communities. In

case the observations of the minority class are limiting, it may also require increasing the

temporal window with associated decreases in classification. Balancing these factors hence

needs careful consideration of the properties of the classification problem studied.

4.6 Speed, size of experiment, scalability, workflow

Video analysis and automated species identification allowed a much larger experiment than

could have been achieved with manual methods, with collection of much more (and different

data). Manual identification took 3 to 4 person hours for the limited number of trajectories

(<700) in the validation dataset, and hence manual classification of all the trajectories in

the dataset would have been impossible (>40 000 000 trajectories). Manual counting of the

samples under the microscope can take 5-10 minutes depending on abundance and species

richness, requiring up to 120hours of continuous work on each sampling date; this is not

feasible. This high person-hour demand associated with extensive multispecies microcosm

experiments limits sampling events to either time series data for one ciliate species across a

limited number of microcosms (50 to 200) (e.g. Leary and Petchey 2009, Jiang and Morin
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2004, Petchey et al. 1999, Seymour et al. 2015), or more experimental units (>300) but

few sampling occasions (e.g. Carrara et al. 2015b;a). Our approach circumvents some of

these logistic limitations and furthermore gathers rich phenotypic information that opens

microcosm experiments, and other similar study systems, to high-throughput analyses of

traits.

4.7 Caveats and limitations

Out-of-bag error rates showed high classification success for ciliate and background noise. The

manual classification showed that automatic classification is indeed comparable to manual

classification for the six ciliates. However, a certain amount of trajectories identified as noise

by the manual observers were classified as ciliates by the RF. A possible explanation is that

training data was deliberately processed to contain the most reliable observations of a given

class. The strong filtering removed most of the noise, but also ciliate trajectories, probably

improving the separation of classes in multivariate trait space. In the test data, no strong

filtering was applied to make sure all ciliate trajectories remained, however, this also led to

spurious trajectories being identified as ciliates. Whereas we miss out on some noise, bias

in the species counts should be negligible for several reasons. First, the strong correlation

between observed and predicted counts based on the validation dataset indicates that the

automatic classification provides reliable counts. Second, the counts in a given community

at a given date are based on a weighted average: a given identification contributes only

to the number of frames it was detected on. Most of the trajectories that were wrongly

classified by the RF, were substantially shorter than the correct identifications and hence can

only contribute a small fraction to the overall count. Third, the quantification of different

error sources allows us to incorporate specific measures of observational error into models to

analyze the data in a later step. Our manual validation also showed that human observers do

not agree on identifications unanimously, however, the human error is almost never stated

nor quantified and hence cannot be considered in subsequent analyses.
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5 Conclusions

Our analysis framework based on sliding windows allows reliable classification of individual

organisms into species, despite temporal and environmentally induced trait change. We devel-

oped the approach based on videos of ciliate species, but the methodology and computational

pipelines are general and hence applicable to a wide range of organisms, for example to

monitor algae communities and the dynamics of microbial organisms in biofuel production

(Pons and Vivier 2000), track diversity in freshwater or marine plankton (Biard et al. 2016),

or in sewage plants (Amaral et al. 2004; 2008).
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