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Abstract  21 

Identifying what drives individual heterogeneity has been of long interest to ecologists, evolutionary 22 

biologists and biodemographers, because only such identification provides deeper understanding of 23 

ecological and evolutionary population dynamics. In natural populations one is challenged to 24 

accurately decompose the drivers of heterogeneity among individuals as genetically fixed or selectively 25 

neutral. Rather than working on wild populations we present here data from a simple bacterial system 26 

in the lab, Escherichia coli. Our system, based on cutting-edge microfluidic techniques, provides high 27 

control over the genotype and the environment. It therefore allows to unambiguously decompose and 28 

quantify fixed genetic variability and dynamic stochastic variability among individuals. We show that 29 

within clonal individual variability (dynamic heterogeneity) in lifespan and lifetime reproduction is 30 

dominating at about 82-88%, over the 12-18% genetically (adaptive fixed) driven differences. The 31 

genetic differences among the clonal strains still lead to substantial variability in population growth 32 

rates (fitness), but, as well understood based on foundational work in population genetics, the within 33 

strain neutral variability slows adaptive change, by enhancing genetic drift, and lowering overall 34 

population growth. We also revealed a surprising diversity in senescence patterns among the clonal 35 

strains, which indicates diverse underlying  cell-intrinsic processes that shape these demographic 36 

patterns. Such diversity is surprising since all cells belong to the same bacteria species, E. coli, and still 37 

exhibit patterns such as classical senescence, non-senescence, or negative senescence. We end by 38 

discussing whether similar levels of non-genetic variability might be detected in other systems and 39 

close by stating the open questions how such heterogeneity is maintained, how it has evolved, and 40 

whether it is adaptive.    41 
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Heterogeneity among individuals has important ecological and evolutionary implications because it 42 

determines the pace of ecological and evolutionary adaptation and shapes eco-evolutionary feedbacks 43 

(Hartl and Clark 2007, Steiner and Tuljapurkar 2012, Vindenes and Langangen 2015). Despite 44 

substantial methodological and empirical efforts, it remains challenging to unambiguously differentiate 45 

the causes that drive the observed heterogeneity among individuals in their life courses, their traits, and 46 

their fitness components (Steiner and Tuljapurkar 2012, Bonnet and Postma 2016, Cam et al. 2016). 47 

There is consensus that heterogeneity among individuals is caused by changes in the environment, by 48 

variation in the genotype, by the genotype-by-environment interaction, and by noise or intrinsic 49 

processes many of which show stochastic properties (Endler 1986, Finch and Kirkwood 2000, 50 

Kirkwood et al. 2005). The latter cause has either been deemed as noise associated with non-biological 51 

processes, e.g. measurement error, and with unknown hidden processes that were of little biological 52 

relevance. Alternatively, this intrinsic “noise” has been investigated for underlying biological processes 53 

with stochastic characteristics and its substantial biological implications are illustrated by quantitative 54 

genetic and population genetic studies. The interest in such intrinsic noise is best understood by its 55 

slowing of evolutionary dynamics via lowering heritabilities and enhancing genetic drift (Lande et al. 56 

2003, Hartl and Clark 2007). 57 

The challenge is heightened in natural populations to decompose the observed heterogeneity into its 58 

genetic, environmental, and non-genetic, non-environmental — stochastic — component. In such 59 

populations, we are confronted with high genetic diversity and complex environmental and gene-by-60 

environment interactions (Fitzpatrick et al. 2016). The knowledge about the genotypes at the individual 61 

level is limited (e.g. pedigree) or in many cases totally absent. Certain environmental variables are 62 

known at the population level, but micro-environmental differences are less explored. The response of 63 
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individuals to the known population level environmental factors varies — e.g. due to gene-by-64 

environment interactions — and individuals are differently affected by the population level 65 

environment, e.g. not all individuals are exposed equally. Ecologists agree on that one cannot 66 

encompass the whole complexity of natural systems and hence the additional variance is a combination 67 

of error and some hidden drivers of heterogeneity. The aim remains identifying the cause of this 68 

additional heterogeneity since only such identification allows forecasting of and understanding of 69 

evolutionary and ecological population dynamic processes (Lande et al. 2003, Tuljapurkar et al. 2009, 70 

Steiner et al. 2010).  71 

Not only empirical challenges occur when trying to decompose the observed variance in natural 72 

populations, from a methodological point of view challenges await us. Various statistical approaches 73 

aim at classifying the hidden heterogeneity as either fixed at birth, e.g. additive genetic effects or 74 

maternal effects, or as dynamic heterogeneity, heterogeneity generated during the course of life 75 

(Tuljapurkar et al. 2009, Steiner et al. 2010, Steiner and Tuljapurkar 2012, Bonnet and Postma 2016, 76 

Cam et al. 2016, Hartemink et al. 2017). Such models, be they based on mixed effect models, Markov 77 

chains, hidden Markov chains, covariate models or related models, are biased and cannot reveal the 78 

accurate underlying mechanism unless the contributing factors and the underlying error structure is 79 

known (Bonnet and Postma 2016, Cam et al. 2016). This applies to both so-called neutral models that 80 

base their arguments on dynamic heterogeneity — heterogeneity best described by stochastic 81 

transitions among stages that shape individual life courses —, and adaptive selective models that base 82 

their arguments on fixed heterogeneity, variability among individuals fixed at birth described by 83 

genetic differences or maternal effects. Note, in the fixed type of models there remains a large 84 
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unexplained residual error, a variance of unknown origin, and even models that combine dynamic and 85 

fixed heterogeneity suffer from biased estimations. 86 

To circumvent these empirical and methodological challenges faced in natural populations, we used 87 

here cutting-edge microfluidic technologies on a simple bacterial system in the lab, Escherichia coli. 88 

This system, in combination with age-structured matrix population models, allowed us to 89 

unambiguously decompose and quantify fixed, genetic variability and dynamic, stochastic variability 90 

among individuals. The highly-controlled environment of the microfluidic system excluded extrinsic 91 

environmental variation and gene-by-environment variation, sharpening the focus on decomposing 92 

genetic and non-genetic and non-environmental individual variability. We defined all genetic 93 

variability as the variance among seven (clonal) bacteria strains in their mean fitness components. We 94 

call this among strain genetic variability in fitness components fixed heterogeneity. This fixed 95 

heterogeneity is set in relation to dynamic heterogeneity, the variability in fitness components among 96 

individuals within strains. This dynamic heterogeneity is generated by cell intrinsic processes and can 97 

be best described as neutral individual heterogeneity. At least it is non-genetic and non-environmental 98 

induced variability, and demographic characteristics are not heritable between mother and daughter 99 

cells (Steiner and Tuljapurkar 2012, Steiner et al. 2017). As expected, fixed, among strain genetic 100 

variability was modest compared to the substantial within strain variability in reproduction and 101 

survival. Variance in lifespan within strains explained ~88% and 12% was related to among strain 102 

variance in lifespan. Variance in lifetime reproductive success within strains explained ~82% and 18% 103 

was related to among strain variance. Our finding does not imply that the genetic variability is not 104 

relevant, it just highlights that there is large amount of heterogeneity expressed within strains that is 105 

neither genetically nor environmentally driven and can therefore be described as neutral.  106 
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Material and methods 107 

The study organism we worked with is E. coli, a rod-shaped bacteria and molecularly well explored 108 

model organism. We defined each bacteria cell as an individual. Individuals grow (elongate) and 109 

reproduce by binary fission, a division in two usually equal sized cells. Note that these cells are 110 

functionally unequal, and such functional asymmetry is crucial otherwise a mother cell would divide 111 

into two identical daughter cells and thereby the original mother cell would “die” (Johnson and Mangel 112 

2006, Tyedmers et al. 2010). In addition, populations with perfect symmetric dividing cells are not 113 

viable over multiple generations if oxidative damage accumulates in cells as described for many aging 114 

processes including those for bacteria (Ackermann et al. 2007, Evans and Steinsaltz 2007, Lindner and 115 

Demarez 2009, Tyedmers et al. 2010). The asymmetry in division allows to distinguish a mother cell, 116 

the cell that holds the old pole of the cell wall, and a daughter cell, the offspring cell that inherits the 117 

more recent pole of the cell wall (Stewart et al. 2005). Even though senescence patterns are observed 118 

and individual cells age, the change in mortality rates across age is not determined by the age of the cell 119 

pole itself even though it is correlated(Steiner et al. 2017). It is not the cell pole age, but the cytoplasm 120 

content that influences mortality rates. While the mother cells senesce, the daughter cells are thought to 121 

be rejuvenated (Ackermann et al. 2007), but this rejuvenation seems only to be perfect for daughters of 122 

young mothers and not for daughters of old mothers (Steiner et al. 2017). Further, among isogenic 123 

bacteria the lifespan of the mother does not correlate with the lifespan of the daughter, which suggests 124 

that the asymmetry at fission has a dominating stochastic component to it (Steiner et al. 2017). Despite 125 

intensive mechanistic research on the factors involved in the functional asymmetry, none of the factors 126 

have been identified as the actual cause or consequence of the functional difference that determine the 127 

cell fates (Nyström et al. 2007, Lindner and Demarez 2009, Tyedmers et al. 2010). The more 128 
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quantitative demographic approach we have taken here does not focus on the within cell mechanistic 129 

factors but rather aims at decomposing the genetic and dynamics components driving individual 130 

heterogeneity.  131 

For our experiments we used a bacterial microfluidic system called mother machine (Wang et al. 2010, 132 

Steiner et al. 2017) (Fig.1). This system allows tracking thousands of individual cells via time-lapse 133 

phase-contrast microscopic imaging. Using these time-lapse images, we determined for each (mother) 134 

cell the lifespan, the timing and number of divisions, as well as the size and cell elongation throughout 135 

their lives. We identified cell death by propidium iodide, a chemical that enters the cell after the cell 136 

wall lysed and emits a strong red fluorescent signal when it binds to the DNA. We only collected and 137 

tracked data on the (old pole) mother cell, the bottom most cell of the dead-end side channels (Fig. 1); 138 

daughter cells are pushed out into the main, laminar flow channel and washed away and cannot be 139 

tracked throughout their lives.   140 
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 141 

Fig. 1: Experimental setup of microfluidic system to track individual bacteria cells throughout their 142 

lifetime. The main (horizontal) channel with the constant laminar flow connects directly the inlet and 143 

outlet and provides the cells, that grow in the vertical side channels, with fresh media. The vertical 144 

smaller side channels hold at their dead end the focal (mother) cell, which is the bottom most cell in 145 

each side channel. 146 

To control the genetic variability, we conducted separate experiments for seven different isogenic 147 

strains. Based on the individual demographic data of the tracked cells, we estimated hourly age-specific 148 

survival and reproduction rates which we used to parameterize age-specific matrix models (Leslie 149 

matrices), one model for each of the seven isogenic strains. We selected the seven E. coli strains based 150 
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on their common use as model organisms in the lab (K12 variants) and complemented them by a 151 

genetically distinct strain (Fig. 2). Details on the experiments, microfluidic chip production and strains 152 

are given in the online Supplementary material.   153 

 154 

Fig. 2: Phylogenetic relationship among the different E. coli strains. 155 

 156 

Data analysis 157 

To analyse our individual level demographic data (each mother cell is an individual) that was collected 158 

by time-lapse imaging, we parameterised discrete age-structured population models formulated as 159 

Leslie matrices. The time-lapse images were taken at 4-minute intervals, and therefore we recorded for 160 

each focal (mother) cell whether it had divided, how much it had grown, and whether it died within a 4-161 

minute time interval.  For each isogenic strain, we formulated one Leslie matrix, A (Table 1). Since not 162 

all cells were dead at the end of the experiments we right censored these cells. To parameterise the age-163 

structured Leslie matrix models we calculated hourly division and survival rates rather than 4-minute 164 

rates as collected via the time-lapse imaging. Hourly rates were calculated to reduce uncertainly due to 165 
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sampling variability of small sample sizes and to increase the accuracy of calculating vital rates. To be 166 

precise, for each strain, we calculated the age-specific survival probabilities from time t to time t+1 167 

(one hour time steps) by the fraction of cells alive at time t+1 over those cells alive at time t. For 168 

reproduction rates, we calculated the average number of divisions a cell underwent between time t and 169 

time t+1 given that the cell was alive, this was done for each strain separately. The survival 170 

probabilities entered the sub-diagonal parameters of the strain specific Leslie matrix, and the age-171 

specific division rates entered the top row of the strain specific Leslie matrix.  172 

We choose a Leslie matrix model approach since these models conveniently and directly link 173 

individual level data, as collected by our experiments, to population level properties, including the 174 

population growth rate and the generation time. The direct calculation of vital rates, as commonly done 175 

for matrix models, rather than fitting function parameters as for instance done in logistic regressions, 176 

provided great variability and accuracy in estimating the demographic parameters. The close match 177 

between observed data and the matrix elements can be seen in Fig. A4. Such direct parameter 178 

calculation usually ignores the effect of sampling variability, and effects of sampling variability can be 179 

substantial for small populations (<100 individuals) with low survival (<0.5) (Fiske et al. 2008). In our 180 

study both survival rates and sample sizes (312 to 1017 cells per strain) were well above levels were 181 

substantial influences of sample variation is expected (Fiske et al. 2008). If such sampling variability 182 

would significantly influence our results, we would also expect to see low replicability among 183 

subsamples within strains, a pattern not found in our study (Fig. A3). 184 

We assumed that all individual cells that were initially loaded into the microfluidic device are 185 

of age 0. We know that this assumption is partly violated. Based on stable-age theories of exponentially 186 

growing populations the age distribution is highly right skewed (Fig. A2), and less than 30% of the 187 

loaded cells are older than 1h, i.e. >70% of the individuals are of age<1h (Steiner et al. 2017). 188 
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Unfortunately, we have no means to determine which of the initially loaded cells are older than 1h. 189 

Convergence to a stable-age distribution, as assumed by matrix population models, should be fast in 190 

populations with vital rates as we computed for our bacteria populations. Further, such stable-age 191 

distribution should be closely achieved in the exponentially growing populations under constant and 192 

non-limiting growth conditions, as the ones the initially loaded mother cells are originating from. For 193 

the above reasons, potential transient dynamics are not expected to have large influences (SI Fig. A2) 194 

(Steiner et al. 2017).  195 

We used the seven strain specific Leslie models, A, to compute for each strain the following 196 

demographic parameters: the population growth rate, λ, the cohort generation time, Tc, the mean and 197 

among individual variance in lifespan, the mean and among individual variance in lifetime 198 

reproduction, the stable age distributions, and the age-specific reproductive values. Equations for 199 

estimating the demographic parameters are listed in Table 1, for proofs and further details please see 200 

Caswell (2001), Steiner and Tuljapurkar (2012), and Steiner et al. (2014) . The computed demographic 201 

parameters are shown in Table 2, Fig. A1 and Fig. A2. We choose to estimate the mean and variance in 202 

fitness components — lifespan and reproduction — based on the Leslie matrix rather than on the 203 

original data to minimize the influence of different levels of right censoring. Fig. 3 shows the original 204 

observed data with the right censoring, and Fig. A4 shows the close match between the age at death 205 

distributions based on the original observed data and the age at death distribution predicted by the 206 

Leslie model.  207 

We decomposed the among strain variance (fixed genetic) and within strain (dynamic) variance 208 

in fitness components using the seven strain specific estimates of the variance in lifespan, VarLi 209 

(equations: Table 1, values: Table 2; subscript i indicates the strain) and estimated the mean of these 210 
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seven strain specific values. This mean variance (𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉�������) provided us with the mean within strain 211 

variance in lifespan. We followed the same procedure to compute the mean within strain variance in 212 

reproduction (𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉����������). We related these mean (within strain) variances (𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉������� and 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑅𝑅����������) to the 213 

variance in the strain means (𝑉𝑉𝑉𝑉𝑉𝑉(𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖) = 𝑒𝑒𝑒𝑒[(𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖 − 𝑒𝑒𝑒𝑒𝑒𝑒)������2]; 𝑉𝑉𝑉𝑉𝑉𝑉(𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖) = 𝑒𝑒𝑒𝑒[(𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖 − 𝑒𝑒𝑒𝑒𝑒𝑒)�������2]) 214 

respectively. We equally weighted each strain estimate, i.e. we did not consider that some strains had 215 

more cells the estimates are based on compared to others. Our results are qualitatively robust to this 216 

assumption. 217 

    218 

Results 219 

Our results are based on a total of 3840 individual cells (3461 were tracked over their whole lifespan 220 

and 379 were right censored) (Fig. 3A, B). The cells in our experiments originated from seven isogenic 221 

strains (312 to 1017 cells per strain; mean 549 ± 202 SD) (Table 2). Population growth rates, λ, varied 222 

between 1.74 and 2.25 per hour (mean 2.06 ± 0.17 SD), mean lifetime reproductive success (net 223 

reproductive rate, R0) varied, between 42 and 128 individuals (mean 75 ± 27), generation time, T, 224 

varied between 2.3 and 3.29 hours (mean 2.57 ± 0.34 SD), and cohort generation time, TC, varied 225 

between 31 and 77 hours (mean 52.9 ± 16.7 SD) (Table 2). The coefficient of variation in lifespan 226 

within strains (CV=within strain SD in lifespan/mean strain lifespan) varied between 0.4 and 1.2 (mean 227 

0.8 ± 0.2), and was highly correlated to the CV of lifetime reproductive success within strains (0.4 to 228 

1.3; across strain mean 0.8 ± 0.3). Mean within strain variance in lifespan was high at 766 h2 compared 229 

to variance in mean lifespan among strains at 105 h2. Similarly, mean within strain variance in lifetime 230 

reproductive success was high at 3230 ind2 compared to variance in mean lifetime reproductive success 231 

among strains at 708 ind2. Based on the variances within and among strains, ~88% of the variance in 232 
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lifespan comes from within strains and 12% of variance in lifespan is caused by among strain variance. 233 

For lifetime reproductive success within strain variance dominates in generating ~82% of variance and 234 

18% was observed among strains.    235 

We illustrate the high variability in lifespan among individuals within strains in Fig. 3A. The 236 

corresponding age specific mortality patterns (Fig.3B) highlight the diversity in demographic patterns 237 

among strains. Such diversity is remarkable considering that all strains belong to the same species, E. 238 

coli, and have experienced identical constant environments throughout the experiments (highly 239 

controlled medium, nutrition, and temperature). Some strains showed negative chronological 240 

senescence with declining mortality with increasing age (AB1157), others showed more bathtub shapes 241 

with declining mortality early in life followed by classical senescence later in life (MG1655_LM, 242 

W3110), still others showed only classical senescence with increasing mortality with age (BW25113), 243 

or finally others first showed increased mortality early in life before exhibiting declining mortality later 244 

in life (MG1655, IAI1). Some of the late age mortality rates were estimated on small numbers of cells, 245 

and the very old age patterns (e.g. MG1655-Inlag showing steep rising mortality above 90h) should not 246 

be over-interpreted due to uncertainty from sampling variability. We also revealed substantial among 247 

strain diversity in age specific division rates (Fig. 3C) and cell elongation rates (cell growth rates) (Fig. 248 

3D). Most strains reached somewhat similar division rates after age 45h and showed moderate 249 

decreases in division (reproductive senescence) at older ages. At younger ages division rates differed 250 

substantially among the different strains, by either being fairly constant or increasing with age. Cell 251 

elongation rates (cell growth grates) showed similar diverse patterns among strains as mortality. Cell 252 

elongation (cell growth) increased (e.g. AB1157), decreased (e.g. IAI1), or first increased and then 253 

decreased (e.g. MG1655-Inlag) with increasing age. The age-specific reproductive values and stable 254 
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stage distributions for the seven different strains are shown in the Appendix (Supplementary material 255 

Appendix 1, Fig. A1, A2). 256 

 257 

Fig. 3: Lifespan distribution (A), probability of death (B), division rate (C), and cell elongation rate (D) of seven 258 

different bacteria strains plotted against age in hours. For (B) also survivorship curves are plotted as dashed 259 

lines. 95 % CI are shown in grey shading (B, C, D). For B and C hourly rates are shown, for D rates per 4min 260 

intervals are shown. Note, cells of the different strains are truncated (right censored) at different ages. All rates 261 

have been loess (program R) smoothed.          262 

Discussion  263 
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We showed that fixed heterogeneity in lifespan and reproduction, i.e. the genetic contribution, is 264 

moderate compared to the heterogeneity among individuals within strains, the neutral dynamic, and 265 

non-genetic and non-environmental, heterogeneity. Only our highly-controlled study system allows 266 

such an accurate and direct decomposition of heterogeneity in genetic and non-genetic contributions. 267 

Under less controlled setting, as in natural populations, we could not decompose the causes of mortality 268 

and reproduction without bias (Steiner and Tuljapurkar 2012, Bonnet and Postma 2016, Cam et al. 269 

2016). Despite the dominating variability within strains, we detected significant and evolutionary 270 

important variability among strains. This selective difference is best illustrated by the differences in 271 

population growth rate, λ, which would lead to fast changes in genotype frequencies. The differences in 272 

λ directly inform us on each of the strains fitness, i.e. how fast the different strains would grow and 273 

compete against each other under the exponential growth conditions in our experiments. In our system, 274 

environmental conditions exclude any density dependence, reduce extrinsic environmental variability 275 

to a level that is negligible, and provide non-limiting conditions that promote exponential population 276 

growth as assumed under stable stage theories.  277 

The within strain heterogeneity is partly illustrated by the coefficient of variation of the fitness 278 

components. The estimates we found here are comparable to less controlled systems and more complex 279 

organisms. In laboratory systems of other isogenic individuals under lab conditions the coefficient of 280 

variation (CV) ranges between 0.24 to 1.33 in lifespan [Caenorhabditis elegans 0.24-0.34 (Finch and 281 

Kirkwood 2000, Kirkwood et al. 2005), Caenorhabditis briggsae 0.31-0.51 (Schiemer 1982), 282 

Saccharomyces cerevisiae (0.37)(Kennedy 1994)]. Less genetically controlled lab populations do not 283 

differ much from these patterns in the CV of lifespan: laboratory reared mice (0.19-0.71)(Finch and 284 

Kirkwood 2000), Drosophila melanogaster 5.98-13.48 (Curtsinger et al. 1992). Even under less 285 

controlled conditions in the field, for instance, a plant species, Plantago lanceolatum, shows a CV 0.96 286 
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for lifespan, and 3.97 for reproduction (Steiner et al. unpublished) and such estimates seem not 287 

exceptional even in populations where we do not know the genetic or the environmental contributions 288 

(Tuljapurkar et al. 2009, Steiner et al. 2010). Even though in less controlled systems this CV includes 289 

contributions of fixed and dynamic heterogeneity, the comparatively similar estimates between highly 290 

controlled lab systems and natural systems might indicate that neutral variability could be substantial 291 

not only in controlled lab populations. If one sees it the other way around, our somewhat highly 292 

artificial and very simple model system shows surprisingly little difference in CV of fitness 293 

components compared to more natural systems.  294 

The ambiguity of estimates in natural populations about fixed and dynamic heterogeneity generating 295 

observed variances has resulted in a heated debate about neutral and adaptive contributions to this 296 

heterogeneity (Bonnet and Postma 2016, Cam et al. 2016). As with other neutral theories in molecular 297 

biology (Leigh 2007), or community ecology (Hubbell 2001), the neutral theory of life histories 298 

(Steiner and Tuljapurkar 2012) has been attacked based on a common misunderstanding behind neutral 299 

theories, that is, the erroneous claim that all variability is neutral. We know that all neutral theories are 300 

wrong (Leigh 2007). Any natural population includes selective differences, but the neutral theory 301 

illustrates to what extend variability might be neutral (in its theoretical extreme). To date, we do not 302 

have the means to unambiguously differentiate the causes driving the observed heterogeneity in natural 303 

populations. In our study, we show how substantial neutral heterogeneity can be in a simple bacterial 304 

system. This large heterogeneity might be surprising since the strains are highly adapted to the lab 305 

conditions. Selection has not managed to get rid of this variability, and the question arises how such 306 

neutral variability is maintained and if it is adaptive.  307 
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Labeling heterogeneity among individuals as neutral is often perceived with skepticism, since apparent 308 

random processes might have a deterministic hidden biological cause. From a deterministic point of 309 

view, each individual would be born with an intrinsic clock that determines its life course. Such a clock 310 

would have no genetic or epigenetic component, because mother and daughters life course are not 311 

correlated (Steiner et al. 2017). We believe the bacteria system can partly inform on distinguishing 312 

among such a deterministic viewpoint and an understanding that explains these hidden underlying 313 

processes to be generated by random events showing, e.g. showing stochastic characteristics. 314 

Numerous molecular and biochemical processes that are assumed to shape life courses of individuals 315 

have been identified for E. coli, many of them related to direct or indirect oxidative processes, but as in 316 

any other system the molecular and biochemical process of aging for E. coli is not fully understood 317 

(Kirkwood et al. 2005, Raj and van Oudenaarden 2008, Lindner and Demarez 2009, Gómez 2010). 318 

Many of these mechanisms show in themselve stochastic properties, including e.g. stochastic gene 319 

expression, protein folding and misfolding, and their potential cascading effects up to the organism 320 

level (Elowitz et al. 2002, Lindner and Demarez 2009, Balázsi et al. 2011, Ackermann 2015). Despite 321 

these detailed insights on biochemical and molecular mechanisms that regulate intrinsic cellular 322 

processes, linking them to the individual life course remains challenging (Lindner et al. 2008, López-323 

Otín et al. 2013). Such difficulties are expected if stochastic properties within the cells characterize 324 

these processes.  325 

Our approach using Leslie models, only takes the age of the cell into account and averages individuals 326 

within the strains across traits, be they morphological (e.g. cell size), (stochastic) gene expression, or 327 

asymmetry in protein aggregates. Such averaging across trait variability should reduce the calculated 328 

variances in lifespan and reproduction among individuals belonging to the same strain, since stage 329 
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dispersion in reproduction (among ages) caused by trait variability is reduced (Steiner et al. 2014). We 330 

could have included traits such as cell size, by extending our models to age-stage structured matrix 331 

models, formulated either as classical Lefkovitch matrixes or integral projection versions of matrix 332 

models (Caswell 2001, Ellner and Rees 2006). However, increasing the parameter space trades off 333 

against accuracy of parameter estimates due to sampling variability. Also, cell elongation and division 334 

rates are correlated in E. coli and therefore the Leslie matrices include — in the age dispersion in 335 

reproduction — part of the variability in cell size (Steiner et al. 2017). We aimed at a simple 336 

demographic model (Leslie matrix) that provides realistic and accurate estimates (Fig. A4). Extending 337 

these simple model to more complex models should be done in future studies. Among strain variance in 338 

fitness components should not be substantially influenced by averaging across individual trait 339 

variability. Obviously, we might have missed to explore important traits that are predominantly 340 

affected by the genetic differences among the strains. However, under our experimental conditions 341 

such traits, even if they had been highly differentiated among strains, did not have a significant 342 

influence either on reproduction or survival and therefore did not increase variability among strain 343 

fitness (λ). Using Leslie models directly linked the individual level data to population level properties 344 

without additional fitting of model parameters (Fig. A4). Fitting accurate functions to the somewhat 345 

complex demographic age patterns (Fig. 3) would have been challenging with other models. The Leslie 346 

matrix approach we choose provides accurate description at the population level, even though at older 347 

ages parameter calculation suffer from sampling variability. Such uncertainty at old ages should not 348 

strongly influence the overall variance decomposition, since the few individuals that live to old ages do 349 

not weigh heavily on the overall variance estimation.        350 
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We choose experimental conditions that reduced variance in certain traits, e.g. cell size. For instance 351 

we choose minimum medium M9 that reduces variance in division size (and size after division) 352 

compared to complex medium (Gangan and Athale 2017). Minimum medium M9 also decreases the 353 

rate of filamentation — a stress response where the cell continues to elongate without dividing. Under 354 

M9 conditions, filamentous cells rather died than recovering from filamenting by dividing into normal 355 

sized cells. Such recovery is frequently observed under complex media (Wang et al. 2010). Differences 356 

in experimental setup (e.g. starting with exponential or stationary growth cells, type of medium, strains 357 

explored, culturing devices used) make it challenging to direct compare to other single cell or batch 358 

culture E. coli studies, and even estimates within batch culture studies on growth rates are highly 359 

variable (Helmstetter 1968, Dennis and Bremer 2008). Compared to batch cultures grown on the same 360 

M9 media, our estimated exponential growth rates, λ, are high, though such increase in growth rates are 361 

expected and known for comparisons between single cell estimates and batch culture estimates that are 362 

in any case difficult to directly compare (Reshes et al. 2008) (Fig. A4). 363 

In interpreting our results, we must be aware that all strains are subjected to some level of right 364 

censoring (mean: 1.4% to 26.3%; SD 9.3% ± 8.8). The number of individuals suffering from this 365 

censoring differs among the different strains and might therefore bias our results differently. We aimed 366 

at reducing the effect of the right censoring by estimating demographic parameters from Leslie 367 

matrices with open age brackets for the last age class (Fig. A4). 368 

Another criticism on our data is that experiments are not entirely independently replicated. Each 369 

mother cell sits in its own little side channel, but the cells of each strain are still confounded in being 370 

loaded in the same microfluidic chip and have been provisioned by the same highly controlled laminar 371 

flow. The amount of nutrients delivered to the cells is magnitudes larger compared to the amount all 372 
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cells could consume; hence there should be no limitation of resources or any difference in access to 373 

resources among cells. Preliminary experiments (Jouvet & Steiner unpublished) also indicate that 374 

diffusion properties among the individual side channels are very similar, ascertaining that extrinsic 375 

environmental variation the individual cell experience in the microfluidic device are negligible. Despite 376 

the confounding effects, we are convinced that our data is representative since patterns among 377 

independent flow channels are highly replicable as we illustrate in the SM for one of our strains 378 

(Supplementary material Appendix 1, Fig. A3). Further if individual side channels would differ in their 379 

environments we would expect a correlation between mother and daughter cells in their lifespan, but 380 

such correlation has not been found in other studies (Steiner et al. 2017).  381 

Our results also illustrate how genetic variability, even within a species, can shape very diverse 382 

senescence patterns, both in survival and reproduction. Phylogenetically more closely related strains 383 

(Fig. 2) do not necessarily show more similar demographic patterns compared to less closely related 384 

strains (e.g. AB1157, MG1655, W3110). This raises interesting questions for comparative demography 385 

where a single population of a species is frequently assumed to be representative for each species 386 

(Jones et al. 2014). Even under our highly controlled environmental condition we see great diversity in 387 

demographic patterns and it would be interesting to compare multiple natural populations of the same 388 

species to investigate how persistent demographic patterns within species are in nature.  389 

 390 

Given the highly controlled environment and the high genetic control our system also open doors to 391 

investigate basic evolutionary theories of life history (Hamilton 1966, Stearns 1992). Such theories 392 

base much of their arguments on a fundamental tradeoff between reproduction and survival or early 393 

versus late life trade-offs. One of the challenges of assessing such trade-offs include that individuals, 394 
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populations, or genotypes receive different amounts of resources (energy or nutrients) and these 395 

differences might override the underlying trade-offs (van Noordwijk and de Jong 1986). Our highly 396 

controlled environment and the clear distinction of genotypes therefore provide a nice opportunity to 397 

reveal such tradeoffs that are hard to reveal in natural populations (Metcalf 2016). Based on the 398 

theories, we predict that strains with high mortality should exhibit high reproduction (high division and 399 

cell growth rates). Such simple expectations are not met, strains with relatively low mortality (e.g. 400 

BW25113) also showed high cell elongation and division rates, while other strains showed somewhat 401 

opposite patterns (e.g. AB1157). Similarly we did not detect clear age-specific trade-offs between early 402 

and late survival or early and late reproduction and their interaction as predicted by evolutionary 403 

theories of aging (Medawar 1952, Williams 1957, Hamilton 1966). Strain IAI1 for instance showed 404 

senescence in survival and in cell elongation rates, but increased in reproduction (division rate) with 405 

age, before plateauing off at old ages. Other strains (e.g. MG1655-Inlag) showed increased and 406 

decreased mortality with age and similar patterns in cell elongation, but did not show much change in 407 

division rate over much of life. Only late in life did MG1655-Inlag, reveal some reproductive 408 

senescence. We can interpret the lack of such expected relationships among survival and reproduction 409 

as a lack of genetic linkage between traits and ages, and that the underlying life-history tradeoffs are 410 

not as strong as assumed. One might argue that this system is too artificial to express such trade-offs. 411 

Still, we see familiar demographic patterns even in this simple system, and our best evidence for such 412 

trade-offs is coming from such artificial lab organisms, rather than from populations in their natural 413 

environments (Metcalf 2016). A fundamental challenge behind revealing these trade-offs is that they 414 

are expressed within individuals and not among individuals, but most of our attempts compare among 415 

individuals that belong to different groups, genotypes, populations, and species, as we do in our study. 416 
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Our findings unambiguously quantified fixed and dynamic heterogeneity for a simple bacterial system. 417 

We revealed that substantial variability is generated by cell-intrinsic likely stochastic processes and that 418 

the quantity and timing of these processes differ among the clonal strains, shaping diverse age-specific 419 

demographic patterns. To what extent similar levels of variability are generated by intrinsic likely 420 

stochastic processes in natural populations of simple organisms such as bacteria or more complex 421 

organisms should be explored. We discussed similarities in coefficient of variation across different 422 

level in complexity among organisms and across levels of control that suggest that our result is not 423 

exceptional. Promising attempts to overcome the unknown genetics of individuals in natural 424 

populations have been made by releasing hundreds or thousands of genetically known crossed 425 

individuals into the wild and then tracked throughout their lives (Roach 2012, Travis et al. 2014). 426 

Evidence of such experiments suggests that levels of within cross heterogeneity is substantial compared 427 

to among cross heterogeneity. How such heterogeneity is maintained, how it has evolved, and whether 428 

it is adaptive remains to be explored.  429 
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Table 1: Notation and Equations 

Description Equation Notes 

 𝑒𝑒𝑡𝑡 Vector of zeros with a 1 at 
position t (here t=1 for all 
estimations because of the Leslie 
matrix structure) 

 𝑒𝑒𝑇𝑇 Vector of ones, superscript 𝑇𝑇 
denote transpose 

Identity matrix 𝐈𝐈  

Population projection 
matrix (here Leslie 
matrix) 

𝐀𝐀  with  𝐀𝐀 = (𝐅𝐅 + 𝐏𝐏) 

Stage transition matrix  𝐏𝐏 Includes survival rates as off 
diagonal parameters for non-zero 
matrix elements 

Fertility matrix 𝐅𝐅 Includes division rates as first row 
parameters for non-zero matrix 
elements. 

Population growth rate  λ =dominant Eigenvalue of 𝐀𝐀  

Right eigenvector 
corresponding to 
dominant eigenvalue of 
𝐀𝐀 

𝜔𝜔, normalized so to sum of components=1  

Left eigenvector 
corresponding to 
dominant eigenvalue of 
𝐀𝐀 

𝜐𝜐, normalized so to 𝜐𝜐1 = 1  

Generation time 𝑇𝑇 = (λ ∗ 𝜐𝜐 ∗ 𝜔𝜔)/(𝜐𝜐 ∗ 𝐅𝐅 ∗ 𝜔𝜔)  

Stage duration matrix 𝐍𝐍 = (𝐈𝐈 − 𝐏𝐏)−1 Elements quantify the expected 
time spent in each age conditional 
on the birth stage (here all 
individuals are born to stage 1= 
age 1) 

Mean Lifespan strain i 𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖 = 𝑒𝑒𝑇𝑇 ∗ 𝐍𝐍 ∗ 𝑒𝑒𝑡𝑡  
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 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖 = 𝑒𝑒𝑇𝑇 ∗ (2𝐍𝐍 − 𝐈𝐈) ∗ 𝐍𝐍 ∗ 𝑒𝑒𝑡𝑡  

Variance in lifespan 
strain i 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖 = 𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠𝑞𝑞𝑖𝑖 − (𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖)2  

 𝐅𝐅� = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝐅𝐅) Diagonal elements of fertility 
matrix (here first row fertility 
values) 

Expected reproduction 
strain i 

𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖 = 𝑒𝑒𝑡𝑡𝑇𝑇 ∗ 𝐅𝐅 ∗ 𝐍𝐍 ∗ 𝑒𝑒𝑡𝑡  

 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖 = 𝑒𝑒𝑡𝑡𝑇𝑇 ∗ 𝐅𝐅 ∗ (2𝐍𝐍 − 𝐈𝐈) ∗ 𝐅𝐅� ∗ 𝐍𝐍 ∗ 𝑒𝑒𝑡𝑡  

Variance in reproduction 
strain i 

𝑉𝑉𝑉𝑉𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖 = 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖 − (𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖)2  

Cohort generation matrix 𝐀𝐀𝐜𝐜 = 𝐅𝐅 ∗ 𝐍𝐍  

Right eigenvector 
corresponding to 
dominant eigenvalue of 
𝐀𝐀𝐜𝐜 

𝑐𝑐𝑐𝑐, normalized so to sum of components=1  

Left eigenvector 
corresponding to 
dominant eigenvalue of 
𝐀𝐀𝐜𝐜 

𝑐𝑐𝑐𝑐, normalized so to (𝑐𝑐𝑐𝑐𝑇𝑇 ∗ 𝑐𝑐𝑐𝑐) = 1  

Cohort generation time 𝑇𝑇𝑐𝑐 = (𝑐𝑐𝑐𝑐𝑇𝑇 ∗ 𝐍𝐍 ∗ 𝑐𝑐𝑐𝑐)/(𝑐𝑐𝑐𝑐𝑇𝑇 ∗ 𝑐𝑐𝑐𝑐)  

Details and proofs of equations are found elsewhere (Steiner et al. 2012, 2014) 
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Table 2: Key demographic parameters of the seven isogenic strains  

Strain λ T 
 

TC Mean 
Lifespan 

SD 
Lifesp. 

CV 
Lifesp. 

Mean 
LRS 
(R0) 

SD 
LRS 
(R0) 

CV 
LRS 
(R0) 

# 
Individuals 

AB1157 2.02 2.50 31 23 28 1.2 42 54 1.3 504 
BW25113 2.25 2.34 77 54 24 0.4 128 57 0.4 482 

IAI1 1.74 3.29 69 44 31 0.7 74 56 0.8 312 
MG1655 Inlag 2.24 2.36 43 34 26 0.8 72 57 0.8 519 
MG1655 LM 2.18 2.30 44 34 26 0.8 67 54 0.8 505 

W3110 2.03 2.38 38 27 27 1.0 50  54 1.1 501 
MG1655 1.97 2.83 68 46 31 0.7 94 65 0.7 1017 
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