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One Sentence Summary: Virus genomes reveal the establishment of Zika virus in 
Northeast Brazil and the Americas, and provide an appropriate timeframe for baseline 
(pre-Zika) microcephaly in different regions. 
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Zika virus (ZIKV) transmission in the Americas was first confirmed in May 
2015 in Northeast Brazil1 . Brazil has the highest number of reported ZIKV 
cases worldwide (>200,000 by 24 Dec 20162) as well as the greatest number of 
cases associated with microcephaly and other birth defects (2,366 confirmed 
cases by 31 Dec 20162). Following the initial detection of ZIKV in Brazil, 47 
countries and territories in the Americas have reported local ZIKV transmission, 
with 22 of these reporting ZIKV-associated severe disease3. Yet the origin and 
epidemic history of ZIKV in Brazil and the Americas remain poorly understood, 
despite the value of such information for interpreting past trends in reported 
microcephaly. To address this we generated 53 complete or partial ZIKV 
genomes, mostly from Brazil, including data generated by the ZiBRA project – a 
mobile genomics lab that travelled across Northeast Brazil in 2016. One 
sequence represents the earliest confirmed ZIKV infection in Brazil. Joint 
analyses of viral genomes with ecological and epidemiological data estimate that 
the ZIKV epidemic first became established in NE Brazil by March 2014 and 
likely disseminated from there, both nationally and internationally, before the 
first detection of ZIKV in the Americas. Estimated dates of the international 
spread of ZIKV from Brazil coincide with periods of high vector suitability in 
recipient regions and indicate the duration of pre-detection cryptic transmission 
in those regions. NE Brazil’s role in the establishment of ZIKV in the Americas 
is further supported by geographic analysis of ZIKV transmission potential and 
by estimates of the virus’ basic reproduction number.  
 
Previous phylogenetic analyses indicated that the ZIKV epidemic was caused by the 
introduction of a single Asian genotype lineage into the Americas around late 2013, at 
least one year before its detection there4. An estimated 100 million people in the 
Americas are predicted at risk of acquiring ZIKV once the epidemic has reached its 
full extent5. However, little is known about the genetic diversity and transmission 
history of the virus in different regions in Brazil6. Reconstructing ZIKV spread from 
case reports alone is challenging because symptoms (typically fever, headache, joint 
pain, rashes, and conjunctivitis) overlap with those caused by co-circulating 
arthropod-borne viruses7 and due to a lack of nationwide ZIKV-specific surveillance 
in Brazil before 2016. 
To address this we undertook a collaborative investigation of ZIKV molecular 
epidemiology in Brazil, including results from a mobile genomics laboratory that 
travelled through NE Brazil during June 2016 (the ZiBRA project; 
zibraproject.github.io). Of five regions of Brazil (Fig. 1a), the Northeast region (NE 
Brazil) has the most notified ZIKV cases (40% of Brazilian cases) and the most 
confirmed microcephaly cases (76% of Brazilian cases, to 31 Dec 20162), raising 
questions about why the region has been so severely affected8. Further, NE Brazil is 
the most populous region of Brazil that exhibits year-round ZIKV transmission 
potential9. With the support of the Brazilian Ministry of Health and other institutions 
(Acknowledgements), the ZiBRA lab screened 1330 serum, blood and urine samples 
from patients residing in 82 municipalities across five federal states in NE Brazil (Fig. 
1; SI Table 1). Samples provided by the central public health laboratory of each state 
(LACEN) and FIOCRUZ were screened for the presence of ZIKV by real time 
quantitative PCR (RT-qPCR). 
On average, ZIKV viremia persists for 10 days after infection; symptoms develop ~6 
days after infection and can last 1-2 weeks10. In support of the hypothesis that ZIKV 
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viremia is low by the time most patients seek medical care11, we found that RT-
qPCR+ samples were, on average, collected only two days after onset of symptoms. 
The median RT-qPCR cycle threshold (Ct) value of positive samples was 
correspondingly high, at 36 (SI Fig. 1). For NE Brazil, the time series of RT-qPCR+ 
cases was positively correlated with the number of weekly-notified cases (Pearson’s 
ρ=0.62; Fig. 1b). 

The ability of the mosquito vector Aedes aegypti to transmit ZIKV is determined by 
ecological factors that impact adult survival, viral replication, and infective periods. 
To investigate the receptivity of each Brazilian region to ZIKV transmission, we used 
a measure of vector climatic suitability derived from monthly temperature, relative 
humidity, and precipitation data9. Using a linear regression we find that, for each 
Brazilian region, there is a strong association between estimated climatic suitability 
and weekly notified cases (Figs. 1b,1c; adjusted R2>0.84, P<0.001; SI Table 2). 
Notified ZIKV cases lag vector climatic suitability by ~4 to 6 weeks in all regions 
except NE Brazil, where no time lag is evident (awareness of ZIKV may have been 
higher in NE Brazil because that is where transmission was first confirmed). Despite 
these associations, numbers of notified cases should be interpreted cautiously because 
(i) co-circulating dengue and chikungunya viruses exhibit similar symptoms to ZIKV, 
and (ii) the Brazilian case reporting system has evolved through time (see Methods). 
We estimated the basic reproductive numbers (R0) for ZIKV in each Brazilian region 
from the weekly notified case data and found that R0 is high in NE Brazil (R0~3 for 
both epidemic seasons; SI Table 3). Although our R0 values are approximate, in part 
due to spatial variation in transmission across the large regions analysed here, they are 
consistent with previous estimates from a variety of approaches12. 

Encouraged by the utility of portable genomic technologies during the West African 
Ebola virus epidemic13 we used our openly-developed protocol14 to sequence ZIKV 
genomes directly from clinical material using MinION DNA sequencers. We were 
able to generate virus sequences within 48 hours of the mobile lab’s arrival at each 
LACEN. In pilot experiments using a cultured ZIKV reference strain15 our protocol 
recovered 98% of the virus genome14. However, due to low viral copy numbers in 
clinical samples (SI Fig. 1), many sequences exhibited incomplete genome coverage 
and were subjected to additional sequencing efforts in static labs once fieldwork was 
completed. Whilst average genome coverage was higher for samples with lower Ct-
values (84% for Ct<33; Fig. 2a), samples with higher Ct values had highly variable 
coverage (mean=63% for Ct≥33 (Fig. 2a). Unsequenced genome regions were non-
randomly distributed (Fig. 2b), suggesting that the efficiency of PCR amplification 
varied among primer pair combinations. We generated 36 near-complete or partial 
genomes from the NE, SE and N regions of Brazil, supplemented by 8 from 
serum/urine samples from Rio de Janeiro municipality. 
The American ZIKV epidemic comprises a single founder lineage4,16,17 (hereafter 
termed Am-ZIKV) derived from Asian genotype viruses (hereafter termed PreAm-
ZIKV) from Southeast Asia and the Pacific4. A sliding window analysis of pairwise 
genetic diversity along the ZIKV genome shows that the diversity of PreAm-ZIKV 
strains is on average ~2.6-fold greater than Am-ZIKV viruses (Fig. 2d), reflecting a 
longer period of ZIKV circulation in Asia and the Pacific than in the Americas. 
Genetic diversity of the Am-ZIKV lineage will increase in future and diagnostic 
assays are recommended to consider two genome regions to increase sensitivity18. 
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It has been suggested that recent ZIKV epidemics may be causally linked to a higher 
apparent evolutionary rate for the Asian genotype than the African genotype19,20. 
However, such comparisons are confounded by an inverse relationship between the 
timescale of observation and estimated viral evolutionary rates21. Regression of 
sequence sampling dates against root-to-tip genetic distances indicates that molecular 
clocks can be applied reliably to the Asian-ZIKV lineage (Fig. 2c; SI Fig. 2). We 
estimate the whole genome evolutionary rate of Asian ZIKV to be 0.97x10-3 

substitutions per site per year (s/s/y; 95% Bayesian credible interval, BCI=0.79-
1.16x10-3), consistent with other estimates for the Asian genotype4,20. We found no 
significant differences in evolutionary rates among ZIKV genome regions (Fig. 2d). 
The estimated dN/dS ratio of the PreAm-ZIKV sequences is 0.061 (95% CI= 0.047-
0.077) consistent with strong purifying selection, as observed for other vector-borne 
flaviviruses22. The dN/dS ratio of the Am-ZIKV lineage is higher (0.12, 95% CI= 0.10-
0.14) likely due to the raised probability of observing slightly deleterious changes in 
short-term datasets, as observed in previous emerging epidemics23. 
We used two phylogeographic approaches with different assumptions24,25 to 
reconstruct the spatial origins and spread of ZIKV in Brazil and the Americas from an 
alignment comprising the data generated here plus 61 available sequences. We dated 
the common ancestor of ZIKV in the Americas (node B, Fig. 3) to Feb 2014 (95% 
BCIs = Oct 2013-May 2014; Ext Data Table 5), in line with previous estimates4,20. 
We find evidence that NE Brazil played a central role in the establishment and 
dissemination of the Am-ZIKV lineage. Our results suggest that NE Brazil is the most 
probable location of node B (location posterior support =0.88, Fig. 3). However 
current data cannot exclude the hypothesis that node B was located in the Caribbean 
due the presence of two sequences from Haiti in one of its descendant lineages (Fig. 3 
dashed branches). More importantly, most Am-ZIKV sequences descend from a rapid 
radiation of lineages (denoted node C, Fig. 3) that is dated to around Mar 2014 (95% 
BCIs =Dec 2013-Jun 2014) and is more strongly inferred to have existed in NE Brazil 
(location posterior support =1.00, Fig. 3). This placement is also seen in 5 of 6 
analyses on sub-sampled datasets (SI Figs. 3 and 4). Consequently, we conclude that 
node C represents the establishment of ZIKV in the Americas. If further data show 
that node B did indeed exist in Haiti, then it is mostly likely that Haiti acted as an 
intermediate ‘stepping stone’ for Am-ZIKV, and was not the place where the 
continental-wide epidemic took hold. This perspective is consistent with the lower 
population size of Haiti compared to Brazil (which receives 6 million annual visitors). 
We infer that node C was present in NE Brazil several months before three events that 
also all occurred in NE Brazil: (i) the retrospective identification of a cluster of 
suspected but unconfirmed ZIKV cases in Dec 2014 1, (ii) the oldest ZIKV genome 
sequence from Brazil, reported here, sampled in Feb 2015, and (iii) the initial 
identification of ZIKV in the Americas in Mar 201526,27. 

Our results further suggest that node C viruses from NE Brazil were important in the 
continental spread of the epidemic. Within Brazil, we find several instances of virus 
lineage movement from NE to SE Brazil; most of such events can be dated back to 
the second half of 2014 and led to onwards transmission in Rio de Janeiro (RJ1 and 
RJ2 in Fig. 3) and São Paulo states (SP1 and SP2 in Fig. 3). We also infer that ZIKV 
lineages disseminated from NE Brazil to elsewhere in Central America, the 
Caribbean, and South America. Most Am-ZIKV strains sampled outside Brazil fall 
into four well-supported monophyletic groups in Fig 3; three (SA1, SA2, CA1) are 
inferred to have been exported from NE Brazil between Jul 2014 and Feb 2015, and 
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one (CB1) from SE Brazil between Mar and Sep 2015 (Figs. 3, 4). Notably, each 
independent viral lineage export occurred during a period of high climatic suitability 
for vector transmission in the recipient location (Fig. 4). For the three earliest exports, 
there is a 6-12 month gap between the estimated date of exportation and the date of 
ZIKV detection in the recipient location, suggesting an complete or partial season of 
undetected transmission. These periods of cryptic transmission are relevant to studies 
of spatio-temporal trends in reported microcephaly in the Americas, because they help 
define the appropriate timeframe for baseline (pre-ZIKV) microcephaly in each 
region. 
Combing both virus genomic and epidemiological data can generate insights into the 
patterns and drivers of vector-borne virus transmission. Large-scale surveillance of 
ZIKV is challenging because (i) many cases may be asymptomatic and (ii) ZIKV co-
circulates in some regions with other arthropod-borne viruses that exhibit overlapping 
symptoms (e.g. dengue, chikungunya, Mayaro, and Oropouche viruses). A system of 
continuous and proportional virus sequencing, integrated with surveillance data, could 
provide timely information on the distribution of Zika and other viruses and thereby 
inform effective response and control measures. 
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Methods 
Sample collection 

Between the 1st and 18th June 2016, 1330 samples from cases notified as ZIKV 
infected were tested for ZIKV infection in the Northeast region of Brazil (NE Brazil). 
During this period, 4 of the 5 laboratories in the region visited by the ZiBRA project 
were in the process of implementing molecular diagnostics for ZIKV. The ZiBRA 
team spent 2-3 days in each state central public health laboratory (LACEN). The 
samples analysed had previously been collected from patients who had attended a 
municipal or state public health facility, presenting maculopapular rash and at least 
two of the following symptoms: fever, conjunctivitis, polyarthralgia or periarticular 
edema. The majority of samples were linked to a digital record that collated 
epidemiological and clinical data: date of sample collection, location of residence, 
demographic characteristics, and date of onset of clinical symptoms (when available). 
The ZiBRA project was conducted under the auspices of the Coordenação Geral de 
Laboratórios de Saúde Pública in Brazil (CGLAB), part of the Brazilian Ministry of 
Health (MoH) in support of the ongoing emergency public health response to Zika. 
Urine and plasma samples from Rio were obtained from patients followed at the Viral 
Hepatitis Ambulatory/FIOCRUZ/Rio de Janeiro following Institutional Review Board 
approval. RNA was extracted at the Paul-Ehrlich-Institut and sequenced at the 
University of Birmingham, UK. 
 

Nucleic acid isolation and RT-qPCR 
Serum, blood and urine samples were obtained from patients 0 to 228 days after first 
symptoms (SI Table 1). Viral RNA was isolated from 200 ul Zika-suspected samples 
using either the NucliSENS easyMag system (BioMerieux, Basingstoke, UK) 
(Ribeirão Preto samples), the ExiPrep Dx Viral RNA Kit (BIONEER, Republic of 
Korea) (Rio de Janeiro samples) or the QIAamp Viral RNA Mini kit (QIAGEN, 
Hilden, Germany) (all other samples) according to the manufacturer’s instructions. Ct 
values were determined for all samples by probe-based RT-qPCR against the prM 
target (using 5’FAM as the probe reporter dye) as previously described28. RT-qPCR 
assays were performed using the QuantiNova Probe RT-qPCR Kit (20 ul reaction 
volume; QIAGEN) with amplification in the Rotor-Gene Q (QIAGEN) following the 
manufacturer’s protocol. Primers/probe were synthesised by Integrated DNA 
Technologies (Leuven, Belgium). The following reaction conditions were used: 
reverse transcription (50°C, 10 min), reverse transcriptase inactivation and DNA 
polymerase activation (95°C, 20 sec), followed by 40 cycles of DNA denaturation 
(95°C, 10 secs) and annealing-extension (60°C, 40 sec). Positive and negative 
controls were included in each batch; however, due to the large number of samples 
tested in a short time it was possible only to run each sample without replication.  

 
Whole genome sequencing 

Sequencing was attempted on all positive samples regardless of Ct value. For these 
samples, extracted RNA was converted to cDNA using the Protoscript II First Strand 
cDNA synthesis Kit (New England Biolabs, Hitchin, UK) and random hexamer 
priming. Zika genome amplification by multiplex PCR was attempted using the 
ZikaAsianV1 primer scheme and 40 cycles of PCR using Q5 High-Fidelity DNA 
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polymerase (NEB) as described in Quick et al.29. PCR products were cleaned-up 
using AmpureXP purification beads (Beckman Coulter, High Wycombe, UK) and 
quantified using fluorimetry with the Qubit dsDNA High Sensitivity assay on the 
Qubit 3.0 instrument (Life Technologies). PCR products for samples yielding 
sufficient material were barcoded and pooled in an equimolar fashion using the 
Native Barcoding Kit (Oxford Nanopore Technologies, Oxford, UK). Sequencing 
libraries were generated from the barcoded products using the Genomic DNA 
Sequencing Kit SQK-MAP007/SQK-LSK208 (Oxford Nanopore Technologies). 
Sequencing libraries were loaded onto a R9/R9.4 flowcell and data was collected for 
up to 48 hours but generally less. As described29, consensus genome sequences were 
produced by alignment to a Zika virus reference genome (strain H/PF/2013, GenBank 
accession: KJ776791.1) followed by nanopore signal-level detection of single 
nucleotide variants. Only positions with ≥20x genome coverage were used to produce 
consensus alleles. Regions with lower coverage, and those in primer-binding regions 
were masked with N characters. 
 

Collation of genome-wide data sets 
Our complete and partial genome sequences were appended to a global data set of all 
available published ZIKV genome sequences (up until January 2017) using an in-
house script that retrieves updated GenBank sequences on a daily basis. In addition to 
the genomes generated from samples collected in NE Brazil during ZiBRA fieldwork, 
samples were sent directly to University of São Paulo and elsewhere for sequencing. 
Thirteen genomes from Ribeirão Preto, São Paulo state (SP; SE-Brazil region) and 
seven genomes from Tocantins (TO; N-Brazil region) were sequenced at University 
of São Paulo. Eight genomes from Rio de Janeiro (RJ; SE-Brazil region) were 
sequenced in Birmingham, UK, and added to our dataset. All these genomes were 
generated using the same primer scheme as the ZiBRA samples collected in NE 
Brazil29. In addition to these 44 sequences from Brazil, we further included in analysis 
9 genomes from ZIKV strains sampled outside of Brazil in order to contextualise the 
genetic diversity of Brazilian ZIKV, giving rise to a final data set of n=53 sequences. 
Specifically, we included 5 genomes from samples collected in Colombia (accession 
numbers KY317936- KY317940) and 4 from samples collected in Mexico (accession 
numbers XXX-XXX).  
GenBank sequences belonging to the ZIKV-African genotype were identified using 
the Arboviral genotyping tool (http://bioafrica2.mrc.ac.za/rega-
genotype/typingtool/aedesviruses) and excluded from subsequent analyses, as our 
focus of study was the ZIKV-Asian genotype and the Am-ZIKV lineage in particular. 
To assess the robustness of dating estimates to the inclusion of older sequences, all 
analyses were performed with and without the P6-740 strain, the oldest known strain 
of the ZIKV-Asian genotype (sampled during 1966 in Malaysia). Our final alignment 
comprised the data reported in this study (n=53) plus publicly available ZIKV-Asian 
genotype sequences (n=61). Unpublished but publicly available genomes were 
included in our analysis only if we had permission to do so from those who generated 
the data.   
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Maximum likelihood analysis and recombination screening 
Preliminary maximum likelihood (ML) trees were estimated with ExaMLv3 30 using a 
per-site rate category model and a gamma distribution of among site rate variation. 
For the final analyses, ML trees were estimated using PhyML31 under a GTR 
nucleotide substitution model32, with a gamma distribution of among site rate 
variation, as selected by jModeltest.v.2 33. An approximate likelihood ratio test was 
used to estimate branch support31. Final ML trees were estimated with NNI and SPR 
tree search algorithms; equilibrium nucleotide frequencies and substitution model 
parameters were estimated using ML31 (see SI Fig. 5).  
Recombination may impact evolutionary estimates34 and has been shown to be 
present in the ZIKV-African genotype35. In addition to restricting our analysis to the 
Asian genotype of ZIKV, we used the 12 recombination detection methods available 
in RDPv4 36 and the Phi-test approach 37 available in SplitsTree 38 to further search for 
evidence of recombination in the ZIKV-Asian lineage. No evidence of recombination 
was found. 
Analysis of the temporal molecular evolutionary signal in the alignments was 
conducted using TempEst39. In brief, collection dates in the format yyyy-mm-dd (ISO 
8601 standard) were regressed against root-to-tip genetic distances obtained from the 
ML phylogeny. When precise dates were not available, a precision of 1 month or 1 
year in the collection dates was taken into account.  

To compare the pairwise genetic diversity of PreAm-ZIKV from Asia and the Pacific 
with Am-ZIKV from the Americas we used a sliding window approach with 300 nt 
wide windows and a step size of 50 nt. Sequence gaps were ignored; hence the 
average pairwise difference per window was obtained by dividing the total pairwise 
nucleotide differences by the total number of pairwise comparisons.  
 

Molecular clock phylogenetics and gene-specific dN/dS estimation 
To estimate Bayesian molecular clock phylogenies, analyses were run in duplicate 
using BEASTv.1.8.4 40 for 30 million MCMC steps, sampling parameters and trees 
every 3000th step. We employed a stringent model selection analysis using both path-
sampling and stepping stone models41 to estimate the most appropriate model 
combination for Bayesian phylogenetic analysis (SI Tables 4 and 5). The best fitting 
model was a HKY codon position-structured SDR06 nucleotide substitution model42 
with a Bayesian skygrid tree prior43 (with 49 grid points and a cut off = 10) and a 
relaxed molecular clock model44. A non-informative continuous time Markov chain 
reference prior45 on the molecular clock rate was used. Convergence of MCMC 
chains was checked with Tracer v.1.6. After removal of 10% as burn-in, posterior tree 
distributions were combined and subsampled to generate an empirical distribution of 
1,500 molecular clock trees.  
To estimate rates of evolution per gene we partitioned the alignment into 10 genes (3 
structural genes C, prM, E, and 7 non-structural genes NS1, NS2A, NS2B, NS3, 
NS4A2k, NS4B and NS5) and employed a SDR06 substitution model42 and a strict 
molecular clock model, using a set of empirical molecular clock trees. To estimate the 
ratio of nonsynonymous to synonymous substitutions per site (dN/dS) for the PreAm-
ZIKV and the Am-ZIKV lineages, we used the single likelihood ancestor counting 
(SLAC) method46 implemented in HyPhy47. This method was applied to two distinct 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 3, 2017. ; https://doi.org/10.1101/105171doi: bioRxiv preprint 

https://doi.org/10.1101/105171
http://creativecommons.org/licenses/by/4.0/


	 11 

codon-based alignments and their corresponding ML trees, that comprised the 
PreAm-ZIKV and Am-ZIKV sequences, respectively. 

 
Phylogeographic analysis  

We investigated virus lineage movements using our empirical distribution of 
phylogenetic trees and the sampling location of each ZIKV sequence. The sampling 
location of sequences from returning travellers was set to the travel destination in the 
Americas where infection likely occurred. We discretised sequence sampling 
locations in Brazil into the geographic regions defined in main text. The number of 
sequences per region available for analysis was 10 for N-Brazil, 35 for NE Brazil and 
24 for SE-Brazil. No viral genetic data was available for the Centre-West (CW) and 
the South (S) Brazilian regions. We similarly discretised the locations of ZIKV 
sequences sampled outside of Brazil. These were grouped according to the United 
Nations M49 coding classification of macro-geographical regions. Our analysis 
included 7 sequences from the Caribbean, 8 from Central America, 17 from 
Polynesia, 11 from South America (excluding Brazil) and 3 from Southeast Asia. To 
account for the possibility of sampling bias arising from a larger number of sequences 
from particular locations, we repeated all phylogeographic analyses using (i) the full 
dataset (n=113) and (ii) three jackknife resampled datasets (n=52) in which taxa from 
the five most frequently sampled locations (NE Brazil, SE-Brazil, Polynesia, South 
America, N-Brazil) were randomly sub-sampled to seven sequences (the number of 
sequences available for the Caribbean).  

Phylogeographic reconstructions were conducted using two approaches; (i) using the 
symmetric25 and asymmetric48 discrete trait evolution models implemented in 
BEASTv1.8.440 and (ii) using the Bayesian structured coalescent approximation 
(BASTA)24 implemented available in BEAST2v.2. The latter has been suggested to 
be less sensitive to sampling biases49. For both approaches, maximum clade 
credibility trees were summarized from the MCMC samples using TreeAnnotator 
after discarding 10% as burn-in. The posterior estimates of the location of the Am-
ZIKV clade root node from these two analytical approaches (applied to both the 
complete and jackknifed data sets) can be found in SI Figs. 3 and 4. 
For the discrete trait evolution approach, we counted the expected number of 
transitions among each pair of locations (net migration) using the robust counting 
approach50,51 available in BEASTv1.8.440. We then used those inferred transitions to 
identify the earliest estimated ZIKV introductions into new regions. These viral 
lineage movement events were statistically supported (with Bayes factors > 10) using 
the BSSVS (Bayesian stochastic search variable selection) approach implemented in 
BEAST25. Box plots for node ages were generated using the ggplot252 package in R 
software53.  
 

Epidemiological analysis 
Weekly suspected ZIKV data per Brazilian region were obtained from the Brazilian 
Ministry of Health (MoH). Cases were defined as suspected ZIKV infection when 
patients presented maculopapular rash and at least two of the following symptoms: 
fever, conjunctivitis, polyarthralgia or periarticular edema. Because notified suspected 
ZIKV cases are based on symptoms and not molecular diagnosis, it is possible that 
some cases represent other co-circulating viruses with related symptoms, such as 
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dengue and chikungunya viruses. Further, case reporting may have varied among 
regions and through time. Data from 2015 came from the pre-existing MoH sentinel 
surveillance system that comprised 150 reporting units throughout Brazil, which was 
eventually standardised in Feb 2016 in response to the ZIKV epidemic. We suggest 
that these limitations should be borne in mind when interpreting the ZIKV notified 
case data, and we consider the R0 values estimated here to be approximate. That said, 
our time series of RT-qPCR+ ZIKV diagnoses from NE Brazil qualitatively match the 
time series of notified ZIKV cases from the same region (Fig. 1b). To estimate the 
exponential growth rate of the ZIKV outbreak in Brazil, we fit a simple exponential 
growth rate model to each stage of the weekly number of suspected ZIKV cases from 
each region separately: 
 

!! = !!!"# !! .!                                                   (1) 

 

where !! is the number of cases in week w. As described in main text, the Brazilian 
regions considered here were the NE Brazil, N-Brazil, S-Brazil, SE-Brazil, and CW-
Brazil. The time period for which exponential growth occurs is determined by plotting 
the log of !! and selecting the period of linearity (SI Fig. 6). A simple linear model is 
then fitted to this period to estimate the weekly exponential growth rate !!: 

 

!" !! = !" !! + !! .!                                              (2) 

 

Let ! .  be the probability density distribution of the epidemic generation time (i.e. 
the duration between the time of infection of a case and the mean time of infection of 
its secondary infections). The following formula can be used to derive the 
reproduction number R from the exponential growth rate ! and density ! . 54. 

 

! = !
!"# !!.! ! ! !"!

!
                                                  (3) 

 
In our baseline analysis, following Ferguson et al.55 we assume that the ZIKV 
generation time is Gamma-distributed with a mean of 20.0 days and a standard 
deviation (SD) of 7.4 days. In a sensitivity analysis, we also explored scenarios with 
shorter mean generation times (10.0 and 15.0 days) but unchanged coefficient of 
variation SD/mean=7.4/20=0.37 (SI Table 3). 

 
Association between Aedes aegypti climatic suitability and ZIKV notified cases 

To account for seasonal variation in the geographical distribution of the ZIKV vector 
Aedes aegypti in Brazil we fitted high-resolution maps56 to monthly covariate data. 
Covariate data included time-varying variables, such as temperature-persistence 
suitability, relative humidity, and precipitation, as well as static covariates such as 
urban versus rural land use. Maps were produced at a 5km x 5km resolution for each 
calendar month and then aggregated to the level of the five Brazilian regions used in 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 3, 2017. ; https://doi.org/10.1101/105171doi: bioRxiv preprint 

https://doi.org/10.1101/105171
http://creativecommons.org/licenses/by/4.0/


	 13 

this study (SI Fig. 7). For consistency, we rescaled monthly suitability values so that 
the sum of all monthly maps equalled the annual mean map9. 

We then assessed the correlation between monthly Aedes aegypti climatic suitability 
and the number of weekly ZIKV notified cases in each Brazilian region, to test how 
well vector suitability explains the variation in the number of ZIKV notified cases. To 
account for the correlation in each Brazilian region (n=5) we fit a linear regression 
model with a lag and two breakpoints. As there may be a lag between trends in 
suitability and trends in notified cases, we fit a flexible temporal term in the model to 
allow for a shift in the respective curves. Thus for each region, different sets of the 
constant and linear terms are fitted to different time period. More formally, 

 

  log (!! + 1) = ! + ! ! ∉ ! !! + ! + ! ! ∉ ! !′ !!!!  (4) 
 

where yi represents notified cases in a particular region in month i, xi is the climatic 
suitability in that region in month i, l is the time lag that yields the highest correlation 
between yi and xi and T is the set of time indexes in the correlated region.  
We then find the values of T and l that provide the highest adjusted-R2 by stepwise 
iterative optimisation. For each value of T evaluated, the optimal value of l (i,e. that 
which gives the highest adjusted-R2 for the model above) is found by the optim 
function in R53. Climatic suitability values were only calculated for each month, so to 
calculate suitability values for continuous time points we interpolated them using a 
linear function between the successive monthly data points. We found no significant 
effect of residual autocorrelation in our data (SI Fig. 8). 

 
Data availability 

Sequences of the primers and probes have been available at zibra.io since the 
beginning of the project. Genome sequences were made publicly available once 
generated and confirmed at http://www.zibraproject.org. New Brazilian sequences are 
deposited in GenBank under accession numbers KY558989 to KY559032. 
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Fig. 1. Geographic and temporal distribution of ZIKV in Brazil. a. Location of 
sampling of genome sequences in Brazil and in the Americas. Federal states in Brazil 
have been coloured according to 5 geographic regions. A red contour line indicates 
the federal states surveyed during June 2016 by the ZiBRA mobile lab. Two letter 
state codes are as follows: PA: Pará, MA: Maranhão, CE: Ceará, TO: Tocantins, RN: 
Rio Grande do Norte, PB: Paraíba, PE: Pernambuco, AL: Alagoas, BA: Bahia, RJ: 
Rio de Janeiro, SP: São Paulo. Underlined states represent states from which 
sequences were generated in this study. Non-underlined states represent states from 
which states from which sequences were publicly available. b. ZIKV confirmed and 
notified cases in NE Brazil. The upper panel shows the temporal distribution of RT-
qPCR+ cases (n=181) detected during the ZiBRA journey. Only confirmed cases for 
which the exact collection date was known (138 out of 181) were included. The lower 
panel shows notified ZIKV cases in NE Brazil between 01 Jan 2015 and 19 Nov 2016 
(n = 122,779). c. Notified ZIKV cases in the Centre-West, Southeast, North and South 
regions of Brazil (clockwise). The dashed lines represent the average climatic vector 
suitability score across each region (see Methods). The R2, P-value and estimated lag 
(T) values of the model used to compare these two trends are provided in SI Table 2. 
Grey horizontal bars below each time series indicate the time period for which 
correlation between suitability and ZIKV notified cases was highest.  
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Fig. 2. Zika virus genetic diversity and sequencing statistics. a. Plot showing the 
percentage of the genome sequenced as a function of the corresponding RT-qPCR Ct-
value. Each circle represents a sequence sample recovered from an infected individual 
in Brazil and has been colour coded according to the location of sampling. b. Plot 
showing sequencing coverage across the entire genome for the ZiBRA sequences. c. 
Regression of sequence sampling date and root-to-tip genetic in ML phylogenetic tree 
of the Asian-ZIKV lineage. This plot excludes P6-740 (the oldest Asian-ZIKV strain, 
isolated from Malaysia in 1966). A comparable analysis that include P6-740 is shown 
in SI Fig. 2. d. Average pairwise genetic diversity for the PreAm-ZIKV strains (grey 
line) and the Am-ZIKV lineage (black line), calculated using a sliding window of 300 
nucleotides with a step size of 50 nucleotides. 
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Fig. 3. Phylogeography of ZIKV in the Americas. Maximum clade credibility 
phylogeographic tree estimated from publicly available published genomes and the 
genomes reported in this study (highlighted by grey circles). Dashed vertical grey 
boxes illustrate the dating uncertainty of key internal nodes (see also SI Table 5). 
Branch colours indicate most probable ancestral locations. Coloured numbers show 
location state posterior probabilities. Asterisks indicate the three available genomes 
from microcephaly cases (accession numbers: KU497555, KU729217 and 
KU527068). An arrow indicates the oldest ZIKV sequence from Brazil. The 
horizontal line denotes when ZIKV was first confirmed in the Americas, in early May 
2015. The nodes denoted A and B are equivalent to the nodes named identically in 4. 
Acronyms along the bottom of the figure denote clades comprising three or more taxa 
from regions outside NE Brazil. Those from Brazil are denoted PE (Pernambuco) RJ1 
and RJ2 (Rio de Janeiro), TO (Tocantins), SP1 and SP2 (São Paulo), BA (Bahia), AL 
(Alagoas), PB (Paraíba). Clades from outside Brazil are denoted CB (Caribbean), 
SA1 and SA2 (South America excluding Brazil), CA (Central America). 
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Fig. 4. Establishment of Am-ZIKV in the Americas. The earliest inferred dates of 
lineage export to each region are represent by box-and-whisker plots. Each refers to 
the branch immediately ancestral to the node denoted beneath the box-and-whisker 
plot. The vertical line within the box indicates the midpoint of that branch. The box 
edges and whiskers, from left to right, represent the 2.5%, 25%, 75% and 97.5% 
percentiles of the branch midpoint posterior distribution. Panel a shows the earliest 
export to South America outside Brazil (SA1 in Fig. 3), b shows an export to Central 
America (CA1), and c shows an export to the Caribbean (CB1). In each of a-c, dashed 
lines show an estimate of climatic vector suitability for each recipient region, 
averaged across the countries for which sequence data is available (see Methods). In 
each of a-c, the bar plots show available notified ZIKV case data for each recipient 
region. Coloured arrows indicate the earliest date of confirmation of ZIKV 
transmission in each recipient region. The vertical grey dashed line represents the date 
of ZIKV confirmation in the Americas and the colour scheme is identical to Fig. 3.  
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SI Fig. 1. Panel a shows the distribution of RT-qPCR+ samples tested during the 
ZiBRA journey in Brazil (n=181; median = 35.96). Panel b shows the temporal 
distribution of the difference between the date of onset of clinical symptoms and the 
date of sample collection of RT-qPCR+ samples (median = 2 days). Vertical dashed 
lines represent the median of the distributions.  
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SI Fig. 2. Temporal signal of the ZIKV Asian genotype. The correlation between 
sampling dates and genetic distances from the tips to the root of a maximum 
likelihood (ML) tree estimated PhyML1 was explored using TempEst2. (a) Estimates 
for the dataset used for the phylogenetic analysis in Fig. 3, and (b) estimates for the 
same dataset including the P6-740 strain sampled in 1966 (accession number 
HQ234499).  
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SI Fig. 3. Maximum clade credibility (MCC) trees for three subsampled datasets 
(dataset s1: panels a and b; dataset s2: panels c and d; dataset s3: panels e and f). On 
the left (panels a, c and e), the MCC trees generated using an asymmetric discrete trait 
model3,4; while on the right (panels b, d and f) MCC reconstructions were generated 
using a structured coalescent approximation approach5. Branch width represents the 
posterior modal location. 
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SI Fig. 4. Posterior probabilities of the locations of nodes A, B and C, estimated using 
the full dataset (upper panel) and three subsampled datasets (s1, s2 and s3; see 
Methods and SI Fig. 3). DTA=discrete trait analysis method4. BASTA: Bayesian 
structured coalescent approximation method5. For each method, we used an 
asymmetric model of location exchange to estimate ancestral node locations and to 
infer patterns of virus spread among regions. 
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SI Fig. 5. ZIKV non-clock maximum likelihood tree. Branch support is shown at each 
node. Tree was estimated using PhyML1. Sequences generated in this study are 
highlighted in red. Scale bar is shown in units of nucleotide substitutions per site. 
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SI Fig. 6. Epidemic growth rates estimated from weekly ZIKV notified cases in 
Brazil. Time series show the number of ZIKV notified cases in each region of Brazil. 
Periods from which exponential growth were estimated are highlighted in grey.  
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SI Fig. 7. Seasonal suitability for ZIKV transmission in the Americas. These maps 
were estimated by collating data on Aedes mosquitoes, temperature, relative humidity 
and precipitation, and are the basis of the trends in suitability for different regions 
shown in main text Figs. 1 and 4. For details, see6,7. 
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SI Fig. 8. Partial autocorrelation functions for the linear model associating climatic 
suitability and ZIKV notified cases in each geographic region in Brazil. The residuals 
for the North, Northeast, Centre-West and Southeast regions show no autocorrelation, 
while a small amount of autocorrelation cannot be excluded for the South region. 
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SI Tables 

SI Table 1. Summary of the clinical samples tested (n=1330, of which 181 were RT-
qPCR positive) by the ZiBRA mobile lab in June 2016, NE Brazil. ZIKV notified 
cases were confirmed using RT-qPCR (see Methods). The collection lag represents 
the median time interval (in days) between the date of onset of clinical symptoms 
and the date of sample collection (both dates available for n=219) for all samples 
(including those that subsequently tested RT-qPCR negative). Northeast Brazilian 
states where samples were tested were RN: Rio Grande do Norte, PB: Paraíba, PE: 
Pernambuco, AL: Alagoas, BA: Bahia.  
 
 
Laboratory, 
Federal state 

No. Positives / 
Tested (%) 

Ct value (mean, 
min-max) 

Collection lag 
(median, min-max) 

LACEN, RN 27/335 (8.1%) 35.9 (18.6-39.1) 5 (4-16) 
LACEN, PB 26/276 (9.4%) 35.7 (30.7-37.0) 6 (0-88) 
FioCruz, PE 95/315 (30%)1 34.6 (24.1-38.3) 2.5 (0-33) 
LACEN, AL 16/140 (11%) 34.1 (27.1-40.2) 2 (0-3) 
FioCruz, BA 17/264 (6.4%) 35.8 (24.7-39.2) 4 (0-228) 
 

1 Includes RT-PCR+ cases from Pernambuco that were generated at Fiocruz 
Pernambuco. 
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SI Table 2. Parameters of the model linking climatic vector suitability and notified 
ZIKV cases in different Brazilian regions. For each region the table provides the 
estimated correlated time period (T), P-value of the linear term of suitability in T, 
adjusted-R2 of the model, and time lag (l). 
 
 
 North Northeast Centre-West South Southeast 
Correlated 
time period 

12/2015 to 
10/2016 

7/2015 to 
10/2016 

9/2015 to 
8/2016 

6/2015 to 
05/2016 

11/2015 to 
9/2016 

 P-value <0.0001 0.00013 <0.0001 <0.0001 <0.0001 
Adjusted-R2 0.929 0.8448 0.987 0.9543 0.953 
Time lag 
(months) 1.27 0 1.12 1.19 1.33 
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SI Table 3. For each region, estimates of the basic reproductive number (R) of ZIKV, 
for several values of generation time (g) parameter are shown together with the 
corresponding estimates of exponential growth rate (r) (per day) obtained from 
notified ZIKV case counts (see also SI Fig. 7). CW: Centre-West, N: North, NE: 
Northeast (1st = epidemic wave in 2015; 2nd = epidemic wave in 2016), SE: Southeast, 
S: South. CI: 95% confidence interval. 

 

 
Region R (mean, CI),  

g =20 days 
R (mean, CI),  

g =15 days 
R (mean, CI), 

g=10 days 
Growth rate (r, 

CI) 
CW 1.71 

(1.65-1.78) 
1.46 

(1.20-1.77) 
1.29 

(1.13-1.46) 
0.027 

(0.02-0.03) 
N  2.48 

(2.19-2.81) 
1.98 

(1.80-2.18) 
1.58 

(1.48-1.69) 
0.046 

(0.04-0.05) 
NE, 1st 3.12 

(2.69-3.60) 
2.36 

(2.11-2.63) 
1.78 

(1.65-1.91) 
0.06 

(0.05-0.07) 
NE, 2nd 3.03 

(2.74-3.36) 
2.31 

(2.14-2.49) 
1.75 

(1.66-1.84) 
0.06 

(0.05-0.06) 
SE  3.85 

(3.35-4.42) 
2.77 

(2.49-3.07) 
1.98 

(1.84-2.12) 
0.07 

(0.06-0.076) 
S 2.57 

(1.72-3.82) 
2.04 

(1.50-2.75) 
1.61 

(1.31-1.97) 
0.05 

(0.04-0.07) 
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SI Table 4. Differences in log-marginal likelihood estimates using the path-sampling 
(PS) and Stepping-Stone (SS) model selection approaches8,9. The molecular clock and 
coalescent model combinations are ordered by log Bayes factor (BF) estimates; the 
best-fitting combination is underscored. BF was calculated as the ratio between two 
models, H0 and H1, where H0 is the simpler model combination. Two molecular 
clock models were tested here. SC: Strict clock model, and the UCLD: uncorrelated 
relaxed clock with lognormal distribution10. 

 
Clock Coalescent PS BF (PS) SS BF (SS) 
UCLD Skygrid -24147.6 61.49 -24148.73 60.73 
UCLD Skyline -24150.26 58.83 -24151.14 58.32 
SC Skyline -24162.58 46.51 -24163.84 45.62 
UCLD Logistic -24169.53 39.56 -24170.30 39.16 
SC Skygrid -24172.99 36.1 -24174.08 25.38 
UCLD Exponential -24182.5 26.59 -24183.09 26.37 
UCLD Constant -24185.9 23.19 -24186.49 22.97 
SC Logistic -24192.97 16.12 -24193.37 16.09 
SC Exponential -24206.01 3.08 -24206.57 2.89 
SC Constant -24209.09 - -24209.46 - 
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SI Table 5. Estimates dates of nodes A, B and C (Fig 3) under various different 
molecular clock and coalescent model combinations. TMRCA: time of the most 
recent common ancestor, BCI: Bayesian credible interval, SC: strict molecular clock 
model, UCLN: uncorrelated clock with lognormal distribution.  

 

 

Clock 
model 

Coalescent 
prior 

Node A 
TMRCA 

(95% BCIs) 

Node B 
TMRCA 

(95% BCIs) 

Node C 
TMRCA 

(95% BCIs) 

SC Constant 2013.5  
(2013.2, 2013.7) 

2013.6  
(2013.4, 2013.9) 

2013.7  
(2013.5, 2014) 

SC Exponential 2013.4  
(2013.1, 2013.7) 

2013.6  
(2013.7, 2013.9) 

2013.9  
(2016.5, 2013.4) 

SC Logistic 2013.4  
(2013.2, 2013.7) 

2013.7  
(2013.4, 2013.9) 

2013.73  
(2013.5, 2014.0) 

SC Skygrid 2013.7 
(2013.5, 2013.8) 

2013.87  
(2013.6, 2014.1) 

2013.97  
(2013.7, 2014.2) 

SC Skyline 2013.6 
(2013.5, 2013.8) 

2013.83  
(2013.6, 2014.0) 

2013.91  
(2013.7, 2014.1) 

UCLN Constant 2013.5  
(2013.2, 2013.8) 

2013.71  
(2013.3, 2014.1) 

2013.86  
(2013.5, 2014.2) 

UCLN Exponential 2013.6  
(2013.3, 2013.9) 

2013.77  
(2013.4, 2014.1) 

2013.9  
(2013.6, 2014.2) 

UCLN Logistic 2013.6 
(2013.4, 2013.9) 

2013.8  
(2013.5, 2014.1) 

2013.93  
(2013.6, 2014.2) 

UCLN Skygrid 2013.7  
(2013.5, 2013.9) 

2013.95  
(2013.7, 2014.2) 

2014.08  
(2013.8, 2014.3) 

UCLN Skyline 2013.7  
(2013.6, 2013.9) 

2013.98  
(2013.7, 2014.3) 

2014.12  
(2013.9, 2014.4) 
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