
Analysis and prediction of super-enhancers using sequence and 
chromatin signatures 

Aziz Khan1,2 and Xuegong Zhang1,3,* 

1 MOE Key Laboratory of Bioinformatics, Bioinformatics Division and Center for Synthetic and Systems Biology, 
TNLIST/Department of Automation, Tsinghua University, Beijing, 100084, China 
2 Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, 0349 Oslo, 
Norway 
3 School of Life Sciences, Tsinghua University, Beijing, 100084, China 

* Corresponding Author 

Author’s email address: aziz.khan@ncmm.uio.no; zhangxg@tsinghua.edu.cn 

 

 

Abstract 
Background: Super-enhancers are clusters of active enhancers densely occupied by the Mediators, 

transcription factors and chromatin regulators, control expression of cell identity and disease 

associated genes. Current studies demonstrated the possibility of multiple factors with important roles 

in super-enhancer formation; however, a systematic analysis to asses the relative contribution of 

chromatin and sequence features of super-enhancers and their constituents remain unclear. In 

addition, a predictive model that integrates various types of data to predict super-enhancers has not 

been established.  

Results: Here, we integrated diverse types of genomic and epigenomic datasets to identify key 

signatures of super-enhancers and their constituents and to investigate their relative contribution. 

Through computational modelling, we found that Cdk8, Cdk9 and Smad3 as new key features of 

super-enhancers along with many known. Comprehensive analysis of these features in embryonic 

stem cells and pro-B cells revealed their role in the super-enhancer formation and cellular identity. 

Further, we observed significant correlation and combinatorial predictive ability among many cofactors 

at the constituents of super-enhancers. By utilizing these features, we developed computational 

models which can accurately predict super-enhancers and their constituents. We validated these 

models using cross-validation and also independent datasets in four human cell-types. 

Conclusions: Our analysis of these features and prediction models can serve as a resource to further 

characterize and understand the formation of super-enhancers. Taken together, our results also 

suggest a possible cooperative and synergistic interactions of numerous factors at super-enhancers 

and their constituents. We have made available our analysis pipeline as an open-source tool with a 

command line interface at https://github.com/asntech/improse. 

 

Keywords: Gene regulation, epigenomics, enhancer, super-enhancer, prediction, embryonic stem 
cells 
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Background 
Enhancers are cis-regulatory regions in the DNA that not only augment the transcription of associated 

genes but also play a key role in cell-type-specific gene expression [1, 2]. A myriad of transcription 

factors (TFs) bind to enhancers and regulate gene expression by recruiting coactivators and RNA 

polymerase II (RNA Pol II) to target genes [3–7]. A typical mammalian cell is estimated to have 

thousands of active enhancers, a number which rises to roughly one million in the human genome [1, 

8]. It has been more than three decades since the first enhancer was discovered [9],  but our 

understanding of the mechanisms by which enhancers regulate gene expression is still limited. 

However, development of methods such as chromatin immunoprecipitation followed by sequencing 

(ChIP-seq) and DNase I hypersensitivity followed by sequencing (DNase-seq), have helped to 

discover and characterize enhancers at genome scale. Many factors have been associated with 

enhancer activity, including mono methylation of histone H3 at lysine 4 (H3K4me1), acetylation of 

histone H3 at lysine 27 (H3K27ac), binding of the coactivator proteins p300 and CBP, and DNase I 

hypersensitivity [8, 10, 11]. By exploiting these factors and other genomic features, many 

computational approaches have been developed to predict enhancers genome-wide [4, 12].  

Mediator, a transcriptional coactivator, forms a complex with Cohesin to create cell-type-specific 

DNA loops and by facilitating enhancer-bound transcription factors, to recruit RNA Pol II to the 

promoters of target genes [13, 14]. In embryonic stem cells (ESC), the pluripotency transcription 

factors Oct4, Sox2 and Nanog (OSN) are known to have 100% enhancer activity (25/25) [15]. By 

using ChIP-seq data for Oct4, Sox2 and Nanog in ESC,  10,227 co-bound regions have been 

identified and classified into super-enhancers (SEs) and typical enhancers (TEs) by using ChIP-seq 

signal for Mediator subunit Med1 [16]. Super-enhancers form clusters of active enhancers, are cell-

type specific,  associated with key cell identity genes, and linked to many biological processes which 

define the cell identity [16]. These super-enhancers are densely loaded with the Mediator complex, 

master transcription factors and chromatin regulators [16–19]. Many disease- and trait-associated 

single nucleotide polymorphisms (SNPs) have been found in these regions [18]. Super-enhancers 

differ from typical enhancers in terms of size, ChIP-seq density of various cofactors, DNA motif 

content, DNA methylation level, enhancer RNA (eRNA) abundance, ability to activate transcription 

and sensitivity to perturbation [16–18, 20–22]. Further, studies have found super-enhancers in 

multiple cancers and demonstrated their importance in cellular-identity and disease and emphasized 

their use as potential biomarkers [17, 18, 23–25]. Other parallel studies demonstrated nearly similar 

patterns by using different approaches and termed them ‘stretch enhancers’ [26] and ‘enhancer 

clusters’ [27]. 

Since the discovery of super-enhancers, the research community used ChIP-seq data for different 

factors to differentiate super-enhancers from typical enhancers in different cell-types. ChIP-seq data 

for Med1 optimally differentiated super-enhancers and typical enhancers by comparing it with 

enhancer marks, including H3K27ac, H3K4me1 and DNase I hypersensitivity [16]. BRD4, a member 

of the BET protein family, was also used to distinguish super-enhancers from typical enhancers as it 

is highly correlated with MED1 [17]. H3K27ac was extensively used to create a catalogue of super-
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enhancers across 86 different human cell-types and tissues due to its availability [18]. Other studies 

used the coactivator protein P300 to define super-enhancers [28, 29]. However, the knowledge about 

these factors’ ability to define a set of super-enhancers in a particular cell-type and their relative and 

combinatorial importance remains limited. Master transcription factors which might form the super-

enhancer domains are largely unknown for most of the cell-types, while performing ChIP-seq for the 

Mediator complex is difficult and costly. Current studies demonstrated the possibility of multiple 

cofactors with important roles in super-enhancer formation; however, a predictive model that 

integrates various types of data to predict super-enhancers and their constituents (enhancers within a 

super-enhancer) has not been established. In addition, the degree to which the sequence-specific 

features of constituents by itself explains the differences between super-enhancers and typical 

enhancers remains unknown.  

Herein, to identify key features of super-enhancers and to investigate their relative contribution to 

predict super-enhancers, we integrated diverse types of publicly available datasets, including ChIP-

seq data for histone modifications, chromatin regulators and transcription factors, DNase I 

hypersensitive sites and genomic data. Using correlation analysis and computational modelling, we 

found that Med1, Med12, H3K27ac, Brd4, Cdk8, Cdk9, p300 and Smad3 were significantly correlated 

and had a higher predictive importance. By utilizing these features, we developed imPROSE 

(integrated methods for prediction of super-enhancers) to predict super-enhancers and their 

constituents from a list of enhancers. We implemented and compared six different state-of-the art 

learning models and validated them using 10-fold stratified cross validation as well as by independent 

datasets in four human cell-types. imPROSE trained on Smad3 and H3K27ac data in mESC predicts 

more cell-type-specific super-enhancers in pro-B cells as compared with H3K27ac-based method 

(ROSE). We also performed a genome-wide analysis of Cdk8, Cdk9 and Smad3 binding in mESC 

and pro-B cells to analyse and assess their relative importance in defining super-enhancers. By using 

ChIP-seq data, RNA-seq based gene expression data, Gene Ontology (GO) and motif analyses we 

found that these factors differentiate super-enhancers from typical enhancers. Our prediction model 

and derived features can be further used as a platform to precisely define super-enhancers in other 

cell-types. 

Results 
Analysis of features including chromatin and transcription factors 
Studies have shown that super-enhancers are occupied by various cofactors, chromatin regulators, 

histone modifications, RNA polymerase II and transcriptions factors [16, 18]. An understanding of the 

occupancy of these factors at the constituents of super-enhancers and typical enhancers is lacking. 

We extensively analysed 32 publicly available ChIP-seq and DNase-seq datasets to unveil their 

association with the constituents of super-enhancers and typical enhancers in mouse embryonic stem 

cells (mESC). We found that most of these factors, which are enriched in super-enhancers, were also 

highly enriched in the constituents of super-enhancers relative to typical enhancers (Fig. 1a; Figure 

S1 in Additional file 1). It is understandable to see that Oct4, Sox2 and Nanog were nearly equally 
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enriched across the constituents of super-enhancers and typical enhancers because these 

constituents are defined by intersecting OSN co-bound regions. 

Through correlation analysis, we found that most of the factors were highly correlated at the 

constituents of super-enhancers compared to typical enhancers (Fig. 1b). This suggests a possible 

combinatorial interplay among these cofactors at super-enhancers and that could be the reason that 

super-enhancers are more active and sensitive to perturbation as compared to typical enhancers. 

Interestingly, features with similar lineage/functionality were clustered together. For example, histone 

modifications (H3K27ac and H3K4me3), Mediator complex subunits (Med1, Med12 and Cdk8), the 

pluripotency genes of ESC (Oct4, Sox2, Nanog) were clustered together. It was particularly interesting 

to observe that Smad3 clustered together with the co-activator protein p300/CBP. Previous studies 

have shown that p300/CBP interacts with Smad3 [30, 31].  

Analysis of sequence specific features 
Super-enhancers differ from typical enhancers in terms of size, ChIP-seq density of various cofactors, 

TF content, ability to activate transcription, and sensitivity to perturbation [16–18]. But, to what extent 

constituents of super-enhancers differ from the constituents of typical enhancers in terms of sequence 

composition remains unknown. To gain insights into their biological functions, we sought to identify 

DNA sequence signatures of constituent enhancers. We tested GC-content, repeat fraction, size, and 

phastCons across the constituents of super-enhancers and typical enhancers in mouse ESC and pro-

B cells.  

Previous studies have shown that GC-rich regions have distinct features including frequent TF 

binding [32], active conformation [33] and nucleosome formation [34]. We found that constituents of 

super-enhancers are significantly more GC-rich than the constituents of typical enhancers (p-value < 

2.2e-16, Wilcoxon rank sum test) (Fig. 1c). This suggests that GC content has an important role in 

super-enhancers formation and it can be a defining feature to distinguish them from typical enhancers. 

Enhancers, larger  than 3 kb have been shown to be cell-type-specific and are known as stretch 

enhancers [26]. We checked the size (bp) of constituents and found that constituents of super-

enhancers are significantly larger than the constituents of typical enhancers (p-value < 2.2e-16, 

Wilcoxon rank sum test) (Fig. 1d). A previous study showed that majority of super-enhancers do 

overlap with stretch enhancers [35]. Taken together, these results suggests that super-enhancers are 

actually clusters of stretch enhancers. 

Enhancers are hardly conserved across mammalian genomes and evolved recently from ancestral 

DNA exaptation, rather than lineage-specific expansions of repeat elements [36]. We did not find any 

significant difference in conservation at constituents of super-enhancers and typical enhancers in 

mESC (p-value = 0.6285, Wilcoxon rank sum test), but in pro-B cells the conservation score was 

statistically significant (p-value < 1.7e-4, Wilcoxon rank sum test) (Fig. 1e). Similarly, there was no 

significant difference in repeat fraction at constituents of both super-enhancers and typical enhancers 

in mESC (p-value = 0.0202, Wilcoxon rank sum test) and pro-B cells (p-value = 0.8976, Wilcoxon rank 

sum test) (Fig. 1f).  

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 2, 2017. ; https://doi.org/10.1101/105262doi: bioRxiv preprint 

https://doi.org/10.1101/105262
http://creativecommons.org/licenses/by-nc/4.0/


5 

 

Feature-ranking revealed previously known and new features of super-enhancers 
With the increasing discovery of factors associated with super-enhancers, the determination of their 

relative importance in defining super-enhancers is important. Hence, we ranked chromatin and 

transcription factors to find a minimal optimal subset, which can be used to optimally distinguish 

super-enhancers from typical enhancers. We used a random-forest based approach, Boruta [37] to 

assess the importance of each feature by ranking them based on their predictive importance (Fig. 2a) 

(Methods). We also used an out-of-bag approach to calculate the relative importance of each feature 

and achieved almost identical results (Figure S5 in Additional file 1).  

After ranking chromatin features, we found Brd4, H3K27ac, Cdk8, Cdk9, Med12 and p300 as the 

six most important factors with Brd4 and H3K27ac as the top two most informative factors (Fig. 2a). It 

was particularly interesting to observe that Cdk8 and Cdk9 were ranked as the third and fourth most 

informative features, respectively. Cdk9, a subunit of the positive transcription elongation factor b (P-

TEFb) has been found in enhancers and promoters of active genes along with the Mediator 

coactivator [17]. Cdk8, a subunit of Mediator complex, positively regulates precise steps in the 

assembly of transcriptional elongation, including the recruitment of P-TEFb and Brd4 [38].  

Previous studies have shown that five ESC transcription factors (Sox2, Oct4, Nanog, Esrrb and 

Klf4) and other TFs (Smad3, Stat3, Tcf3, Nr5a2, Prdm14 and Tcfcp2l1) were enriched in super-

enhancers [16, 18]. As these transcription factors are specific for ESC biology, we ranked them 

separately from other cofactors to find their relative importance in ESC. Surprisingly, Smad3 turn to be 

the most informative among other transcription factors including Klf4 and Esrrb which were previously 

described as key defining features of super-enhancers [16] (Fig. 2b). It will be interesting to further 

understand the importance of Cdk8, Cdk9 and Smad3 in the formation of super-enhancers. 

We also ranked the chromatin and transcription factors together, not surprisingly Med1 was ranked 

as most informative feature followed by H3K27ac, Brd4, Cdk8, Cdk9. We found that Smad3 was 

ranked higher than p300 and also ESC specific master TFs (Fig. 2c). To test this in more 

differentiated cell -types, we have ranked the several factors, including H3K27ac, H3K4me1, 

H3K4me3, p300, Smad3, PU.1, Foxo1, Ebf1, Pol2 and DNaseI in pro-B cell. Interestingly, we found 

that Smad3 turn to be the most informative feature followed by PU.1, p300 and H3K27ac (Fig. 2d). 

This shows that Smad3 might be more informative feature to distinguish super-enhancers in 

differentiated cells.  

Comparison of six different state-of-the-art machine learning models 
We compared six different state-of-the-art, supervised, machine learning models, including Random 

Forest, linear SVM, k-NN, AdaBoost, Naive Bayes and Decision Tree. We used chromatin, 

transcription factors and sequence-specific features to train these models individually and evaluated 

their performance using 10-fold cross validation. The parameters used for each model can be found in 

the methods section. 

Using all chromatin, transcription factors and sequence-specific features, Random Forest 

performed well with AUC=0.98, while Naive Bayes performed poorly with AUC=0.85 (Fig. 3b, Figure 

S2D in Additional file 1). Linear SVM and k-NN performed equally with AUC=0.95, while Decision 
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Tree achieved AUC=0.91. We found that AdaBoost performed almost equally with AUC=0.96 as 

compared to Random Forest with AUC=0.98, but we achieved stable precision and recall for Random 

Forest.  

We further compared these models, using individual features as well as different types of features 

and found feature-type-specifics for each model (Figure S3; Table S1, S2 in Additional file 1). For 

example, linear SVM performed poorly on DNA sequence-specific features with AUC=0.69, while 

Random Forest and AdaBoost performed best with AUC=0.81.  

Random Forest performed optimally across different combinations of features and data sampling 

approaches. Hence, we chose Random Forest for further analysis due to its performance and 

flexibility, though any of these models can be used to predict super-enhancers to some extend 

depending on the type of features used. This comparative analysis of models using various types of 

features, provides a guide to select a model based on the type of features available. 

Prediction using chromatin and transcription factors 
Random Forests are ensemble and non-parametric models, which run efficiently on large datasets 

without over-fitting. Here, we developed imPROSE, a Random Forest based model, to predict super-

enhancers and their constituents. A detailed workflow of imPROSE is illustrated in (Fig. 3a). We 

investigated six state-of-the-art machine learning models, including Random Forest, linear SVM, k-NN, 

AdaBoost, Naive Bayes and Decision Tree. In order to train the models, we used normalized ChIP-

seq profiles for all chromatin, cofactors and transcription factors, and other genomic features at the 

constituents of super-enhancers and typical enhancers defined by Med1 signal at OSN (Oct4, Sox2 

and Nanog) co-bound sites. To avoid over-fitting, we used a hybrid-sampling approach to balance the 

training and test data (Additional file 1). The prediction accuracy was assessed using 10-fold stratified 

cross-validation (Methods). 

We investigated the individual predictive power of features using all the six models (Table S2 in 

Additional file 1). The AUC (Area Under the Curve) scores reported in this manuscript are based on 

the Random Forest model, unless stated otherwise. The features which were ranked as more 

important predictors in (Fig. 2a, b), achieved higher AUC and PRC (Precision Recall Curve) scores. 

Among the top ranked chromatin features, including H3K27ac, Brd4, Cdk8, Cdk9, Med12 and p300, 

we observed Brd4 performed slightly better than H3K27ac, with AUC=0.85 and 0.84, respectively. 

The model achieved AUC=0.84 for Cdk8, 0.83 for Cdk9, 0.83 for Med12 and 0.76 for p300 (Fig. 3c). 

After combining the top three chromatin features (H3K27ac, Brd4 and Cdk8) the model performed 

well with AUC=0.93. This shows that the combination of Brd4, H3K27ac and Cdk8 is more effective at 

predicting super-enhancers than either alone. Among the top ranked transcription factors, including 

Smad3, Esrrb, Klf4, Tcfcp2l1, Nr5f2a and Stat3, we found that Smad3 achieved the highest predictive 

power with AUC=0.73, followed by Esrrb with AUC=0.69 and Klf4 with AUC=0.65 (Fig. 3d). The model 

achieved AUC=0.65, 0.65, 0.64 for Tcfcp2l1, Nr5f2a and Stat3, respectively. After combining the top 

three ranked transcription factors, including Smad3, Esrrb and Klf4, the model performed better with 

AUC=0.84 than either alone.  
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This shows that combinatorial information of cofactors is more effective at predicting super-

enhancers than the individual features alone. We performed the combinatorial analysis based on 

feature types in the following section. We also noticed that the top ranked features, including Cdk8, 

Cdk9, p300, CBP, Smad3 and Brd4 are highly correlated with Med1, at the constituents of super-

enhancers and typical enhancers (Fig. 1b).  

Prediction using sequence-specific features 
We used genomic features, including conservation score (phastCons), GC content and repeat fraction, 

and investigated their individual and combinatorial predictive power. The model achieved AUC=0.58 

for phastCons, AUC=0.63 for GC content and AUC=0.64 for repeat fraction (Fig. 3e). By combining 

GC content and phastCons the model achieved AUC=0.71 and by combining GC content and repeat 

fraction it achieved AUC=0.76. By using three of the sequence-specific features, including GC content, 

phastCons and repeat fraction together, the model performed significantly higher with AUC=0.81. This 

shows that only genomic features could be enough to predict super-enhancers where high throughput 

sequencing data is not available. 

Further, we used the DNA motifs for the 11 transcription factors, including Oct4, Sox2, Nanog, 

Esrrb, Klf4, Tcfcp2l1, Prdm14, Nr5a2, Smad3, Stat3 and Tcf3 to train the model. Using only the motifs 

information, the model achieved AUC=0.72. By using the ChIP-seq signal for these TFs, it achieved 

AUC=0.93 (Fig. 3g). 

We also tested prediction accuracy using a sequence specific k-mer based approach[39]. We 

achieved AUC=0.74 for stitched sequences of super-enhancers and typical enhancers and AUC=0.75 

for the constituents of super-enhancers and typical enhancers (Figures S2G, S2H in Additional file 1). 

Combinatorial predictive ability of chromatin and genomic features 
Previous studies have shown a combinatorial interplay between multiple histone modifications, 

transcriptions factors and DNA motifs, and this can be functionally informative [40, 41]. We noticed 

significant correlation among many chromatin regulators and TFs at the constituents of super-

enhancers. This suggests the existence of a combinatorial relationship among these factors, which 

might dictate an accurate explanation for their role in super-enhancer formation. This combinatorial 

information could also be more predictive than the individual information of each factor. 

We therefore investigated the combinatorial predictive power of chromatin, TFs and sequence-

specific features. We tested 22 different combinations of these features and reported precision, recall, 

F1-score, AUC, and PRC (Fig. 3f). By training the model with the top six chromatin features, including 

Brd4, H3K27ac, Cdk8, Cdk9, Med12 and p300, it achieved AUC=0.95. By training the model with top 

two features (Brd4 and H3K27ac), it achieved AUC=0.91. By further adding the sequence specific 

features, the predictive ability of model greatly increased with AUC=0.95. By combining histone 

modifications, including H3K27ac, H3K4me1 and H3K4me3, with sequence specific features, the 

model achieved AUC=0.94. By training the model on known enhancer features data, including 

H3K4me1, H3K27ac, p300 and DNaseI, it achieved AUC=0.92. It is well known that Mediator forms a 

complex with Cohesin to create cell-type-specific DNA loops, and it facilitates enhancer-bound 
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transcription factors to recruit RNA Pol II to the promoters of target genes [13, 14]. Hence, when we 

tested the combinatorial predictive power of Mediator sub-unit Med12, Cohesin sub-unit Smc1 and 

RNA Pol II, the model achieved AUC=0.91.  Further, by adding the sequence specific features, the 

model performance considerably improved to AUC=0.95.  

Furthermore, we tested the predictive ability of features that were grouped based on their type and 

functionality, and found that transcription factors, histone modifications and chromatin regulators have 

higher predictive power with AUC=0.93, 0.92 and 0.92, respectively. For models trained on Mediator 

complex, Cohesin, coactivators and Pol II data, achieved AUC=0.89, 0.79, 0.83 and 0.81, respectively 

(Fig. 3g). It was particularly interesting to see that a model trained on genomic features, including GC 

content, phastCons and repeat fraction, achieved AUC=0.81. We also examined the combinatorial 

importance of these grouped features based on their functionality and type (Figure S2E in Additional 

file 1). The increase in the model AUC is statistically significant (p-value = 0.001, Wilcoxon rank sum 

statistic) (Figure S6 in Additional file 1). 

Our analysis shows that the combinatorial information greatly increased the predictive power of the 

models. Further, the sequence-specific features alone are reliable predictors, and the addition of 

sequence-specific features to other features greatly enhanced their predictive power. 

Model validation using independent datasets 
The above described models performed well on mESC data using 10-fold cross validation as a 

validation strategy. To further validate, we used independent datasets, which were not seen by the 

models during the training. We used publicly available data in four human tumor cell-types, including 

B-cell lymphoma (P493-6), multiple myeloma (MM1.S), small cell lung carcinoma (H2171) and 

glioblastoma (U87). We chose these cell-types because ChIP-seq data for MED1 and the two top-

ranked chromatin features, BRD4 and H3K27ac, were publicly available (Table S2 in Additional file 1). 

Initially, we used H3K27ac ChIP-seq peaks 2 kb upstream and downstream of the transcription start 

site (TSS), to define constituent enhancers and ranked those constituents based on MED1 ChIP-seq 

signal to define super-enhancers as described in [16–18]. 

First, we trained the model on ESC data and tested it on each of the four human cell-type data and 

achieved AUC=0.92, 0.90, 0.90 and 0.86 for P493-6, MM1.S and U87 cells, respectively (Fig. 3h). We 

also checked the classification accuracy after combining five cell-types data by training the model on 

four cell-types data and testing it on one of the remaining cell-type data and repeated this for all the 

combinations (Figure S2H in Additional file 1). We achieved the highest AUC=0.95 for the model 

tested on P493-6 cell-type data and the lowest AUC=0.88 for the model tested U87 cell-type data 

(Figure S2F in Additional file 1). The classification measures, including precision, recall, F1-score and 

AUC for each tested cell-type after training the model on remaining four cell-types can be found in 

(Table S3 in Additional file 1). 

We next trained the model on one genome data and tested on another. We used four human cell-

types (P493-6, Plasma cell, H2171 and U87), and one mouse cell-type (mESC) data. The model 

trained on mouse cell-type data tested it on human cell-type data, achieved AUC=0.90 (Fig. 3i). The 

model trained on human cell-type data and tested on mouse cell-type data, achieved AUC=0.85. 
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We also tested whether a model trained on constituent data can predict the stitched regions and 

vice versa. The model, trained with H3K27ac data, accurately predicted the stitched super-enhancers 

with AUC=0.92 (Fig. 3j). The same model when trained on stitched data and tested on constituent 

data, performed poorly with AUC=0.68. 

Genome-wide profiles of Cdk8, Cdk9 and Smad3 at super-enhancers 
Through the ranking of chromatin and transcription factors, we found that Cdk8, Cdk9 and Smad3 

were important features along many known signatures of super-enhancers, including H3K27ac, Brd4, 

Med12 and p300 which are well characterized at super-enhancers [16–18, 28]. However, the 

genome-wide profiles of Cdk8, Cdk9 and Smad3 are not well characterized at super-enhancers. 

Hence, we investigated the genome-wide profiles of Cdk8, Cdk9 and Smad3 at super-enhancers, 

identified by using Med1 in mESC. We found that, ChIP-seq binding sites of Cdk8, Cdk9 and Smad3 

were highly co-localized with Med1, Brd4, H3K27ac, p300 and DNaseI (Fig. 4a, b). Like Med1, the 

ChIP-seq density for Cdk8, Cdk9 and Smad3 is exceptionally higher at super-enhancers compared to 

typical enhancers (Fig. 4c). The ChIP-seq density of Med1, Cdk8, Cdk9 and Smad3 at super-

enhancers is significantly higher compared to typical enhancers (p-value < 2.2e-16, Wilcoxon rank 

sum test) (Fig. 4d). Similarly, Med1, Cdk8, Cdk9 and Smad3 are also enriched at ESC super-

enhancers identified using Med1 (Fig. 4f). The ChIP-seq binding for Med1 and master TFs, including 

Sox2, Oct4 and Nanog, is exceptionally higher and forms clusters at  super-enhancers, which are 

associated with cell-type-specific genes [16]. We found that the ChIP-seq binding sites for Cdk8, Cdk9 

and Smad3 also form clusters at super-enhancer regions and associated with cell-type-specific genes. 

For example, the super-enhancer (mSE_00038) is associated with ESC pluripotency gene Sox2 (Fig. 

3e). In another example, the super-enhancer (mSE_00085) is associated with the ESC pluripotency 

gene Nanog and the super-enhancer (mSE_00084) is associated with Dppa3 (developmental 

pluripotency associated 3) gene, which plays a key role in cell division and maintenance of cell 

pluripotency (Figure S4A in Additional file 1). 

Furthermore, we calculated the Pearson’s correlation of Med1 with Cdk8, Cdk9 and Smad3 and 

found a high and significant correlation (p-value < 2.2e-16) (Fig. 4g). The correlation between 

Med1/Cdk8 (Pearson’s r = 0.90, p-value < 2.2e-16), Med1/Cdk9 (Pearson’s r = 0.86, p-value < 2.2e-

16), and Med1/Smad3 (Pearson’s r = 0.76, p-value < 2.2e-16). Previous studies have used the ChIP-

seq binding sites of the co-activator protein p300 to find enhancers [4, 10]. We found that Smad3 is 

significantly correlated with p300 (Pearson’s r = 0.85, p-value < 2.2e-16) (Figure 4g).  

Identification and characterization of super-enhancers by using Cdk8, Cdk9 and Smad3 in 
mESC 
Since we found that Cdk8, Cdk9 and Smad3 are highly correlated with Med1 and co-occupy super-

enhancers genome-wide (Fig. 4), we investigated the importance of Cdk8, Cdk9 and Smad3 in super-

enhancer formation and also compared them with super-enhancers identified by Med1. We used 

ChIP-seq data and RNA-seq data to identify and characterize super-enhancers by using Cdk8, Cdk9 

and Smad3 in mESC. We found 400, 494 and 435 super-enhancers by using Cdk8, Cdk9 and Smad3, 

respectively (Fig. 5a). A list of all the super-enhancers and typical enhancers can be found in 
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(Additional file 2).  Further, Cdk8, Cdk9 and Smad3 successfully identified 88%, 84% and 73% of the 

Med1 super-enhancers, respectively (Fig. 5a). After Med1, we can see more clear distinction of super-

enhancers and typical enhancers by using Cdk8 as compared with H3K27ac (Figure 5b). The majority 

of super-enhancers identified using Cdk8, Cdk9 and Smad3 do overlap with super-enhancers 

identified using Med1, which is 66% of the super-enhancers identified using Med1 (Fig. 5c). 

The ChIP-seq density at super-enhancers, identified using Cdk8, Cdk9 and Smad3, is significantly 

higher compared with typical enhancers (p-value < 2.2e-16, Wilcoxon rank sum test) (Fig. 5d). Our 

analysis showed that Cdk8 could separate most of the super-enhancers (88%) defined using Mediator 

complex (Med1) ChIP-seq signal.  

In ESC, the DNA motifs Klf4 and Esrrb were particularly enriched at the constituents of super-

enhancers, compared to typical enhancers [16]. Hence, we tested the frequency of these two motifs 

at the constituents of super-enhancers and typical enhancers; we defined using Cdk8, Cdk9 and 

Smad3. We found that the frequency of binding motifs Klf4 and Esrrb is significantly higher at 

constituents of super-enhancers than typical enhancers (p-value < 2.2e-16, Wilcoxon rank sum test) 

(Figure S4G in Additional file 1). Further, when we compared the frequency of known ESC specific 

motifs (Oct4, Sox2, Nanog, Esrrb and Klf4) at the constituents of super-enhancers and typical 

enhancers defined by Med1, Cdk8, Cdk9 and Smad3. We found a higher frequency of these motifs at 

super-enhancers defined by Cdk9, Cdk8 and Smad3 as compared with Med1 (Fig. 5e). Further, the 

frequency of these motifs was slightly higher at the typical enhancers identified by Med1 as compared 

with Cdk8, Cdk9 and Smad3. 

The genes associated with super-enhancers are significantly expressed, compared to genes 

associated with typical enhancers [16–18]. To test this we associated genes with the super-enhancers 

and typical enhancers as described in [16, 18]. We found that 65% of the Med1 super-enhancers 

associated genes were also associated with super-enhancers identified by Cdk8, Cdk9 and Smad3 

(Fig. 5f). Further, these genes associated with super-enhancers were significantly expressed, 

compared to genes associated with typical enhancers (p-value < 2.2e-16, Wilcoxon rank sum test) 

(Fig. 5g).  

Super-enhancers known to be highly enriched for cell-type-specific master regulators and these 

regulators should have a higher rank. Hence, we checked the rank of super-enhancers, associated 

with the key cell identity genes, including Oct4, Sox2, Nanog, Esrrb and Klf4 in ESC, and ranked the 

factors based on the average rank of the super-enhancers that are associated with these genes (Fig. 

5h). These genes were selected due to their important roles in the pluripotency and reprogramming of 

ESC biology [42–44]. The rankings for Med1 super-enhancers were downloaded from [18]. We found 

that Smad3 achieved a highest rank followed by Med1, Cdk9 and Cdk8. The Smad3 achieved a 

higher rank for Oct4, compared with other genes. This might be due to the fact that Smad3 co-bonded 

with the master transcription factor Oct4 genome-wide in ESC [45]. Further, we found almost similar 

ChIP-seq patterns for factors including Med1, H3K27ac, Brd4, Cdk8, Cdk9 and Smad3 at super-

enhancers regions defined by all three factors (Cdk8, Cd9 and Smad3) and are associated with cell-

type-specific genes, including Nanog and Dppa3 (Fig. 5i). Like Med1, the genes associated with 
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super-enhancers ranked by Cdk8, Cdk9 and Smad3 were enriched with cell-type-specific GO terms, 

supporting the notion that super-enhancers regulate cellular identity genes (Figure S7a in Additional 

file 1). Taken together, our results indicate the role of  Cdk8, Cdk9 and Smad3 in defining and 

formation of super-enhancers. 

Identification and characterization of super-enhancers by using Smad3 in pro-B cells 
It was particularly interesting to see Smad3 ranked the most informative among transcription factors, 

including Oct4, Sox2, Nanog, Esrrb, Klf4, Tcfcp2l1, Prdm14, Nr5a2, Stat3 and Tcf3 in mESC (Fig. 2b). 

In ESC, the highly ranked super-enhancers identified using Smad3 were associated with ES cell-

identity genes, including Oct4, Sox2, Nanog, Klf4 and Esrrb compared to Med1 super-enhancers (Fig. 

5f). A previous study showed that Smad3 co-occupies the master transcription factors genome-wide 

[45]. We also observed Smad3 turn to be the highly ranked feature when we ranked Smad3 and 

several other factors in pro-B cells (Fig. 2d) 

Hence, we argued that Smad3 could be used to define super-enhancers instead of Med1. We 

already showed the ability of Smad3 in defining super-enhancers in ESC. To test this in more 

differentiated cells, we identified and characterized super-enhancers in pro-B cells using Smad3. We 

compared the super-enhancers identified using Smad3 with previously identified super-enhancers 

that use Med1 in pro-B cells [16]. The ChIP-seq density of Smad3 super-enhancers is exceptionally 

higher compared to typical enhancers (Fig. 6a). Further, Smad3 have strong binding along with Med1 

and PU.1 at a super-enhancer(mSE_00293) which is associated with Foxo1 gene (Fig. 6b). 

By using Smad3, we identified 694 super-enhancers and among these, 65% were identified by 

Med1 (Figure S4f in Additional file 1) and with Smad3 we can see a more clear distinction of super-

enhancers and typical enhancers as compared with H3K27ac (Fig. 6c). The ChIP-seq density at 

super-enhancers identified using Smad3 is significantly higher, compared to typical enhancers (p-

value < 2.2e-16, Wilcoxon rank sum test) (Fig. 6d). The genes associated with Smad3 super-

enhancers are significantly expressed, compared with typical enhancers (p-value < 2.2e-16, Wilcoxon 

rank sum test) (Fig. 6e). The GO terms for super-enhancers ranked by Smad3 are highly enriched 

and cell-type-specific, compared to Med1 (Figure S7b in Additional file 1).  

Further, to test the functional importance of super-enhancers identified only by Smad3 or by Med1, 

we performed GO analysis on these subset of super-enhancers. Interestingly, the super-enhancers 

identified by Smad3 but not by Med1 turn to be highly enriched for cell-type-specific GO terms such 

as immune cell development and immune system development. While super-enhancers identified by 

Med1 but not by Smad3 low enriched for cell-type-specific GO terms (Fig. 6f). These results, taken 

together with previous studies, demonstrate the importance of Smad3 in super-enhancer formation 

and Smad3 could be used to define super-enhancers. 

imPROSE predicts cell-type-specific super-enhancers 
To further test the ability of imPROSE, we compared it with the most commonly used H3K27ac based 

method ROSE [16]. We have demonstrated above that H3K27ac was ranked as the most informative 

feature in mESC and Smad3 was ranked as the most informative feature in pro-B cells. Hence, we 
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trained imPROSE using H3K27ac and Smad3 data in mESC and predicted super-enhancers in pro-B 

cells. Our model predicted ~2,000 super-enhancers in pro-B cells, but when we used ROSE with 

H3K27ac data, we found 934 super-enhancers (Additional files 3 and 4). To assess the functional 

importance of super-enhancers identified by these two methods, we performed GO enrichment 

analysis using GREAT tool [46]. We have listed the top 20 GO terms enriched at super-enhancers 

Interestingly, we found several GO terms pertinent to the specific biological functions in pro-B cells 

are highly enriched at the super-enhancers identified by imPROSE and low enriched at super-

enhancers identified by ROSE. For example, immune system process, hematopoietic or lymphoid 

organ development and leukocyte differentiation are significantly enriched for genes associated with 

super-enhancers predicted by imPROSE (Fig. 7a). Further, cell-type-specific GO terms such as 

regulation of B cell activation and regulation of B cell proliferation were highly enriched for typical 

enhancers defined by ROSE as compared with imPROSE (Figure S8 in Additional file 1). This shows 

that several super-enhancers were possibly labelled as typical enhancers by ROSE. 

To further assess the ability of imPROSE, we carried out motif analysis at the constituents of 

super-enhancers identified by both ROSE and imPROSE methods. We used TRAP tool [47] to find 

motifs and reported the top ranked motifs. We found that most of the motifs were highly enriched at 

super-enhancers identified by imPROSE (Fig. 7b). More interestingly, motifs such as PU.1 and Ebf1 

were significantly enriched at SEs predicted by imPROSE, which have previously been shown to play 

important role in the control of B cell identity [48]. Therefore, taken together these results suggest that 

the integration of multiple factors appears to be a better way to predict super-enhancers than the the 

current H3K27ac based approach (ROSE). 

Discussion 
Super-enhancers regulate expression of key genes that are critical for cellular identity, thus, 

alterations at these regions can lead to several disorders. Hence, exploring these cis-regulatory 

elements and their features to uncover their molecular mechanisms will help us in designing better, 

precise, and personalized drugs. 

In this study, we first presented a systematic approach to rank and access the importance of 

different features of super-enhancers. We investigated different features including histone 

modifications, chromatin regulators, transcription factors, DNA hypersensitive sites and DNA 

sequence motifs in mESC. We also analysed sequence-specific features including GC content, 

conversation score and repeat fraction in mESC and pro-B cells. We found new features including 

Cdk8, Cdk9, Smad3 and GC content as key features of super-enhancers along with many known 

features, which make super-enhancers distinct from typical enhancers. Further, we developed 

imPROSE, a supervised machine-learning model, which can accurately predict super-enhancers and 

their constituents. imPROSE trained on one cell-type data can predict super-enhancers and their 

constituents in other cell-type. imPROSE trained on only H3K27ac and Smad3 data in mESC can 

predict super-enhancers in pro-B cells, which are more cell-type specific compared to super-

enhancers defined by the current H3K27ac based approach (ROSE).  

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 2, 2017. ; https://doi.org/10.1101/105262doi: bioRxiv preprint 

https://doi.org/10.1101/105262
http://creativecommons.org/licenses/by-nc/4.0/


13 

 

Among the chromatin features we found that Brd4, H3K27ac, Cdk8, Cdk9, Med12 and p300 were 

the top six features and by assessing their individual predictive powers we achieved higher AUC for 

higher ranked features. Previous studies showed the importance of these highly ranked features and 

their role in transcriptional regulation. Through our ranking of features, H3K27ac achieved a higher 

ranking, compared to other histone modifications. H3K27ac was found as a mark to separate active 

enhancers from poised enhancers [11] - this shows that super-enhancers might be the clusters of 

active enhancers. The Mediator sub-units Med1 and Med12 has been known as master coordinators 

of cell lineage and development [16, 49]. We did not include Mediator sub-unit Med1 in our training 

data because a Med1 signal was used to define super-enhancers [16]. Bromodomain-containing 

protein 4 (Brd4), a member of the BET protein family which functions as an epigenetic reader and 

transcriptional regulator that binds acetylated lysines in histones [50], was ranked as the second 

highest important feature. Brd4 has been associated with anti-pause enhancers (A-PEs) which 

regulate the RNA Polymerase II (Pol II) promoter-proximal pause release [51, 52]. Brd4 regulates the 

positive transcription elongation factor b (P-TEFb) to allow Pol II phosphorylation and the subsequent 

elongation of target genes [52, 53]. In ESC it specifically governs the transcriptional elongation by 

occupying super-enhancers and by recruiting Mediator and Cyclin dependent kinase 9 (Cdk9) to 

these super-enhancers [54]. Cdk9, a sub-unit of P-TEFb, has been found at enhancers and promoters 

of active genes along with the Mediator coactivator [17]. Cyclin-dependent kinase 8 (Cdk8), a subunit 

of Mediator complex, positively regulates precise steps in the assembly of transcriptional elongation, 

including the recruitment of P-TEFb and BRD4 [38]. During the preparing of this manuscript, a very 

recent study has demonstrated that Cdk8 regulates the key genes associated with super-enhancers 

in acute myeloid leukaemia (AML) cells [55]. We identified and characterized super-enhancers in 

mESC by using Cdk8 and Cdk9, to further validate their importance in super-enhancer formation and 

cell identity. 

Among the transcriptions factors, we found that Smad3, Esrrb, Klf4, Tcfcp2l1, Nr5f2a and Stat3 

were the top ranked features and by assessing their individual predictive powers we achieved higher 

AUC for higher ranked features. It was particularly interesting to see that Smad3 was ranked as the 

best feature among the transcription factors including Esrrb and Klf4. We know that Smad3 is a target 

of the TGF-β signaling pathway, and studies have shown that Smad3 is recruited to enhancers 

formed by master transcription factors [45]. We found significant correlation between Smad3 and 

coactivators p300/CBP at super-enhancers and previous studies have shown that p300/CBP interacts 

with Smad3 [30, 31]. The evidence for the enrichment of Smad3 at super-enhancers shows how the 

transforming growth factor beta (TGF-β) signaling pathway can converge on key genes that control 

ES cell identity. A very recent study validates our findings by showing that super-enhancers provide a 

platform for signalling pathways, including TGF-β to regulate genes that control cell identity during 

development and tumorigenesis [56]. To validate further, we identified and characterized super-

enhancers using Smad3 in mESC and pro-B cells. By integrating ChIP-seq and RNA-seq data we 

showed the importance of Smad3 in super-enhancer formation and cell identity. 
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By investigating sequence-specific features, we found that the constituents of super-enhancers 

were significantly GC-rich. The GC-richness of a genomic region is associated with several distinctive 

features that can affect the cis-regulatory potential of a sequence [32, 33]. GC-rich and AT-rich 

chromatin domains are marked by distinct patterns of histone modifications. GC-rich chromatin 

domains tend to occur in a more active conformation and histone deacetylase activity represses this 

propensity throughout the genome [33]. Also GC content and nucleosome occupancy are positively 

correlated [32] and GC-rich sequences promote nucleosome formation [34]. Transcription factors tend 

to bind GC-rich regions in the genome, regardless of the distance and orientation [32]. This suggests 

that there is a role for the GC content in the formation of super-enhancers, which control the cell-type-

specific gene expression. 

Enhancers function due to cooperative and synergistic interplay of different coactivators and 

transcription factors [57]. A recent study showed that multiple enhancer variants cooperatively 

contribute to altered expression of their gene targets [58]. It is not well understood whether 

constituents of super-enhancers work synergistically or additively. The constituents of super-

enhancers make frequent physical contacts with one another [59] and extensive cooperative binding 

of transcription factors have been found at super-enhancers [60]. A study in ESC demonstrated the 

functional importance of super-enhancer constituents [56]. Further, two recent studies have 

suggested additive and functional hierarchy among the constituents of α-globin and Wap super-

enhancer locus, respectively [61, 62]. But, a very recent study argues that it is still need to be 

determined whether the constituents of a super-enhancer functions synergistically or additively [63].  

Through computational modelling and correlation analysis, we noticed a combinatorial relationship 

between chromatin regulators and transcription factors at the constituents of super-enhancers. This 

advanced our current understanding of the determinants of super-enhancers and led us to 

hypothesize that these combinatorial patterns may be involved in mediating super-enhancers. Further, 

the significant correlation of many cofactors at the constituents of super-enhancers suggests 

cooperative and synergistic interactions. These results, taken together with previous studies suggest 

a cooperative and synergistic interplay of between constituents of super-enhancers. More 

sophisticated experiments are needed to validate the functional importance of constituents within a 

super-enhancer, by utilizing the latest CRISPR-Cas9 system. 

Conclusions 
We integrated diverse types of genomic and epigenomics datasets to predict super-enhancers and 

their constituents in a cell-type-specific manner. We investigated the relative importance of each 

feature in predicting super-enhancers, and also their combinatorial predictive power. We 

demonstrated that the model trained on one cell-type can be used to predict super-enhancers in other 

cell-types, and also performed better than the current H3K27ac-based approach. More importantly, 

we found Cdk8, Cdk9 and Smad3 as new signatures, which can be used to define super-enhancers 

where Mediator or master transcription data is not available. Taken together with previous studies, our 

results suggest a possible cooperative and synergistic interactions of numerous factors at super-
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enhancers. Our feature analysis and prediction models can serve as a resource to further 

characterize and understand the formation of super-enhancers. 

Methods 
Data description 
We downloaded 32 publicly available ChIP-seq and DNase-seq datasets in mouse embryonic stem 

cells (mESC) from Gene Expression Ominibus (GEO). These include four histone modifications: 

H3K27ac, H3K4me1, H3K4me3 and H3K9me3; DNA hypersensitive site (DNaseI); RNA polymerase 

II (Pol II); transcriptional co-activating proteins (p300, CBP); P-TFEb subunit (Cdk9); sub-units of 

Mediator complex (Med1, Med12, Cdk8); other chromatin regulators (Brg1, Brd4, Chd7); Cohesin 

(Smc1, Nipbl); subunits of Lsd1-NuRD complex (Lsd1, Mi2b) and 11 transcription factors (Oct4, Sox2, 

Nanog, Esrrb, Klf4, Tcfcp2l1, Prdm14, Nr5a2, Smad3, Stat3 and Tcf3). A detailed list of all datasets 

used in this study is provided in (Table S4 in Additional file 1).  

To validate the model using independent data, we downloaded ChIP-seq datasets for (MED1, 

BRD4 and H3K27ac) in four human tumor cell-types, including B-cell lymphoma (P493-6), Multiple 

myeloma (MM1.S), Small cell lung carcinoma (H2171) and Glioblastoma (U87), which were not seen 

by the model during training. A detailed list of ChIP-seq datasets used to validate the model is 

provided in (Table S5 in Additional file 1).  

To predict super-enhancers and perform features ranking in pro-B cells, we used ChIP-seq data 

for Med1, PU.1, Foxo1, Smad3, Ebf1, p300, H3K27ac, H3K4me1, H3K4me3 and Pol2 and also 

DNase-seq (Table S6 in Additional file 1). 

We also obtained processed RNA-seq based gene expression data (RPKM) from [64] and [16] for 

mESC and pro-B cells, respectively. We downloaded super-enhancer regions in mESC and pro-B 

cells identified using Med1 ChIP-seq occupancy from dbSUPER [65]. We also used other genomic 

features including GC content, conservation score (phastCons) and repeat fraction downloaded from 

the UCSC table browser [66].  

Data pre-processing and feature extraction 
Initially, ChIP-seq reads were aligned to mouse genome-build mm9 using bowtie [67] (Version 0.12.9) 

with parameters (-k 1, -m 1, -n 2, -e 70, –best). We calculated read densities for 30 ChIP-seq datasets 

at the constituents of super-enhancers (646) and typical enhancers (9981) and normalized it as 

described in [16, 68] . Briefly, for each constituent region, reads were extended by 200bp and the 

density of reads per base pair was calculated using bamToGFF 

(https://github.com/BradnerLab/pipeline). Next, these densities were normalized in units of reads per 

million mapped reads per base pair (rpm/bp) with background subtraction. We used the similar 

approach for DNase-seq data but without background subtraction. 

The data for model validation was aligned to hg19 as described above. We used MACS (Model-

based Analysis of ChIP-Seq) [69] (Version 1.4.2) to perform the peak calling and to find ChIP-seq-

enriched regions over background. We used a p-value (10-9) as the enrichment threshold. To 

generate wiggle files, we used MACS with parameter -w -S --space=50. 
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For DNA sequence motif data, we collected DNA binding motif information (PWM) from the 

transfac professional database version 2014 [70] for all the 11 transcription factors (Fig. 2a). We 

computed the binding affinity score for the constituents of super-enhancer and typical enhancer 

sequences using the Transcription factor Affinity Prediction (TRAP) [47] using individual TF’s position 

weight matrix (PWM). 

Data sampling 
There are two commonly used sampling approaches, over-sampling and under-sampling. In over-

sampling we increased the size of the minority class while in under-sampling we through away the 

samples from the majority class to balance the data. The current data we are dealing with is highly 

imbalanced. We used Weka implementation of SMOTE [71] to perform over-sampling with 

parameters (nearest neighbours=5, random seed=1 and oversampling percentage=500). We used a 

hybrid approach by first applying over-sampling using SMOTE on the minority class and then under-

sampling on the majority class. We performed under-sampling by randomly selecting a subset of size 

similar to the minority class. In this study we used hybrid-sampling approach to perform analysis 

because it performed better (Additional file 1). 

Feature-ranking 
To find an optimal feature subset, we used two Random Forest based approaches. First, we used 

Boruta algorithm [37] to rank important features. Briefly, it finds important features by measuring the 

relevance of each original feature with respect to a reference attribute using Random Forest. Second, 

we used Random Forest’s out-of-bag approach to calculate the relative importance of each feature. 

Briefly, this approach takes one feature out and measures its relative importance and contribution to 

the model. 

We divided the features into two groups with the aim to achieve two different goals. The 11 

transcription factors in mouse embryonic stem cells, were used to rank the transcription factors and 

explore their importance in super-enhancer prediction. The other 20 chromatin features including, 

histone modifications (HMs), RNA polymerase II (Pol II), transcriptional co-activating proteins, 

chromatin regulators (CRs), Cohesin, and sub-units of Lsd1-NuRD complex, were used to develop a 

general super-enhancer prediction model which can be used further to predict super-enhancers in 

other cell-types. We also ranked these features together in mESC and pro-B cells. 

Training data 
We downloaded 10627 loci of constituents of super-enhancers and typical enhancers in mESC 

defined based of Med1 ChIP-seq signal [16]. Among these 646 were constituents of super-enhancers 

and 9981 were typical enhancers. The median size of enhancer constituents is 703bp and super-

enhancer constituents is 862bp. After performing hybrid-sampling we have 10,336 instances of data 

and among these 50% (5,168) are constituents of super-enhancers, and 50% (5,168) are constituents 

of typical enhancers. We considered constituents of super-enhancers as positive class and 

constituents of typical enhancers as negative class. In total, we have 45 features, including 20 

chromatin features, 11 transcription factors, 11 DNA motifs and three sequence-specific features. We 
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excluded Med1 from our training data because super-enhancers were defined based on Med1 ChIP-

seq signal [16]. Not surprisingly, we achieved best classification results by using Med1 as a feature. 

Prediction models  
We investigated six state-of-art supervised approaches including:  Random Forest [72], Support 

Vector Machines (SVM) [73], K-Nearest Neighbor (k-NN) [74], AdaBoost [75], Decision Tree and 

Naive Bayes. For all the analysis, we used scikit-learn (version 0.14.1), a Python library for machine 

learning [76].  We used LibSVM [77] with a linear kernel and regularization parameter C = 1.0. We 

used Random Forest with the number of trees=20. We calculated an out-of-bag error to find the 

optimal number of trees to use for Random Forest (Figure S2C in Additional file 1). For other models 

we used default parameters set in the scikit-learn library. 

K-mer based prediction 
We used a sequence specific enhancer prediction method (Kmer-SVM) [39] to classify constituents of 

typical enhancers and super-enhancers. We used the default settings with k-mer size=5, spectrum 

kernel, regularization parameter (C) = 1.0. We used 5-fold cross validation for model validation. 

Performance evaluation 
We used 10-fold stratified cross-validation (CV) to validate models, which makes the folds by 

preserving the percentage of samples for each class. Stratified CV is generally consider a better 

scheme than standard CV in terms of bias and variance [78]. To evaluate the performance of the 

models, we reported precision, recall, F1-score, area under the ROC curve (AUC) and the precision-

recall curve (PRC). The receiver-operating characteristic (ROC) is a graphical representation of true 

positive rate (sensitivity) v/s false positive rate (1-sensitivity). The true positive rate is also known as 

sensitivity or recall. The false positive rate is also known as (1-sensitivity). F1 score is an accuracy 

measure, which considers both the precision and the recall of the test to compute the score. The 

mathematical representation of these measures is as follows: 

• Precision = true positive/(true positive + false positive) 

• Recall = true positive/(true positive + false negative) 

• F1 score = 2 [(precision x recall)/(precision + recall)] 

We also tested if the increase in model AUC is statistically significant by using permutation test (1000 

runs). The p-value is calculated using Wilcoxon rank sum statistic. 

Super-enhancer identification 
We used ROSE (Rank Ordering of Super-Enhancers) with parameters (stitching distance=12.5 kb, 

TSS exclusive zone= +/- 2 kb) to define super-enhancers as described in [16]. We used the ChIP-seq 

peaks for H3K27ac as enhancer constituents and MED1 signal to rank them. 

Assigning genes to super-enhancers and typical enhancers 
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We assigned genes to super-enhancers and typical enhancers using a proximity rule as descried in 

[16, 18].  It is known that enhancers tend to loop and communicate with target genes [7], and most of 

these enhancer-promoter interactions occur within a distance of ~50kb [79]. This approach identified a 

large proportion of true enhancer/promoter interactions in ESC [80]. Hence, we assigned all 

transcriptionally active genes to super-enhancers and typical enhancers within a 50kb window.  

Motif analysis 
We used FIMO (Find Individual Motif Occurrences) version 4.10.0 [81] for motif analysis with p-value 

< 10-4 with a custom library of TRANSFAC motifs including (Oct4: M01124, Sox2: M01272, Nanog: 

M01123, Esrrb:M01589, Klf4: M01588). The number of occurrences of each motif were counted for 

the constituents of super-enhancer and typical enhancer regions. Motif analysis in Fig. 7b was 

performed with TRAP tool using TRANSFAC vertebrates motif library, mouse promoters as the 

background, and Benjamini-Hochberg as the correction [47]. A DNA sequence (FASTA format) was 

extracted from mm9 genome as input for FIMO and TRAP. 

Gene ontology analysis 
We performed the gene ontology analysis using Genomic Regions Enrichment of Annotations Tool 

(GREAT) web tool (version 3.0.0) [46] with whole-genome as background and default parameters. We 

reported the top Gene Ontology (GO) terms with the lowest p-value.  

Visualization and statistical analysis 

We generated box plots using R programming language by extended the whiskers to 1.5x the 

interquartile range. The P-values were calculated based on Wilcoxon signed-rank test for box plots, 

by using wilcox.test function in R. We used ngs.plot [82], to generate heat maps and normalized 

binding profiles at the constituents of  super-enhancers and typical enhancers and their flanking 3kb 

regions (for example, Fig. 1a, 4a). 

imPROSE availability  
To foster the reproducible research, we developed our analysis pipeline as an open-source Python 

package with a command line interface and made it freely available for academic use at 

https://github.com/asntech/improse. A detailed documentation can be found at 

http://improsedoc.readthedocs.io/. 

Additional files 
Additional file 1: A PDF document contains Supplementary Figures S1–S8 and Tables S1-S3. And 

also the public dataset used in this study in Supplementary Table S4-S6.  

Additional file 2: An Excel spreadsheet contains a list of super-enhancers and typical enhancers and 

their associated genes in mESC identified by using Cdk8, Cdk9 and Smad3. 

Additional file 3: An Excel spreadsheet contains a list of super-enhancers and typical enhancers 

identified by using H3K27ac and Smad3 in pro-B cell. 

Additional file 4: An Excel spreadsheet contains a list of super-enhancers and typical enhancers 

predicted by imPROSE in pro-B cell using Smad3 and H3K27ac data. 
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Figure titles and legends 

 
Fig. 1: Analysis of features including chromatin, transcription factors and sequence specific. 

(a) Average ChIP-seq profile (RPM) of Med1, Brd4, H3K27ac, H3K4me1, DNaseI, p300, Cdk8, Cdk9, Smad3, 

Oct4, Sox2 and Nanog at the constituents of super-enhancers and typical enhancers, and their flanking 3kb 

regions (b) Correlation plot using Pearsons’ correlation coefficient with hierarchical clustering of normalized ChIP-

seq signals (rpm/bp) of 32 factors at the constituents of super-enhancers (646) and typical enhancers (9981). (c) 

Box plot shows the fraction of GC content, across the constituents of super-enhancers and typical enhancers in 

mESC and pro-B cells (p-value < 2.2e-16, Wilcoxon rank sum test). (d) Constituent enhancers size (bp) in mESC 

and pro-B cells (p-value < 2.2e-16, Wilcoxon rank sum test). (e) Conservation score (phastCons) in mESC (p-

value = 0.6285, Wilcoxon rank sum test) and in pro-B cells (p-value < 1.7e-4, Wilcoxon rank sum test). (f) Repeat 

fraction in mESC (p-value = 0.0202, Wilcoxon rank sum test), pro-B cells (p-value = 0.8976, Wilcoxon rank sum 

test).  

Fig. 2: Ranking of features including chromatin and transcription factors in mESC and pro-B 

cells.  (a) Box plot shows the importance of features, including histone modifications, chromatin regulators, 

coactivators, DNaseI and other features. The feature importance is calculated by using a Random Forest based 

algorithm, Boruta. The colors represents (Blue= shadow features; Red=negative features; Orange=Important 

features). (b) Box plot shows the feature importance for 11 transcription factors in mESC. (c) Box plot shows the 

importance of feature after combining the chromatin, coactivators and transcription factors features in mESC. (d) 

Box plot shows the importance features, including chromatin, coactivators and master transcription factors in pro-

B cells. 

Fig. 3: The predictive power of histone modifications, chromatin regulators, co-activators, 

transcription factors other genomic features. (a) A detailed workflow of our computational prediction 

pipeline, imPROSE. (b) ROC plot shows the AUCs for six state-of-the-art machine learning models using all 

features. (c) Predictive power of top ranked 6 features including Brd4, H3k27ac, Cdk8, Cdk9, Med12 and p300.  

(d) Predictive power of top ranked 6 transcription factors including Smad3, Klf4, Esrrb, Stat3, Tcfcp2l1 and Nr5a2. 

(e) ROC plot for sequence specific features. (f) Predictive power of models trained on different combinations of 

features based on their functional importance. (g) ROC plot shows the AUCs of features grouped based on their 

type. (h) Model validation using independent data in four human cell-types (i) ROC plot for model trained on one 

genome and test on another. (j) Predicting stitched super-enhancers using model trained on constituents.  

Fig. 4: Genome-wide profiles of Cdk8, Cdk9 and Smad3 across super-enhancers and typical 

enhancers. (a) The heatmap shows the genome-wide ChIP-seq binding profile of Cdk8, Cdk9 and Smad3 

across factors including Med1, Brd4, H3K27ac, Crdk8, Cdk9, Smad3, p300 and DNaseI. (b) The average read 

count profile of factors including Med1, Brd4, H3K27ac, Crdk8, Cdk9, Smad3, p300 and DNaseI across ChIP-seq 

sumits of Cdk8, Cdk9 and Smad3. (c) ChIP-seq density plots centred around super-enhancers and typical 

enhancers defined by Med1. Flanking regions are 3 kb.  (d) Box plot shows the ChIP-seq density (rpm/bp) for 

Med1, Cdk8, Cdk9 and Smad3 in super-enhancers and typical enhancers defined by Med1. Box plot whiskers 

extend to 1.5x the interquartile range. (e) ChIP-seq binding profiles of Med1, Crdk8, Cdk9, Smad3, Oct4, Sox2 

and Nanog at super-enhancer (mSE_00038) at the locus of Sox2 gene. (f) The heatmap of Med1, Crdk8, Cdk9 

and Smad3 intensity at 231 mESC super-enhancers. (g) The left three scatter plot shows the Pearson’s 
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correlation of Med1 with Cdk8, Cdk9 and Smad3 respectively at the OSN regions. The right most scatter plot 

shows the Pearson’s correlation between p300 and Smad3 at enhancer regions. 

Fig. 5: Super-enhancers identified by using Cdk8, Cdk9 and Smad3. (a) The hokcyplot shows the 

cut-off used to separate super-enhancers from co-OSN (Oct4, Sox2, and Nanog) regions by using Cdk8, Cdk9 

and Smad3. (b) The distribution of normalized ChIP-seq signal of Med1, H3K27ac, Cdk8, Cdk9 and Smad3 at 

mESC enhancers. For each factor, the values were normalized by dividing the ChIP-seq signal at each enhancer 

by the maximum signal. The rank of enhancer at each factor was measured independently. The figure zoomed at 

the cut-off so it can be visualized. (c) Venn diagram shows the number of super-enhancers overlapped, ranked 

using Med1, Cdk8, Cdk9 and Smad3. (d) Boxplot shows the ChIP-seq density (rpm/bp) in super-enhancers and 

typical enhancers defined by Cdk8, Cdk9 and Smad3 (p-value < 2.2e-16, Wilcoxon rank sum test). (e) Bar-plot 

shows the frequency of motifs (Oct4, Sox2, Nanog, Klf4 and Essrb) found at the constituents of super-enhancers 

and typical enhancers defined by Med1, Cdk8, Cdk9 and Smad3. (f) Venn diagram of genes associated with 

super-enhancers identified using Med1, Cdk8, Cdk9 and Smad3. The genes associated to Med1 super-

enhancers are downloaded from dbSUPER. (g) Boxplot shows the gene expression (RPKM) in super-enhancers 

and typical enhancers defined by Cdk8, Cdk9 and Smad3. (h) Rank of factors based on the rank of super-

enhancers associated with of ESC identity genes, including Sox2, Oct4, Nanog, Esrrb and Klf4. The table is 

sorted based on the average rank. (i) ChIP-seq binding profiles of different factors at the typical enhancer and 

super-enhancers at Dppa3 and Nanog gene locus in mESC. 

Fig. 6: Comparison of super-enhancers ranked using Med1 and Smad3 in pro-B cells. (a) 

Average ChIP-seq density of Med1 and Smad3 across 13,814 typical enhancers and 395 super-enhancers 

identified using Med1. The flanking region is 3kb. (b) ChIP-seq binding profiles for Med1, Smad3 and PU.1 at the 

locus of Foxo1 gene. The super-enhancer (mSE_00293) is associated with Foxo1 gene. (c) The distribution of 

normalized ChIP-seq signal of Med1, H3K27ac and Smad3 at pro-B enhancers. For each factor, the values were 

normalized by dividing the ChIP-seq signal at each enhancer by the maximum signal. The rank of enhancer at 

each factor was measured independently. The figure zoomed at the cut-off so it can be visualized. (d) Box-plot 

shows the Smad3 ChIP-seq density (rpm/bp) at super-enhancers and typical enhancers regions defined using 

Smad3 in pro-B cells. (e) Box plot shows the gene expression (RPKM) for the genes associated with super-

enhancers and typical enhancers defined using Smad3 in pro-B cells. (f) The Venn diagrams show the overlap of 

super-enhancers identified using both Med1 and Smad3 in pro-B cells. Super-enhancer regions identified using 

Med1 in pro-B were obtained from [16]. Gene Ontology terms (Biological Process) for super-enhancers identified 

by Med1 only or Smad3 in pro-B cells. 

Fig. 7: Comparison of imPROSE and ROSE methods. (a) Top 20 GO terms enriched at the genes 

associated with super-enhancers predicted by imPROSE using H3K27ac and Smad3, and ROSE using H3K27ac 

data.  (b) Top 20 motifs enriched at the DNA sequence of constituents of super-enhancers predicted by 

imPROSE using H3K27ac and Smad3, and ROSE using H3K27ac. 
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