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Abstract  

Identifying what drives individual heterogeneity has been of long interest to us ecologists, evolutionary 

biologists and biodemographers, because only such identification provides deeper understanding of 

ecological and evolutionary population dynamics. In natural populations we are challenged to 

accurately decompose the generating genetically fixed and selectively neutral dynamic moments of 

heterogeneity. Rather than working on wild populations we present here data from a simple bacterial 

system in the lab, Escherichia coli. Our system, based on cutting-edge microfluidic techniques, 

provides high control over the genotype and the environment. Only such high control provides the 

means to unambiguously decompose and quantify fixed, genetic variability, and dynamic, stochastic 

variability among individual demographic components. We show that within clonal individual 

variability (neutral dynamic heterogeneity) in lifespan and lifetime reproduction is dominating at about 

93-95%, over the 5-7% genetically (adaptive fixed) driven differences. The genetic differences among 

the clonal strains still lead to substantial variability in population growth rates (fitness), but the neutral 

variability slows adaptive change, by enhancing genetic drift, and lowering overall population growth. 

We also revealed a surprising diversity in demographic patterns among the clonal strains, which 

indicates diverse underlying stochastic cell-intrinsic processes that shape these demographic patterns. 

Such diversity is surprising since all cells belong to the same bacteria species, E. coli, and still exhibit 

patterns such as classical senescence, non-senescence, or negative senescence. We end by discussing 

whether similar levels of neutral variability might be detected in other systems and close by stating the 

open questions how such neutral heterogeneity is maintained, how it has evolved, and whether it is 

adaptive.    
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Heterogeneity among individuals has important ecological and evolutionary implications because it 

determines the pace of ecological and evolutionary adaptation and shapes eco-evolutionary feedbacks 

(Hartl and Clark 2007, Steiner and Tuljapurkar 2012, Vindenes and Langangen 2015). Despite 

substantial methodological and empirical efforts, we are still challenged to unambiguously differentiate 

the causes that drive the observed heterogeneity among individuals in their life courses, their traits, and 

their fitness components (Steiner and Tuljapurkar 2012, Bonnet and Postma 2016, Cam et al. 2016). 

We have consensus that heterogeneity among individuals is caused by changes in the environment, by 

variation in the genotype, by the genotype-by-environment interaction, and by noise or processes that 

show stochastic properties (Endler 1986, Finch and Kirkwood 2000, Kirkwood et al. 2005). The latter 

cause has either been deemed as noise associated with non-biological processes, e.g. measurement 

error, and with unknown hidden processes that were considered to be of little biological relevance. 

Alternatively, this “noise” has been investigated for underlying biological processes with stochastic 

characteristics. Numerous mechanisms of such “hidden” processes with stochastic properties have been 

identified including e.g. stochastic gene expression, protein folding and misfolding, and their potential 

cascading effects up to the organism level (Elowitz et al. 2002, Lindner and Demarez 2009, Balázsi et 

al. 2011, Ackermann 2015). Still, the link between such processes at the molecular or physiological 

level and the individual life courses is largely missing. This unexplained variability has also been of 

interest in quantitative and population genetics because it slows evolutionary dynamics by lowering 

heritabilities and enhancing genetic drift (Lande et al. 2003, Hartl and Clark 2007). 

The challenge we face in decomposing the observed heterogeneity into its genetic, environmental, and 

stochastic component is heightened in natural populations. In such populations, we are confronted with 

high genetic diversity and complex environmental and gene-by-environment interactions (Fitzpatrick et 
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al. 2016). Our knowledge about the genotypes at the individual level is limited (e.g. pedigree) or in 

many cases totally absent. Certain environmental variables are usually known at the population level, 

but micro-environmental differences are less explored. The response of individuals to the known 

population level environmental factors varies – e.g. due to gene-by-environment interactions – and 

individuals are differently affected by the population level environment – e.g. not all individuals are 

exposed equally. In ecology, we are well aware that we cannot encompass the whole complexity of 

natural systems and hence the additional variance is seen as a combination of error and some sort of 

hidden drivers of heterogeneity. However, we still aim to identify the cause of this additional 

heterogeneity since only such identification allows forecasting of and understanding of evolutionary 

and ecological population dynamic processes (Lande et al. 2003, Tuljapurkar et al. 2009, Steiner et al. 

2010).  

Not only empirically are we challenged to decompose the observed variance in natural populations, 

also from a methodological point of view await us challenges. Various statistical approaches aim at 

classifying the hidden heterogeneity as either fixed at birth, e.g. additive genetic effects or maternal 

effects, or as dynamic heterogeneity, heterogeneity generated during the course of life (Tuljapurkar et 

al. 2009, Steiner et al. 2010, Steiner and Tuljapurkar 2012, Bonnet and Postma 2016, Cam et al. 2016). 

Such models, be they based on mixed effect models, Markov chains, hidden Markov chains, covariate 

models or related models, are biased and cannot reveal the accurate underlying mechanism unless the 

contributing factors and the underlying error structure is known (Bonnet and Postma 2016, Cam et al. 

2016). This applies to both so-called neutral models that base their arguments on dynamic 

heterogeneity and adaptive selective models that base their arguments on fixed heterogeneity. Note, in 

the fixed type of models there remains a large unexplained variance of unknown origin. 
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In order to circumvent these empirical and methodological challenges we face in natural populations, 

we used here cutting-edge microfluidic technologies on a simple bacterial system in the lab, 

Escherichia coli. This system allowed us to unambiguously decomposing and quantify fixed, genetic 

variability and dynamic, stochastic variability among individuals. In comparing isogenic (clonal) 

individuals within and among seven (clonal) bacteria strains under highly controlled and constant 

environmental conditions we were able to unambiguously identify the genetic cause, i.e. fixed 

heterogeneity, and the stochastic cause, i.e. dynamic heterogeneity, behind the individual 

heterogeneity. Our system also excluded any environmental variability sharpening our focus on fixed 

selective and dynamic neutral heterogeneity. As expected, among strain genetic variability was modest 

compared to the substantial within strain variability in reproduction and survival. Variance in lifespan 

within strains explained ~94.4% and 5.6% was related to among strain variance in lifespan. Variance in 

lifetime reproductive success within strains explained ~93.2% and 6.8% was related to among strain 

variance. Our finding does not imply that the genetic variability is not relevant, it just highlights that 

there is large amount of neutral heterogeneity expressed within strains that is neither genetically nor 

environmentally driven, and that slows adaptive change, enhances drift, and lowers population growth.  

Material and methods 

We conducted our experiments using a bacterial microfluidic system called mother machine (Wang et 

al. 2010) (Fig.1). This system allows tracking thousands of individual cells via time-lapse phase-

contrast microscopic imaging. For each cell the lifespan (age at death), the timing and number of 

divisions, as well as the size and cell elongation (cell growth) is recorded throughout their lives. We 

then explored these basic demographic data by constructing age-specific matrix models (Leslie 

matrices) and computed their demographic parameters.   
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Fig. 1: Experimental setup of microfluidic system to track individual bacteria cells throughout their 

lifetime. 

 

Microfluidic chip production 

We started the replication of our microfluidic chips from a custom made (Sigatec SA) silicon (SiO) 

master. This silicon master in itself was first replicated in Smooth-Cast 310 and ONYX (Bentley 

advanced material) before we used this replicated mold to produce our PDMS chips (Sylgard Silicone 

Elastomer Base and Curing Agent mixed in 10:1 ratio). The PDMS chips were cured overnight at 75°C 
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in an incubator. We punched an inlet and outlet hole for the laminar flow in each chip using a 

sharpened 13 mm 22G Luer stub (Harvard Apparatus). Thereafter we bonded each PDMS chip on a 

glass cover slide (24×60 mm) after a 30 second air plasma treatment (PDC-002, Harrick Plasma). To 

load the chip with fluidics and to limit cell attachment to the PDMS surface, we activated the 

assembled chip for 18 seconds in air plasma, and immediately injected it with a 20% PEG 

(Polyethylene glycol) solution in filtered minimum bacteria growth media, M9, supplemented with 

0.4% Glucose and 0.2% Casamino Acids (10 µM CaCl2, 200 µM MgSO4, 56 mM Glucose) (hereafter 

M9). We left the activated chip to incubate for a least 1 hour before we loaded bacteria into the chip. 

Bacteria strains and loading of the microfluidic chip 

We used seven strains of E. coli. Some of them are variants of the K12 strain MG1666 such as 

MG1655 (Hayashi et al. 2006), MG1655 LM (Hengge), and MG1655 (Inlag). The other K12 strains 

that we included were BW25113 (Datsenko and Wanner 2000), W3110 (Hayashi et al. 2006), and 

AB1157 (Bachmann 1972). To increase genetic diversity and include strains with different population 

growth rates in batch culture, we included the human commensal strain O8 IAI1 (Touchon et al. 2009).  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted February 2, 2017. ; https://doi.org/10.1101/105353doi: bioRxiv preprint 

https://doi.org/10.1101/105353


W3110 

AB1157 

MG1655 E. Coli K12 

BW25113 

IAI 1 

 

Fig. 2: Phylogenetic relationship among the different E. coli strains. 

We plated the original bacterial stock suspension on a petri dish (LB + Agar) and then inoculated a 

single colony in LB (lysogeny broth) media grew it overnight, and stored it at -20°C in 20% glycerol 

suspension. From this stock we inoculated a fresh culture of the strain in 15ml of M9 in a 50ml tube, 

grown overnight. We then used 750µl of this fresh stock suspension to inoculate 75ml of M9, and let 

this solution grow at 37°C temperature until an OD600 of 0.4-0.6, which corresponds to exponential 

growth phase. We then centrifuged the bacteria suspension for 10 minutes at 4000rpm, we discarded 

the supernatant, and resuspended the cell pellet in 1ml fresh M9 media. We centrifuged the 1ml 

suspension again at 10000 rpm for 1 minute, discarded 800 µl of the supernatant, and resuspended the 

cell pellet in the remaining 200 µl M9. We then injected part of this concentrated cell suspension in the 

chip. We centrifuged the loaded chip at 350 rpm for 10min (~118g), reinjected concentrated cells and 

centrifuged again at the same speed to allow a high loading of the dead end side channels of our 

microfluidic chip where the rod-shaped bacteria cells grew. The focal cells were trapped at the end of 

these side channels, and we tracked the cells over their lifespan by time series imaging. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted February 2, 2017. ; https://doi.org/10.1101/105353doi: bioRxiv preprint 

https://doi.org/10.1101/105353


Life cell time series imaging 

After we loaded the bacteria cells in the dead end side channels, we connected the chip to a peristaltic 

pump and placed the chip under an inverted microscope. We applied a continuous laminar flow 

(300µl/h) of M9 supplemented with 1.5% Polyethylene Glycol (PEG P3015 Sigma-Aldrich) and 

1mg/ml PI (Propidium Iodide) through the main channel throughout the experiment (Fig. 1). For the 

life cell imaging, we defined 22-42 fields of view and a phase contrast as well as a fluorescent image 

was taken of each field of view at 4 minute intervals. Our Nikon Ti inverted microscope is equipped 

with a Perfect Focus System (PFS) that allowed us to maintain optical focus over the time series 

imaging. We used a 100× objective for the imaging and our microscope was controlled by Nis Element 

AR software. The microscope is temperature controlled at 37°C, in combination with the constant 

laminar flow we achieved highly controlled environmental conditions.  

Image analysis 

We analysed the time series images (4 min intervals) with customized application of Visiopales 

software. The software automatically detects each side channel, and uses a front detection to identify 

each cell within each side channel at each time point. We finally analysed the resulting raw data with 

custom developed R scripts (R Core Team 2016). The phase contrast images provided us with accurate 

data of the cell size and cell division (4 min intervals), while the fluorescence images provided us with 

accurate age at death information. When the cell wall lyses (cell dies) the PI bonds to the DNA and 

exhibits a strong red fluorescent signal. 

Data analysis 
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We analysed the resulting demographic data, lifespan, cell elongation rate, cell division rate, of each 

focal cell. Since not all cells were dead at the end of the experiments we right censored these cells. 

Based on the individual cell demographic data we constructed Leslie matrix population models with 

one hour time intervals. We then used these Leslie models (one for each of the seven strains) to 

compute the following demographic parameters: the population growth rate, λ, the cohort generation 

time, Tc, the mean and among individual variance in lifespan, the mean and among individual variance 

in lifetime reproduction, the stable age distributions, and the age-specific reproductive values (Caswell 

2001, Steiner and Tuljapurkar 2012, Steiner et al. 2014) (see Table 2, Supplementary material 

Appendix 1, Fig. A1, A2). We choose to estimate the mean and variance in fitness components – 

lifespan and reproduction – based on the Leslie matrix rather than on the original data to minimize the 

influence of different levels of right censoring. Fig. 3 shows the original observed data with the right 

censoring. Rates in Fig. 3 have been loess (program R) smoothed. To estimate the within strain 

variance in lifespan and reproduction and the among strain variance, we computed the mean variance 

within strains based on the seven measures of variances within each strain and related this mean 

variance to the variance in the means among the seven strains. Strain means and variances were equally 

weighted, i.e. we did not take into account that some means and variances were based on fewer cells 

compared to others. Our results are qualitatively robust to this assumption.     

Results 

Our results are based on a total of 3840 individual cells (3461 were tracked over their whole lifespan 

and 379 were right censored) (Fig. 3A,B). The cells in our experiments originated from seven isogenic 

strains (312 to 1017 cells per strain; mean 549 ± 189 SD) (Table 2). Population growth rates, λ, varied 

between 2.45 and 3.08 per hour (mean 2.88 ± 0.18 SD), mean lifetime reproductive success (net 
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reproductive rate, R0) varied, between 49.57 and 134.16 individuals (mean 89.11 ± 23.91), generation 

time, T, varied between 1.51 and 1.79 hours (mean 1.58 ± 0.09 SD), and cohort generation time, TC, 

varied between 25.2 and 61.8 hours (mean 44.9 ± 13.2 SD) (Table 2). The coefficient of variation in 

lifespan within strains (CV=within strain SD in lifespan/mean strain lifespan) varied between 0.72 and 

1.46 (mean 1.01 ± 0.21), and was highly correlated to the CV of lifetime reproductive success within 

strains (0.76 to 1.44 (mean 1.02 ± 0.20)). Mean within strain variance in lifespan was high at 1630.85 

h2 compared to variance in mean lifespan among strains at 96.70 h2. Similarly, mean within strain 

variance in lifetime reproductive success was high at 7847.73 ind2 compared to variance in mean 

lifetime reproductive success among strains at 572 ind2. Based on the variances within and among 

strains, ~94.4% of the variance in lifespan comes from within strains and 5.6% of variance in lifespan 

is caused by among strain variance. For lifetime reproductive success within strain variance dominates 

in generating ~93.2% of variance and 6.8% was observed among strains.    

We illustrate the high variability in lifespan among individuals within strains in Fig. 3A. The 

corresponding age specific mortality patterns (Fig.3B) highlight the diversity in demographic patterns 

among strains. Such diversity is remarkable considering that all strains belong to the same species, E. 

coli, and have experienced identical constant environments throughout the experiments (highly 

controlled medium, nutrition, and temperature). Some strains show negative chronological senescence 

with declining mortality with increasing age (AB1157), others show more bathtub shapes with 

declining mortality early in life followed by classical senescence later in life (MG1655_LM, W3110), 

still others show only classical senescence with increasing mortality with age (BW25113), or finally 

others first show increased mortality early in life before exhibiting declining mortality later in life 

(MG1655, IAI1). Some of the late age mortality rates were estimated on small numbers of cells, and 
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the very old age patterns (e.g. MG1655-Inlag showing steep rising mortality again above 90h) should 

not be over-interpreted. We also reveal substantial among strain diversity in age specific division rates 

(Fig. 3C) and cell elongation rates (cell growth rates) (Fig. 3D). Most strains reach somewhat similar 

division rates after age 45h and show moderate decreases in division (reproductive senescence) at older 

ages. At younger ages division rates differ substantially among the different strains, by either being 

fairly constant or increasing with age. Cell elongation rates (cell growth grates) show similar diverse 

patterns among strains as mortality. Cell elongation (cell growth) increases (e.g. AB1157), decreases 

(e.g. IAI1), or first increases and then decrease (e.g. MG1655-Inlag) with increasing age. The age-

specific reproductive values and stable stage distributions for the seven different strains are shown in 

the Appendix (Supplementary material Appendix 1, Fig. A1, A2). 
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Fig. 3: Lifespan distribution (A), probability of death (B), division rate (C), and cell elongation rate (
of seven different bacteria strains plotted against age in hours. For (B) also survivorship curves are 
plotted as dashed lines. 95 % CI are shown in grey shading (B, C, D). For B and C hourly rates are 
shown, for D rates per 4min intervals are shown. Note, cells of the different strains are truncated (rig
censored) at different ages.  
 

Discussion  

We show that fixed heterogeneity in lifespan and reproduction is fairly moderate compared to the 

heterogeneity among individuals within strains. Only our highly controlled study system allows such

accurate and direct decomposition of heterogeneity in genetic and neutral contributions. Under less 

controlled setting, as in natural populations, we would not have been able to decompose the causes o

mortality and reproduction without bias (Steiner and Tuljapurkar 2012, Bonnet and Postma 2016, Ca
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et al. 2016). Despite the dominating neutral variability within strains, we detected significant variability 

among strains. This selective difference is best illustrated by the differences in population growth rate, 

λ. These differences would lead to fast changes in genotype frequencies. Such fast evolutionary 

changes are due to our deliberate choosing of strains that were known to differ in their population 

growth rates in batch culture. The differences in λ directly inform us on each of the strains fitness, i.e. 

how fast the different strains would grow and compete against each other under the exponential growth 

conditions in our experiments. In our system, environmental conditions are such as to exclude any 

density dependence and promote exponential population growth as assumed under stable stage theories.  

The within strain heterogeneity is partly illustrated by the coefficient of variation of the fitness 

components. The estimates we find here are comparable to less controlled systems and more complex 

organisms. In laboratory systems of other isogenic individuals under lab conditions the coefficient of 

variation (CV) ranges between 0.24 to 1.33 in lifespan [Caenorhabditis elegans 0.24-0.34 (Finch and 

Kirkwood 2000, Kirkwood et al. 2005), Caenorhabditis briggsae 0.31-0.51 (Schiemer 1982), 

Saccharomyces cerevisiae (0.37)(Kennedy 1994)]. Less genetically controlled lab populations do not 

differ much from these patterns in the CV of lifespan: laboratory reared mice (0.19-0.71)(Finch and 

Kirkwood 2000), Drosophila melanogaster 5.98-13.48 (Curtsinger et al. 1992). Even under less 

controlled conditions in the field, for instance, a plant species, Plantago lanceolatum, shows a CV 0.96 

for lifespan, and 3.97 for reproduction (Steiner et al. unpublished) and such estimates seem not 

exceptional even in populations where we do not know the genetic or the environmental contributions 

(Tuljapurkar et al. 2009, Steiner et al. 2010). Even though in less controlled systems this CV includes 

contributions of fixed and dynamic heterogeneity and we cannot accurately decompose the neutral and 

selective variability as we unambiguously have done for our highly controlled bacteria setting, the 
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comparatively similar estimates between highly controlled lab systems and natural systems, might be 

seen as indicator that neutral variability might be substantial in natural populations. At least it is not 

unrealistic to assume such substantial neutral variability. One could also see it the other way around 

that our somewhat highly artificial and very simple model system might actually be not as different as 

one might at first assume, compared to more natural systems.  

The ambiguity of estimates in natural populations about fixed and dynamic heterogeneity generating 

observed variances has resulted in a heated debate about neutral and adaptive contributions to this 

heterogeneity (Bonnet and Postma 2016, Cam et al. 2016). As with other neutral theories in molecular 

biology (Leigh 2007), or community ecology (Hubbell 2001), the neutral theory of life histories 

(Steiner and Tuljapurkar 2012) has been attacked based on a common misunderstanding behind neutral 

theories, that is, the erroneous claim that all variability is neutral. We know that all neutral theories are 

wrong (Leigh 2007). Any natural population includes selective differences, but the neutral theory 

illustrates to what extend heterogeneity might be neutral (in its theoretical extreme). To date, we do not 

have the means to unambiguously differentiate the causes driving the observed heterogeneity in natural 

populations. In our study here we show how substantial neutral heterogeneity might be, at least how 

large it is in this bacterial system. This large neutral heterogeneity might be surprising since the strains 

are highly adapted to the lab conditions. Selection has not managed to get rid of this variability, and we 

might have to ask how such neutral variability is maintained and if it is in itself adaptive.  

Our results also illustrate how genetic variability, even within a species, can shape very diverse 

senescence patterns, both in survival and reproduction. Phylogenetically more closely related strains 

(Fig. 2) do not necessarily show more similar demographic patterns compared to less closely related 

strains (e.g. AB1157, MG1655, W3110). This raises interesting questions for comparative demography 
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where a single population of a species is frequently assumed to be representative for a whole species 

(Jones et al. 2014). Even under our highly controlled environmental condition we see great diversity in 

demographic patterns and it would be interesting to compare multiple natural populations of the same 

species to investigate how persistent demographic patterns within species are in nature.  

One criticism on our data is that experiments are not entirely independently replicated. Each cell sits in 

its own little side channel, but the cells of each strain have still been loaded in the same microfluidic 

chip and are provisioned by the same highly controlled laminar flow. The amount of nutrients delivered 

to the cells is magnitudes larger compared to the amount all cells could ever possible consume; hence 

there should be no limitation of resources. We are convinced that our data is still representative since 

patterns among independent channels are highly replicable as we illustrate in the SM for one of our 

strains (Supplementary material Appendix 1, Fig. A3). High replicability has also been shown for other 

experiments with this system (U.K. Steiner unpublished).  

Given the highly controlled environment and the high genetic control our system might also be 

predestined to investigate basic evolutionary theories of life history (Hamilton 1966, Stearns 1992). 

Such theories base much of their arguments on a fundamental tradeoff between reproduction and 

survival or early versus late life trade-offs. One of the challenges of assessing such trade-offs include 

that individuals, populations, or genotypes receive different amounts of resources (energy or nutrients) 

and these differences might override the underlying trade-offs (van Noordwijk and de Jong 1986). Our 

highly controlled environment and the clear distinction of genotypes might therefore provide a nice 

opportunity to reveal such tradeoffs that have been found hard to reveal in natural populations (Metcalf 

2016). Based on the theories, we would predict that strains with high mortality should exhibit high 

reproduction (high division and cell growth rates). Such simple expectations are not met, strains with 
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relatively low mortality (e.g. BW25113) also show high cell elongation and division rates, while other 

strains show somewhat opposite patterns (e.g. AB1157). Similarly we do not detect clear age-specific 

trade-offs between early and late survival or early and late reproduction and their interaction as 

predicted by evolutionary theories of aging (Medawar 1952, Williams 1957, Hamilton 1966). Strain 

IAI1 for instance shows senescence in survival and in cell elongation rates, but increases in 

reproduction (division rate) with age, before plateauing off at old ages. Other strains (e.g. MG1655-

Inlag) show increased and decreased mortality with age and similar patterns in cell elongation, but do 

not show much change in division rate over much of life. Only late in life does MG1655-Inlag, reveal 

some reproductive senescence. We can interpret the lack of such expected relationships among survival 

and reproduction as a lack of genetic linkage between traits and ages, and that the underlying tradeoffs 

are not as strong as assumed. We could also argue that this system is so artificial that we would not 

expect such trade-offs to be of any importance. Still, we see familiar demographic patterns even in this 

simple system, and we have to acknowledge that our best evidence for such trade-offs is coming from 

such artificial lab organisms, rather than from populations in their natural environments (Metcalf 

2016). A fundamental challenge behind revealing these trade-offs is that they are expressed within 

individuals and not among individuals, but most of our attempts compare among individuals that 

belong to different groups, genotypes, populations, species, as we do in our study here. 

In interpreting our results, we have to be aware that all strains are subjected to some level of right 

censoring (add exact numbers 1.4% to 26.3% mean 9.3% ± 8.8 SD). The number of individuals 

suffering from this censoring differs among the different strains and might therefore bias our results 

differently. We aimed at reducing the effect of the right censoring by estimating demographic 

parameters from Leslie matrices with open age brackets for the last age class. 
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Our findings unambiguously quantify fixed and dynamic heterogeneity for a simple bacterial system. 

We reveal that substantial neutral variability is generated by cell-intrinsic stochastic processes and that 

the quantity and timing of these processes differ among the clonal strains, shaping diverse age-specific 

demographic patterns. To what extends similar levels of neutral variability might be expressed in 

natural populations of simple organisms such as bacteria or more complex organisms has to be 

explored. We discuss similarities in coefficient of variation across different level in complexity among 

organisms and across levels of control that suggest that our results might not be so special. Promising 

attempts to overcome the unknown genetics of individuals in the wild have been made by releasing 

hundreds or thousands of genetically known crossed individuals into the wild and then tracked 

throughout their lives (Roach 2012, Travis et al. 2014). Evidence of such experiments suggests that 

levels of within cross heterogeneity is substantial compared to among cross heterogeneity, indicating 

substantial levels of neutral variability. How such neutral heterogeneity is maintained, how it has 

evolved, whether it is adaptive and if so under what conditions it is adaptive remains to be explored.  
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Table 1: Notation and Equations 

Description Equation Notes 

 ��  Vector of zeros with a 1 at 
position t (here t=1 for all 
estimations) 

 ��  Vector of ones, superscript � 
denote transpose 

Identity matrix �  

Population projection 
matrix 

�  with  � � �� � 	
 

Stage transition matrix 	 Includes survival and stage 
changes 

Fertility matrix �  

Population growth rate  λ =dominant Eigenvalue of �  

Right eigenvector 
corresponding to 
dominant eigenvalue of 
� 

�, normalized so to sum of components=1  

Left eigenvector 
corresponding to 
dominant eigenvalue of 
� 

�, normalized so to �1 � 1  

Generation time � � �λ � � � �
/�� � � � �
  

Stage duration matrix � � �� � 	
�� Elements quantify the expected 
time spent in each stage (at each 
age) conditional on the birth stage 
(here all individuals are born to 
stage 1= age 1) 

Mean Lifespan ��� � �� � � � ��   

 ����� � �� � �2� � �
 � � � ��   
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Variance in lifespan ���� � ����� � ����
�  

 �� � ������
 Diagonal elements of fertility 
matrix (here first row fertility 
values) 

Expected reproduction ��� � ��
� � � � � � ��   

 ����� � ��
� � � � �2� � �
 � �� � � � ��  

Variance in reproduction ������ � ����� � ����
�  

Cohort generation matrix �� � � � �  

Right eigenvector 
corresponding to 
dominant eigenvalue of 
�� 

 �, normalized so to sum of components=1  

Left eigenvector 
corresponding to 
dominant eigenvalue of 
�� 

 �, normalized so to ( �� �  �
 � 1  

Cohort generation time �� � � �� � � �  �
/� �� �  �
  

Details and proofs of equations are found elsewhere (Steiner et al. 2012, 2014) 
 

Table 2: Key demographic parameters of the seven isogenic strains 

Strain λ T 
 

TC Lifespan 
SD 

Lifespan 

CV 
Lifespan 

Mean 
LRS 
(R0) 

SD 
LRS 
(R0) 

# 
Individuals 

AB1157 2.89 1.53 25.2 25 36 1.46 50 71 504 
BW25113 3.08 1.53 61.8 57 51 0.90 134 121 482 
O8 IAI1 2.45 1.79 55.5 44 32 0.72 87 66 312 

MG1655 Inlag 3.06 1.51 43.8 43 38 0.87 94 80 519 
MG1655 LM 2.97 1.53 34.1 32 36 1.12 70 82 505 

W3110 2.91 1.55 38.8 36 40 1.11 78 88 501 
MG1655 2.86 1.62 55.3 52 47 0.90 111 99 1017 

         3840 
    

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted February 2, 2017. ; https://doi.org/10.1101/105353doi: bioRxiv preprint 

https://doi.org/10.1101/105353


Supplementary material Appendix 1 

This contains the supplementary material for article “Demographic variability and heterogeneity among 

individuals within and among clonal bacteria strains” by Lionel Jouvet, Alexandro Rodríguez-Rojas, 

Ulrich K. Steiner 

 

 

 
Fig. A1: Reproductive values, υ, across ages for the seven isogenic strains. Note, the x-axis are of 
different length according to right censoring, even though the distributions have been estimated based 
on the corresponding Leslie matrix for each strain and are hence not right censored. 
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Fig. A2: Stable stage distribution, ω, describing the fraction of individual in each age class for the 
seven isogenic strains. Note, the x-axis are of different length according to right censoring, even though 
the distributions have been estimated based on the corresponding Leslie matrix for each strain and are 
hence not right censored.  
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Fig. A3: Lifespan distribution of MG1655 cells replicated in two independent main channels.  

 

 

 

 

 

 

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted February 2, 2017. ; https://doi.org/10.1101/105353doi: bioRxiv preprint 

https://doi.org/10.1101/105353

