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Abstract 
Recombination is a complex biological process that results from a cascade of multiple events during               

meiosis. Understanding the genetic determinism of recombination can help to understand if and             

how these events are interacting. To tackle this question, we studied the patterns of recombination               

in sheep, using multiple approaches and datasets. We constructed genetic maps in the Lacaune              

breed at a fine scale by combining meiotic recombination rates from a large pedigree genotyped               

with a 50K SNP array and historical recombination rates from a sample of unrelated individuals               

genotyped with a 600K SNP array. This analysis revealed recombination patterns in sheep similar              

to other mammals but also genome regions that have likely been affected by directional and               

diversifying selection. We estimated the average recombination rate of Lacaune sheep at 1.5             

cM/Mb, identified about 50,000 crossover hotspots on the genome and found a high correlation              

between population- and pedigree-based recombination rate estimates. A genome-wide association          

study revealed three major loci affecting inter-individual variation in recombination rate, including            

the RNF212, HEI10 and KCNJ15 genes. Finally, we compared our results to those obtained              

previously in a distantly related population of domestic sheep, the Soay. This comparison revealed              

on one hand that Soay and Lacaune sheep have similar genetic determinant of total recombination               

rate while confirming that Soay sheep have experienced strong selection greatly increasing their             

recombination rate. Taken together these observations highlight that multiple genetically          

independent pathways affect recombination rate. 

Introduction 
 
Meiotic recombination is a fundamental biological process that brings a major contribution to the              

evolution of populations and species. During meiosis, recombination enables proper chromosomal           

alignment resulting in proper disjunction and segregation of chromosomes, avoiding deleterious           

outcomes such as aneuploidy ​(Hassold ​et al. 2007) ​. Over generations, recombination contributes to             

shaping genetic diversity in a population by creating new allelic combinations and preventing the              

accumulation of deleterious mutations. Over large evolutionary timescales, divergence in          
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recombination landscapes can lead to speciation: the action of a key actor in the recombination               

process in many mammals, the gene ​PRDM9​ , has been shown to have a major contribution to the                 

infertility between two mouse species, making it the only known speciation gene in mammals today               

(Davies ​et al.​  2016) ​. 

 

Genetics studies on recombination were first used to infer the organisation of genes along the               

genome ​(Sturtevant 1913) ​. With the advance in molecular techniques, more detailed physical maps             

and eventually whole genome assemblies are now available in many species. In the context of               

mammalian genome cartography, recombination maps are now essentially used only to validate the             

physical ordering obtained from sequencing experiments ​(Groenen ​et al. 2012; Jiang ​et al. 2014) ​.              

However, from an evolutionary perspective, the relevant distance between loci is the genetic             

distance, which is governed by recombination. Hence, the establishment of highly resolutive            

recombination maps remains of fundamental importance for genetic studies of a species for             

estimation of past demography ​(Li and Durbin 2011; Boitard ​et al. 2016) ​, detection of selection               

signatures ​(Sabeti ​et al. 2002; Voight ​et al. 2006) ​, QTL mapping ​(Cox ​et al. 2009) and imputation                 

of genotypes ​(Howie ​et al. 2009) for genome-wide association studies (GWAS) or genomic             

selection. Precise recombination maps can be estimated using different approaches. Meiotic           

recombination can be estimated from the observation of markers’ segregation in families. Although             

this is a widespread approach, its resolution is limited by the number of meioses that can be                 

collected within a population. A second approach is to take advantage of patterns of correlation               

between allele frequencies in a population ( ​i.e. Linkage Disequilibrium, LD) to infer            

population-based recombination rates. Because the LD-based approach exploits in essence meioses           

accumulated over many generations, it provides more precise estimates of recombination rate. For             

example, until recently ​(Pratto ​et al. 2014; Lange ​et al. 2016) this was the only approach allowing                 

to detect fine scale patterns of recombination genome-wide. One caveat of LD-based approaches is              

that their recombination rate estimates are affected by other evolutionary processes, especially            

selection that affects LD patterns unevenly across the genome.  

 

The LD-based approach does not allow to study individual phenotypes and therefore to identify              

directly loci influencing interindividual variation in recombination rates. In contrast, family-based           

studies in human ​(Kong ​et al. 2008; Chowdhury ​et al. 2009) ​, cattle ​(Sandor ​et al. 2012; Ma ​et al.                   

2015; Kadri ​et al. 2016) and sheep ​(Johnston ​et al. 2016) have demonstrated that recombination               
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exhibits interindividual variation and that this variation is partly determined by genetic factors. Two              

recombination phenotypes have been described: the variation in the number of crossovers per             

meiosis (Genome-wide Recombination Rate , GRR herein) and the variation in the fine scale              

localization of crossovers (Individual Hotspot Usage, IHU herein). GRR has been shown to be              

influenced by several genes. For example, a recent genome-wide association study found evidence             

for association with 6 genome regions in cattle ​(Kadri ​et al. 2016) ​. Among them, one of the                 

genomic regions consistently found associated to GRR in mammals is an interval containing the              

RNF212 gene. In contrast to GRR, the IHU phenotype seems mostly governed by a single gene in                 

most mammals, ​PRDM9​ . This zinc-finger protein has a key role in recruiting ​SPO11​ , thereby              

directing DNA double-strand breaks (DSBs) that initiate meiotic recombination. Because ​PRDM9           

recognizes a specific DNA motif, the crossover events happen in small genomic regions carrying              

this motif, termed recombination hotspots. This ​PRDM9 associated process is however not            

universal, as it is only active in some mammals; canids for example do not carry a functional copy                  

of ​PRDM9 and exhibit different patterns for the localization of recombination hotspots ​(Auton ​et al.               

2013) ​.  

 

In this work, we first present a strategy to establish fine-scale recombination maps by combining a                

pedigree analysis and an LD-based approach. We exploited two different datasets from a single              

sheep population (the Lacaune breed): a large pedigree genotyped with a medium density             

genotyping array (about 50K SNP) and a sample of unrelated individuals genotyped with a              

high-density genotyping array (about 500K SNP). The study of these two datasets and their              

combination allowed to produce high-resolution recombination maps. Second we exploited family           

data to understand the genetic determinism of individual variation in GRR in the Lacaune              

population. Finally, we compared our recombination maps and results of our quantitative traits loci              

(QTLs) analysis to those obtained from an analysis of pedigree data in Soay sheep ​(Johnston ​et al.                 

2016) ​. This comparison informed on how recombination rate has evolved in the Soay population,              

offering new evidence that recombination rate is genetically determined by multiple independent            

biological pathways. 
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Materials and Methods 

Study Population and Genotype Data 

 

In this work, we exploited two different datasets of sheep from the Lacaune breed: a pedigree                

dataset of 8,085 related animals genotyped with the medium density Illumina Ovine Beadchip®             

including 54,241 SNPs, and a diversity dataset of 64 unrelated Lacaune individuals selected as to               

represent population genetic diversity, genotyped with the high density Illumina Ovine Infinium®            

HD SNP Beadchip including 685,734 SNPs ​(Rochus ​et al. 2017; Moreno-Romieux ​et al. 2017) ​.              

Standard data cleaning procedures were carried out using plink 1.9 ​(Chang ​et al. 2015) ​, excluding               

animals with call rates below 95% and SNPs with call freq below 98%. After quality control, 6,230                 

animals and 46,813 SNPs were kept in the family dataset and 503,784 autosomal SNPs in the                

diversity dataset. Among these 6,230 animals, 5,928, had their father known and were kept for the                

analyses. 

 

Recombination Maps 

Family-based recombination maps  

Detection of crossovers  

   

We detected the localization of crossovers using LINKPHASE ​(Druet and Georges 2015) on each              

chromosome. From the LINKPHASE outputs ( ​recombination_hmm files), we extracted crossovers          

boundaries. We then identified crossovers occurring in the same meiosis less than 3 Mb apart from                

each other (that we call double crossovers) and considered them as dubious. We applied the               

following procedure until none of them remained. Given a pair of double crossovers, we set the                

genotype of the corresponding offspring as missing in the region spanned by the most extreme               

boundaries and re-run the LINKPHASE analysis. After this quality control step, we used the final               
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set of crossovers identified by LINKPHASE to estimate recombination rates. 

 

Estimation of recombination rates 

 

Based on the inferred crossover locations, we estimated recombination rates in windows of one              

megabase and between marker intervals of the medium SNP array using the same procedure,              

described below.  

Given an interval j on the genome, we estimated its recombination rate from the number of            cj    ysj   

crossovers observed in the interval for an individual ​s​  using the model: 

 

| c oisson(0.01 n l c )  (1)  ysj j ~ P μ̂
1

s j j  

 

where is the total number of crossovers in all meioses of individual ​s​ , is the average number of ns              μ̂      

crossovers per meiosis across all individuals and is the interval length (in megabases). With this       lj          

parametrization, ​c​ j​ is expressed in centiMorgans per megabase. To combine crossovers across            

individuals, the likelihood for ​c​ j ​ is the product of poisson likelihoods from equation (1). 

 

We then specify a prior distribution for ​c​ j​ : 

 

 (2)(α, )  cj ~ Γ β  

 

To set α and ß, we first computed raw ​c​ j​ estimates using the method of ​(Sandor ​et al. 2012) across                    

the genome and fitted a gamma distribution to the resulting genome-wide distribution (Figure S3).              

Combining the prior (2) with the likelihoods in equation (1), we obtain that the posterior               

distribution for ​c​ j​  ​  is: 

 

( α , .01 n l  ) (3)cj ~ Γ + ∑
 

s
ysj β + ∑

 

s
0 μ̂

1
s j  

 

As the localization of crossovers was usually not good enough to assign them with certainty to a                 

single genomic interval, we obtained our final estimates of ​c​ j​  ​ as follows : 
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(i) for each crossover overlapping interval ​j and localized within a window of size ​L​ , let ​x​ c​ be an                   

indicator variable that takes value 1 if the crossover occurred in interval ​j and 0 otherwise. We                 

assume that locally recombination rate is proportional to physical distance and set            

.(x ) in(l /L, )P c = 1 = m j 1  

(ii) Using the probability in step (i), sample ​x​ c​ for each crossover overlapping interval j and set                 

ysj = ∑
 

c
xc  

(iii) Given ​y​ sj ​ , sample  ​c​ j ​ from equation (3) 

 

For each interval considered, we performed step (ii) and (iii) above 1000 times to get samples from                 

the posterior distribution of ​c​ j​  thereby accounting for uncertainty in the localization of crossovers. 

Population-based recombination maps 

 

We estimated population-scaled recombination rates using PHASE ​(Li and Stephens 2003) on the             

64 unrelated Lacaune individuals genotyped on the HD SNP array. For computational reasons, we              

performed the estimations in 2 Mb windows, with an additional 100 Kb on each side overlapping                

with neighbouring windows, to avoid border-effect in the PHASE inference. PHASE was run on              

each window with default options, except that we increased the number of main iterations to obtain                

larger posterior samples for recombination rate estimation (option -X10) as recommended in the             

documentation. 

From the PHASE output, we obtained 1000 samples from the posterior distribution of: 

● The background recombination rate: ρ ​w = 4Nc ​w ​, where N is the effective population size, c​w                

is the recombination rate comparable to the family-based estimate. 

● An interval specific recombination intensity λ​j​, for each marker interval ​j​ of length ​l​ j​ in the                

window, such that the population scaled genetic length of an interval is: λ lδj = ρw j j  

As point estimates of and , we used the median computed over the posterior distributions    λj  δj           

.λ , λ ρ l  ;  k 1, 000]}{
j 
(k)  

j 
(k) 

w
(k) 

j  ∈ [ 1  

 

7 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 1, 2017. ; https://doi.org/10.1101/104976doi: bioRxiv preprint 

https://paperpile.com/c/jAKJ1H/Q8Yv
https://doi.org/10.1101/104976
http://creativecommons.org/licenses/by-nd/4.0/


Identification of intervals harbouring crossover hotspots 

 

Intervals that showed an outlying ​value compared to the genome-wide distribution of were     λj         λj  

considered as harbouring a crossover hotspot. Specifically, we fitted a mixture of Gaussian             

distribution to the genome-wide distribution of , considering that the major component of      og (λ )l 10 j        

the mixture modelled the background distribution of in non-hotspots intervals. From this       λj      

background distribution, we computed a p-value for each interval corresponding to the null             

hypothesis that it does not harbour a hotspot. Finally, we called hotspot harbouring intervals those               

for which FDR(λ ​j ​) < 5%, estimating FDR with the ​(Storey and Tibshirani 2003) method,               

implemented in the R qvalue package. This procedure is illustrated in​ ​Figure S4. 

 

Combination of meiotic- and population-based recombination rates and        

construction of a high resolution recombination map 

 

To construct a recombination map of the HD SNP array, we needed to scale the population-based                

estimates by 4 Ne, where Ne is the effective population size. Due to evolutionary pressures, Ne                

varies along the genome, so it must be estimated locally. This can be done by exploiting the meiotic                  

recombination rate inference obtained from family data as follows.  

 

Consider a window of one megabase on the genome, using the approach described above, we can                

sample values (window ​j​ , sample ​k​ ) from the posterior distribution of the meiotic recombination  cjk             

rate ​c​ j​ . Similarly, using output from PHASE we can extract samples from the posterior           ρjk     

distribution of the population-based recombination rates . Now, considering that      ρj     Ne cρj = 4 j j

where ​Ne​ j is the local effective population size of window ​j​ , we get .             og(ρ ) og(4Ne ) log(c )l j = l j +  j  

This justifies using a model on both  and  values:cjk ρjk  

 

 (4)α  yijk = μ +  i + βj + ν ij + eijk  

 

where is when i=1 (meiotic-recombination rate sample) and is when i=2 yijk   og(c )l jk        yijk  og(ρ )l jk   
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(population-based recombination rate sample). In this model, with appropriate design matrices, μ            

estimates the log of the genome-wide recombination rate, estimates log(4Ne), where Ne is the        αi       

average effective population size of the Lacaune population, estimates log(c​j​) combining        μ + βj     

population and meiotic recombination rates, and estimates log(4Ne​j​). μ and were      αi + ν ij      αi   

considered as fixed effects while and were considered as independent random effects. Using     βj   ν ij         

this approach allows to combine in a single model population- and family-based inferences, while              

accounting for their respective uncertainties as we exploit posterior distribution samples.  

 

In this study, we fitted model (4) with an additional fixed effect for each chromosome, using the                 

lme4 R package ​(Bates ​et al. 2015) ​. We considered windows of one megabase covering the               

genome, using 20 samples of the posterior distributions of ​c​ j ​and . We omitted windows lying less           ρj       

than 4 Mb from each chromosome end because our inference on ​c​ j was likely biased in these                 

regions (see Results). After estimating this model, we corrected population-based recombination           

rate estimates of HD intervals within each window by dividing them by their estimated local               

effective population size ( ​i.e. exp( ) for window ​j​ ). For windows lying within 4 Mb of the    αiˆ + ν ijˆ             

chromosome ends, we corrected population-based estimates using the genome-wide average          

effective population size ( ​i.e. exp( )). This led eventually to estimates of the recombination rates,    αiˆ           

expressed in centiMorgans per megabase, for all intervals of the HD SNP array, which we termed a                 

high resolution recombination map. 

 

Genome-Wide Association Study on Recombination     

Phenotypes 

Genome-wide Recombination Rate (GRR) 

 

We exploited the set of crossovers detected to estimate the genome-wide recombination rate (GRR)              

of each FID in the family dataset from their observed number of crossovers per meiosis, adjusting                

for covariates: year of birth of the parent, considered as a cofactor with 14 levels for years spanning                  

from 1997 to 2010, and insemination month of the offspring’s ewe, treated as a cofactor with 7                 

levels for months spanning from February to August. We used a mixed-model for estimating the               
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population average GRR μ, covariates fixed effects   and individual specific deviations :β us  

 

x β e  yso = μ +  so + us +  so   

 

with and , where is the number of crossovers in the meiosis (0, σ )us ~ N A s2   (0, σ )eso ~ N I e2   yso         

between FID ​s and offspring o​ , A is the pedigree-based relationship matrix between FIDs and               xso

the line of the corresponding design matrix for observation . We fitted this model using         yso       

BLUPf90 ​(Misztal et al., 2002) and extracted: (i) estimates of variance components and ,            σe2   σs2  

which allows to estimate the heritability of the trait (calculated as /( + )) and (ii) prediction           σs2 σs2 σe2     

 of GRR deviation for each FID.us̃  

 

Genotype Imputation 

   

Using the 64 unrelated Lacaune as a panel, we imputed the genotypes of 345 animals using                

BIMBAM (Guan and Stephens, 2008) on 507,784 SNPs. To impute, BIMBAM uses the fastPHASE              

model (Scheet and Stephens, 2006), which relies on methods using cluster of haplotypes to estimate               

missing genotypes and reconstruct haplotypes from unphased SNPs of unrelated animal. BIMBAM            

was run with 10 expectation-maximization (EM) starts, each EM was run 20 steps on panel data                

alone, and an additional 1 step on cohort data, with a number of clusters of 15. From the BIMBAM                   

results, in subsequent analyses, we used the mean genotypes of the 345 FIDs at all markers of the                  

HD SNP array. To validate the quality of genotype imputation, 10 markers of the HD SNP array, 1                  

in chromosome 6 associated region and 9 in the chromosome 7 associated region were genotyped               

for 266 FIDs. We evaluated the quality of imputation by comparing the posterior genotype              

probabilities at these 10 markers to the error rate if we were to call them. We observed a very good                    

agreement between the two measures (Figure S6), which denoted good calibration of the imputed              

genotypes. 

 

Single- and multi-QTLs GWAS on GRR 
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We first tested association of GRR with mean genotypes at 503,784 single SNPs imputed with               

BIMBAM. We tested these associations using the univariate mixed-model approach implemented           

in the Genome-wide Efficient Mixed Model Association (GEMMA) software (Zhou and Stephens,            

2012). In the mixed-model, we used the centered genomic relationship matrix calculated from the              

mean genotypes. The p-values reported in the results correspond to the Wald test. 

 

To go beyond single SNP association tests, we also estimated a Bayesian sparse linear mixed-model               

(Zhou ​et al. 2013) as implemented in GEMMA. This method allows to consider multiple QTLs in                

the model, together with polygenic effects at all SNPs. Inference of the model parameters was done                

using an iterative MCMC algorithm ; we set the number of iterations to 10 millions and extracted                 

samples every 100 iterations.   

Variant Discovery and Additional Genotyping in ​RNF212 

Identification and assignation of the ​RNF212​  sheep genome sequence 

 

The ​RNF212 gene was not annotated on the ​Ovis aries v3.1 reference genome. Nevertheless, a full                

sequence of ​RNF212 was found in the scaffold01089 of ​Ovis orientalis (assembly Oori1, NCBI              

accession NW_011943327). By BLAST alignment of this scaffold, ovine ​RNF212 could be located             

with confidence on chromosome 6 in the interval OAR6:116426000-116448000 of Oari3.1           

reference genome (Figure S11). This location was confirmed by BLAST alignment with the bovine              

RNF212 gene sequence. We also discovered that the Oari3.1 unplaced scaffold005259 (NCBI            

accession JH922970) contained the central part of ​RNF212 (exons 4-9) and it could be placed               

within a large assembly gap. Moreover, we also observed that automatically annotated non-coding             

RNA in the ​RNF212​  interval matched exonic sequence of ​RNF212​  (Figure S11). 

 

Variant discovery in ​RNF212​  in the Lacaune population 

 

Based on the genomic sequence and structure of the ​RNF212 gene annotated in ​Ovis orientalis               

(NCBI accession NW_011943327), a large set of primers were designed using PRIMER3 software             
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(Table S1) for amplification of each annotated exon and some intron part corresponding to exonic               

region annotated in ​Capra hircus (Chir_v1.0). PCR amplification (GoTaq, Promega) with each            

primer pair was realized on 50ng of genomic DNA from 4 selected homozygous Lacaune animals               

exhibiting the GG and AA (non imputed) genotypes at the most significant SNP of the medium                

density SNP array of the chromosome 6 QTL (rs418933055, p-value 2.56e-17). Each PCR product              

was sequenced via the BigDye Terminator v3.1 Cycle Sequencing kit and analyzed on an ABI3730               

sequencing machine (Applied Biosystems). Sequenced reads were aligned against the ​Ovis           

orientalis ​RNF212 gene using CLC Main Workbench Version 7.6.4 (Qiagen Aarhus) in order to              

identify polymorphisms. 

 

 

Genotyping of mutations in ​RNF212 

 
The genotyping of 266 genomic DNA from Lacaune animals for the four identified polymorphisms              

within the ovine ​RNF212 gene was done by Restriction Fragment Length Polymorphism (RFLP)             

after PCR amplification using dedicated primers (Table S1) (GoTaq, Promega), restriction enzyme            

digestion (BsrBI for SNP_14431_AG; RsaI for SNP_18411_GA; and Bsu36I for both           

SNP_22570_CG and SNP_22594_AG; New England Biolabs) and resolution on 2% agarose gel.  

 

Comparison of Meiotic Recombination Maps between Soay       

males and Lacaune males 

 
Using data and results from ​(Johnston ​et al. 2016) ​, we could create genetic maps based on common                 

markers in Soay and Lacaune (36,651 SNPs). We computed the genetic distance (in cM) for the                

Soay males and the Lacaune males while removing the 4 Mb at each chromosomal extremity as                

explained above. Finally, for each chromosome, we fitted a linear regression of the Lacaune male               

genetic distance on the Soay male genetic distance and collected all the slopes for each               

chromosome and for each mean chromosomal recombination rate. 
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Results 

High-Resolution Recombination Maps 

Meiotic recombination maps: genome-wide recombination patterns 

 
We studied meiotic recombination using a pedigree of 6,259 individuals, genotyped for a medium              

density SNP array (50K) comprising around 54,000 markers. After quality control we exploited             

genotypes at 46,813 SNPs and identified 213,118 crossovers in 5,928 meioses divided among 345              

male parents which we called focal individuals (FIDs) hereafter (see methods). The pedigree             

information available varied among focal individuals (Figure 1): 281 FIDs had their father genotype              

known while the remaining 64 did not. However, having a missing parent genotype did not affect                

our ability to detect crossovers as the average number of crossovers per meiosis in the two groups                 

was similar (36.0 with known father genotype and 35.9 otherwise) and the statistical effect of the                

number of offspring on the average number of crossovers per meiosis was not significant (p>0.23).               

We explained this by the fact that individuals that lacked father genotype information typically had               

a large number of offspring (11.2 on average, ranging from 4 to 104), allowing to infer correctly                 

their haplotype phase from their offspring genotypes only. Overall, given that the physical genome              

size covered by the medium density SNP array is 2.45 gigabases, we estimate that the mean                

recombination rate in our population is about 1.5 cM/megabase.   

 

Based on the crossovers identified, we developed a statistical model to estimate family-based             

recombination maps (see methods) and constructed recombination maps at two different scales : for              

windows of one megabase and for each interval of the medium density SNP array. As our statistical                 

approach allowed to evaluate the uncertainty in our recombination rate estimates, we provide             

respectively in File S1 and S2, along with the recombination rate estimates in each interval, their                

posterior variance and 90% credible intervals. Graphical representation of the meiotic           

recombination maps of all autosomes are given in File S3. 

 

The recombination rate on a particular chromosome region was found to depend highly on its               
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position relative to the telomere and to the centromere for metacentric chromosomes, ​i.e.             

chromosomes 1, 2 and 3 in sheep (Figure S1). Specifically, for acrocentric and metacentric              

chromosomes, recombination rate estimates were elevated near telomeres and centromeres, but very            

low within centromeres. In our analysis, recombination rate estimates were found low in intervals              

lying within 4 megabases of chromosome ends. This is most likely due to crossovers being               

undetected in our analysis as only few markers are informative to detect crossovers at chromosome               

ends. In the following analyses, we therefore did not consider regions lying within 4 Mb of the                 

chromosomes ends. 

 

From local recombination rate estimates in 1 Mb windows or medium SNP array intervals, we               

estimated chromosome specific recombination rates (Figure S2). Difference in recombination rates           

between chromosomes was relatively well explained by their physical size, larger chromosomes            

exhibiting smaller recombination rates. Even after accounting for their sizes, some chromosomes            

showed particularly low (chromosomes 9, 10 and 20) or particularly high (chromosomes 11 and 14)               

recombination rates. In low recombining chromosomes, large regions had very low recombination,            

between 9 and 14 Mb on chromosome 9, 36 and 46 Mb on chromosome 10 and between 27 and 31                    

Mb on chromosome 20. In highly recombining chromosomes, recombination rates were globally            

higher on chromosome 14, while chromosome 11 exhibited two very high recombination windows             

between 7 Mb and 8 Mb and between 53 and 54 Mb. In addition, we found, consistent with the                   

literature, that GC content was quite significantly positively correlated with recombination rate            

(p-value < 10​-16​, r=0.23) in medium SNP array intervals. 

 

Population-based recombination maps: identification of crossover hotspots 

 
We used a different dataset, with 64 unrelated individuals from the same Lacaune population              

genotyped for the Illumina HD SNP array (600K) comprising 503,784 autosomal SNPs after quality              

control. Using a multipoint model for LD patterns ​(Li and Stephens 2003) ​, we estimated, for each                

marker interval of the HD SNP array, population-scaled recombination rates ⍴ (see Methods).             

Compared to pedigree-based maps, these estimates offer a greater precision as they in essence              

exploit meioses cumulated over many generations. However, the recombination rates obtained are            

scaled by the effective population size ( where Ne is the effective population size and c      N  cρ = 4 e           

14 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 1, 2017. ; https://doi.org/10.1101/104976doi: bioRxiv preprint 

https://paperpile.com/c/jAKJ1H/Q8Yv
https://doi.org/10.1101/104976
http://creativecommons.org/licenses/by-nd/4.0/


the meiotic recombination rate) which is unknown, and may vary along the genome due to               

evolutionary pressures, especially selection. Thanks to the higher precision in estimation of            

recombination rate, population-based recombination maps offer the opportunity to detect genome           

intervals likely to harbour crossover hotspots. We considered about 50,000 intervals exhibiting            

elevated recombination intensities (Figure S4) as recombination hotspots, corresponding to an FDR            

of 5%. From our population-based recombination map, we could conclude that 80% crossover             

events occurred in 40% of the genome and that 60% of crossover events occurred in only 20% of                  

the genome (Figure S5). 

 

High-resolution recombination maps combining family and population data 

 
Having constructed recombination maps with two independent approaches and datasets in the same             

population of Lacaune sheep allowed first to evaluate to which extent population-based crossover             

hotspots explain meiotic recombination, and second to estimate the impact of evolutionary            

pressures in the Lacaune population. We present our results on these questions in turn. 

 

We studied whether variation in meiotic recombination can be attributed to the crossover hotspots              

detected from population data. For each interval between two adjacent SNPs of the medium density               

array, we (i) extracted the number of significant hotspots and (ii) calculated the crossover hotspot               

density (in number of hotspots per unit of physical distance). We found both covariates to be highly                 

associated with meiotic recombination rate estimated on family data, the hotspot density even more              

than the number of hotspots (respectively r=0.15 (p < 10​-16​) and r=0.19 (p=1.8 10​-4​)). Figure 2                

illustrates this finding in two one-megabase intervals from chromosome 24, one that exhibits a very               

high recombination rate (7.08 cM/Mb) and the second a low one (0.46 cM/Mb). In this comparison,                

the highly recombining window carries 36 recombination hotspots while the low recombinant one             

exhibits none. As the population-based background recombination rates in the two windows are             

similar (0.7/Kb for the one with a high recombination rate, and 0.2/Kb for the other), the difference                 

in recombination rate between these two regions is largely due to their contrasted number of               

crossover hotspots.  

 

In order to study more precisely the relationship between population and meiotic recombination             
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rates, we estimated a linear mixed model (see Methods) that allowed to estimate the average               

effective population size of the population, the correlation between meiotic and population-based            

recombination rates and to identify genome regions where population- and family-based estimates            

were significantly different. We found the effective population size of the Lacaune population to be               

about 7,000 individuals and a correlation of 0.73 between meiotic- and population-based            

recombination rates (Figure 3). We discovered 6 regions where population recombination rates            

were much lower than meiotic ones and 4 regions where they were much higher (Table 1, Figure                 

S8).  

 

Three of the regions with a low population-based recombination rate corresponded to previously             

identified selection signatures in sheep: a region on chromosome 6 spanning 3 intervals between 35               

and 38 megabases contains the ​ABCG2 gene, associated to milk production ​(Cohen-Zinder ​et al.              

2005) ​, and the ​LCORL gene associated to stature (recently reviewed in ​(Takasuga 2015) ​). This              

region has been shown to have been selected in the Lacaune breed ​(Fariello ​et al. 2014; Rochus ​et                  

al. 2017) ​; a region spanning one interval on chromosome 10, between 29 and 30 megabases               

contains the ​RXFP2 gene, associated to polledness and horn phenotypes ​(Johnston ​et al. 2013) and               

found to be under selection in many sheep breeds ​(Fariello ​et al. 2014) ; and a region on                  

chromosome 13 between 63 and 64 megabases that contains the ​ASIP gene responsible for coat               

color phenotypes in many breeds of sheep ​(Norris and Whan 2008) , again previously demonstrated               

to have been under selection. For these three regions, we explain the low population recombination               

estimates by a local reduction of the effective population size due to selection.  

One of the four regions with a high population-based recombination rate, on chromosome 20              

between 28 and 29 megabases, harbours a cluster of olfactory receptors genes and could be               

explained by selective pressure for increased genetic diversity in these genes ( ​i.e.​ diversifying             

selection), a phenomenon which has been shown in other species ( ​e.g. pig ​(Groenen ​et al. 2012) ​,                

human ​(Ignatieva ​et al. 2014) ​, rodents ​(Stathopoulos ​et al. 2014) ​). The seven other regions of low                

and high population-based recombination rates correspond to regions of very low (resp. very high)              

meiotic recombination intensities, and the discrepancy between meiotic recombination and          

population recombination estimates could come from the fact that we used a genome-wide prior in               

our model to estimate meiotic recombination rates that had the effect of shrinking our estimates               

toward the mean. Because population estimates were not shrunk in the same way, for these few                

outlying regions the two estimates did not concur and it is possible that our meiotic recombination                
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rate estimates were slightly over (resp. under) estimated. Finally, we used the meiotic             

recombination rates to scale the population-based estimates and produce high-resolution          

recombination maps on the HD SNP array (Supporting File S4). 

 

Genetic Determinism of Genome-wide Recombination Rate in       

Lacaune sheep 

 
Our dataset provides information on the number of crossovers for a set of 5,928 meioses among 345                 

male individuals. Therefore, it allows to study the number of crossovers per meiosis (GRR) as a                

recombination phenotype. 

 

Genetic and environmental effects on GRR 

 
We used a linear mixed-model to study the genetic determinism of GRR. The contribution of               

additive genetic effects was estimated by including a random FID effect with covariance structure              

proportional to the matrix of kinship coefficients calculated from pedigree records (see Methods).             

We also included environmental fixed effects in the model: year of birth of the FID and                

insemination month of the ewe for each meiosis. We did not find significant differences between               

the FID year of birth, however the insemination month of the ewe was significant (p = 1.7 10​-3​).                  

Based on the estimated variance components (Table 2), we estimated the heritability of GRR in our                

population at 0.23.  

 

Genome-wide association study identifies three major loci affecting GRR in          

Lacaune sheep 

 
The additive genetic values of FIDs, predicted from the above model were used as phenotypes in a                 

genome-wide association study. Among the 345 FIDs with at least two offsprings, the distribution              

of the phenotype was found to be approximately normally distributed (Figure S9). To test for               

association of this phenotype with SNPs markers, we used a mixed-model approach correcting for              
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relatedness effects with a genomic relationship matrix (see Methods). Using our panel of 64              

unrelated Lacaune, we imputed the 345 FIDs for markers of the HD SNP array. With these imputed                 

genotypes, we performed two analyses. The first was an association test with univariate linear              

mixed models, which tested the effect of each SNP in turn on the phenotype, the second fitted a                  

Bayesian sparse linear mixed model, allowing multiple QTLs to be included in the model.  

 

Figure 4 illustrates the GWAS results: the top plot shows the p-values of the single SNP analysis                 

and the bottom plot, the posterior probability that a region harbours a QTL, calculated on               

overlapping windows of 20 SNPs. The single SNP analysis revealed five significant regions (FDR =               

5%): two on chromosome 1, one on chromosome 6, one on chromosome 7 and one chromosome 19.                 

Regions of chromosome 6 and 7 exhibited very low p-values whereas the other three showed less                

intense association signals. The multi-QTLs Bayesian analysis was conclusive for three regions:            

the rightmost region on chromosome 1, and the regions on chromosome 6 and chromosome 7.               

Using the multi-QTL approach of ​(Zhou ​et al. 2013) allowed to estimate that together, these three                

QTLs explain about 40% of the additive genetic variance for GRR, with a 95% credible interval                

ranging from 28 to 53 %. 

 

The most significant region was located on the distal end of chromosome 6 and corresponded to a                 

locus including the ​RNF212 gene, associated with recombination rate variation in human            

(Chowdhury ​et al. 2009) ​,​(Kong ​et al. 2008) ​, in bovine ​(Sandor ​et al. 2012; Ma ​et al. 2015; Kadri ​et                   

al. 2016) and in mouse ​(Reynolds ​et al. 2013) ​. ​RNF212 is not annotated in the sheep genome                 

assembly oviAri3, however this chromosome 6 region corresponds to the bovine region that             

contains ​RNF212​ (Figure S11). We found an unassigned scaffold (scaffold01089, NCBI accession            

NW_011943327) of ​Ovis orientalis musimon (assembly Oori1) that contained the full ​RNF212            

sequence and that could be placed confidently in the QTL region. To confirm ​RNF212 as a valid                 

positional candidate, we studied further the association of its polymorphisms with GRR in results              

presented below. 

 

The second most significant region was located between 22.5 and 23.1 megabases on chromosome              

7. All significant SNPs in the region were imputed, ​i.e. the association would not have been found                 

based on association of the medium density array alone. It matched an association signal on GRR in                 

Soay sheep ​(Johnston ​et al. 2016) ​. Consistent with our finding, in the Soay sheep study, this                
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association was only found using regional heritability mapping and not using single SNP             

associations with the medium density SNP array. This locus could match previous findings in cattle               

(association on chromosome 10 at about 20 Mb on assembly btau3.1), however the candidate genes               

mentioned in this species ( ​REC8 and ​RNF212B​ ) were located respectively 2 and 1.5 megabases              

away from our strongest association signal. In addition, none of the SNPs located around these two                

candidate genes in cattle were significant in our analysis. However another functional candidate,             

CCNB1IP1​ , also named ​HEI10​ , was located between positions 23,946,971 and 23,951,850 bp,            

about 500 Kb from our association peak. This gene is a good functional candidate as it has been                  

shown to interact with ​RNF212​ : ​HEI10 allows to eliminate the ​RNF212 protein from early              

recombination sites and to recruit other recombination intermediates involved in crossover           

maturation ​(Qiao ​et al. 2014; Rao ​et al. 2016) ​. Again SNPs located at the immediate proximity of                 

HEI10 did not exhibit significant associations with GRR. Hence, our association signal did not              

allow to pinpoint any clear positional candidate among these functional candidates (see Figure S7).              

However, it was difficult to rule them out completely for three reasons. First, with only 345                

individuals, our study may not be powerful enough to localize QTLs with the required precision.               

Second, the presence of causal regulatory variants, even at distances of several hundred kilobases is               

possible. Finally, the associated region of ​HEI10 exhibited apparent rearrangements with the human             

genome, possibly due to assembly problems in oviAri3. These assembly problems could be linked              

to the presence of genomic sequences coding for the T-cell receptor alpha chain. This genome               

region is in fact rich in repeated sequences making its assembly challenging. Overall, identifying a               

single positional and functional candidate gene in this gene-rich misassembled genomic region was             

not possible based on our data alone.  

 

Finally, our third associated locus was located on chromosome 1 between 268,600 and 268,700              

kilobases. In cattle, the homologous region, located at the distal end of cattle chromosome 1, has                

also been shown to be associated with GRR ​(Ma ​et al. 2015; Kadri ​et al. 2016) ​. In these studies the                    

PRDM9 gene has been proposed as a potential candidate gene, especially because it is a strong                

functional candidate given its proven effect on recombination phenotypes. In sheep, ​PRDM9 is             

located at the extreme end of chromosome 1, around 275 megabases, 7 megabases away from our                

association signal ​(Ahlawat ​et al. 2016) ​. Hence, ​PRDM9 was not a good positional candidate for               

association with GRR in our sheep population. However, the associated region on chromosome 1              

contains a single gene, ​KCNJ15​ , which has been associated with DNA double-strand breaks repair              
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in human cells ​(Słabicki ​et al.​  2010) ​. 

 

Mutations in the ​RNF212 gene are strongly associated to Genome-wide          

Recombination Rate variation in Lacaune sheep 

 
The QTL with the largest effect in our association study corresponded to a locus associated to GRR                 

variation in other species and harbouring the ​RNF212 gene. As it was a clear positional and                

functional candidate gene, we carried out further experiments to interrogate specifically           

polymorphisms within this gene. As stated above, we used the sequence information available for              

the ​RNF212 gene from ​Ovis orientalis which revealed that ​RNF212 spanned 23,7 Kb on the               

genome and may be composed of 12 exons by homology with bovine ​RNF212​ . However, mRNA               

annotation indicated multiple alternative exons. Surprisingly, the genomic structure of ovine           

RNF212 was not well conserved with goat, human and mouse syntenic ​RNF212 genes (Figure S11).               

As a first approach, we designed primers for PCR amplification (see Methods) and sequencing of               

all annotated exons and some intronic regions corresponding to exonic sequences of ​Capra hircus              

RNF212​ . By sequencing ​RNF212 from 4 carefully chosen Lacaune animals homozygous GG or AA              

at the most significant SNP of the medium density SNP array on chromosome 6 QTL               

(rs418933055, p-value 2.56 10​-17​), we evidenced 4 polymorphisms within the ovine ​RNF212 gene             

(2 SNPs in intron 9, and 2 SNPs in exon 10). The 4 mutations were genotyped in 266 individuals of                    

our association study. We then tested their association with GRR using the same approach as               

explained above and computed their linkage disequilibrium (genotypic r ​2​) with the most associated             

SNPs of the high-density genotyping array (see Figure S10) (Table 4). Two of these mutations were                

found highly associated with GRR, their p-values being of the same order of magnitude (p<10​-14​) as                

the most associated SNP (rs412583165), although none of them were more significant. Indeed, we              

found a clear agreement between the amount of LD between a mutation and the most associated                

SNPs and their association p-value (see Figure S10). Overall, these results showed that             

polymorphisms within the ​RNF212 gene were strongly associated with GRR, and likely tagged the              

same causal mutation as the most associated SNP. This confirmed that ​RNF212​ , a very strong               

functional candidate, was also a very strong positional candidate gene underlying our association             

signal. 
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Comparison of Recombination Rate and its Genetic       

Determinism between Soay and Lacaune Sheep 

 

Recently, a genome-wide association study on GRR was conducted in the Soay sheep. Soay sheep               

is a feral population of ancestral domestic sheep living on an island located northwest of Scotland.                

The Lacaune and Soay populations are genetically very distant, their genome-wide Fst, calculated             

using the sheephapmap data ​(Kijas ​et al. 2012) ​, being about 0.4. Combining our results with results                

from the Soay offered a rare opportunity to study the evolution of recombination over a relatively                

short time scale as the two populations can be considered separated at most dating back to                

domestication, about 10 Kya.  

 

We compared the average recombination rates of the two populations for each autosomes (See              

Methods). Although the recombination rates found in both studies were highly correlated, we found              

a consistent pattern of elevated recombination in Soay males compared to Lacaune males (Figure 5               

left), with a median 20% and average 50% increase in recombination rate. This result was               

consistent with the conclusions from the Soay study that recombination rate was increased in this               

population due to selection on male fertility. Interestingly, the increase in recombination in Soay              

was not homogeneous among chromosomes. Larger differences were found in chromosomes with            

higher recombination rates in Lacaune (Figure 5 right): for example chromosome 10, which had a               

very low recombination rate, did not show much increased recombination in Soay while the most               

recombining chromosome, chromosome 24, showed the highest increase (~ 80%). 

 

GWAS in the Soay identified two major QTLs for GRR, with apparent sex-specific effects. These               

two QTLs were located in the same genomic regions as our QTLs on chromosome 6 and                

chromosome 7. The chromosome 6 QTL was only found significant in Soay females, while we               

detect it in Lacaune males. Although the QTL was located in the same genomic region, the most                 

significant SNPs were different in the two GWAS (Figure 6). Two possible explanations could be               

offered for these results: either the two populations have the same QTL segregating and the               

different GWAS hits correspond to different LD patterns between SNPs and QTLs in the two               

populations, or the two populations have different causal mutations in the same region. Given that               
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the two populations are both domestic sheeps and were not separated that long ago, we tend to                 

favour the former hypothesis, however denser genotyping data would be needed to have a clear               

answer. For the chromosome 7 QTL, the signal was only found using regional heritability mapping               

(Nagamine ​et al. 2012) in the Soay, and after genotype imputation in our study, which makes it                 

even more difficult to discriminate between a shared causal mutation or different causal mutations              

at the same location in the two populations. 

 

Discussion 
 
In this study, our aims were to produce fine-scale genetic maps of the sheep genome and to                 

elucidate some components of the genetic determinism of recombination rate variation in sheep. In              

addition, combining three datasets, two pedigree datasets in distantly related domestic sheep            

populations and a densely genotyped sample of unrelated animals, allowed to partly unravel how              

recombination rate could evolve at short time scales, as we discuss below. 

 

Fine-scale Recombination Maps 

 
In this work, we were able to construct fine-scale genetic maps of the sheep autosomes by                

combining two independent inferences on recombination rate.  

Our study on meiotic recombination from a large pedigree dataset revealed that sheep             

recombination exhibits general patterns similar to other mammals ​(Shifman ​et al. 2006; Chowdhury             

et al. 2009; Tortereau ​et al. 2012) ​. First, sheep recombination rates were elevated at the               

chromosome ends, both on acrocentric and metacentric chromosomes. In the latter, our analysis             

revealed a clear reduction in recombination near centromeres. Second, recombination rate depended            

on the chromosome physical size, consistent with an obligate crossover per meiosis irrespective of              

the chromosome size.  

Our LD-based maps revealed patterns of recombination at the kilobase scale, with small highly              

recombining intervals interspaced by more wide, low recombining regions. This result was            

consistent with the presence of recombination hotspots in the highly recombinant intervals. A             
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consequence was that, as observed in other species, the majority of recombination took place in a                

small portion of the genome: we estimated that 80% of recombination takes place in 40% of the                 

genome. This proportion was likely an underestimate due to our limited resolution (a few kilobases               

on the HD SNP array) compared to the typical hotspot width (a few hundred base-pairs). Overall,                

we identified 50,000 hotspot intervals which was twice the estimated number of hotspots in humans               

(International HapMap Consortium ​et al. 2007) ​. This difference can be explained by different non              

mutually exclusive reasons. First, it is possible that what we detect as crossover hotspots are due to                 

genome assembly errors and we indeed found a significant albeit moderate effect (OR ≃ 1.4) of the                 

presence of assembly gaps in an interval on its probability of being called a hotspot. Second, our                 

method to call hotspots could be too liberal. Indeed, a more stringent threshold (FDR=0.1%) would               

lead to about 25,000 hotspots, which would be similar to what is found in humans. Finally, there                 

exists the possibility that historically sheep exhibits more recombination hotspots than humans. In             

any case, the strong association between meiotic recombination rate and density in LD-based             

hotspots showed that our LD-based maps were generally accurate. Ultimately better resolution of             

crossover hotspots should be addressed in the future from LD-based studies on resequencing data. 

We combined, using a formal statistical approach, meiotic- and LD-based recombination rate            

estimates. This led us to assess the impact of selection events on the sheep genome, in particular                 

revealing a new potential signal for diversifying selection at olfactory receptors genes. Based on              

this comparison, the correlation between LD-based and meiotic estimates was found to be high ( r ≃                 

0.7 ), but less than could be expected from previous results in humans ​(Myers ​et al. 2005) ​. Again,                  

more precise estimates of both meiotic- and LD-based recombination rates could change this             

number but it is also likely that intense selective pressure due to domestication and later artificial                

breeding had the impact of modifying extensively LD patterns on the sheep genome, degrading the               

correlation between the two approaches. Indeed, the LD-based recombination estimates summarize           

ancestral recombinations that took place in the past and it is possible that recombination hotspots               

that were present in an ancestral sheep population are not longer active in today’s Lacaune               

individuals. This could arise, for example, if domestication led to a reduction in the diversity of                

hotspots defining genes, such as ​PRDM9​ . Further studies on the determinism of hotspots in the               

sheep, its related genetic factors and their diversity would be needed to elucidate this question. 

Finally our combined analysis enabled us to scale the LD-based recombination rates and produced              

fine-scale recombination maps of the HD SNP array. As an illustration of the importance of               

fine-scale recombination maps for genetic studies, we found an interesting example in a recent              
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study on adaptation of sheep and goat ​(Kim ​et al. 2016) ​. In this study, a common signal of                  

“selection” was found using the iHS statistic ​(Voight ​et al. 2006) in these two species (Figure 5 in                  

(Kim ​et al. 2016) ​). This signature matches precisely the low recombining regions we identified on               

chromosome 10. Because fine-scale recombination maps were not available at the time, physical             

distance was used as a proxy for genetic distance in the iHS calculation. In the case of chromosome                  

10, this proxy failed and extended shared haplotypes, resulting from the low recombination rate,              

were then interpreted as selection signatures. This kind of false positives could be avoided by using                

genetic distances from our maps rather than physical distances. 

 

Determinism of Recombination Rate in the Lacaune       

population 

 
Our approach to study the genetic determinism of recombination rate in the Lacaune population was               

first to estimate its heritability, using a classical analysis in a large pedigree. This analysis also                

allowed to extract additive genetic values (EBVs) for the trait in 345 male parents, which we used                 

for a GWAS in a second step. The EBVs are by definition, only determined by genetic factors, as                  

environmental effects on GRR are averaged out. Indeed, we found that the proportion of variance in                

EBVs explained by genetic factors in the GWAS was essentially one. A consequence was that,               

although this sample size could be deemed low in current standards, the power of our GWAS was                 

greatly increased by the high precision on the phenotype.  

 

We estimated the heritability of GRR at 0.23, which was similar to estimates from studies on the                 

same phenotype in ruminants ( ​e.g.​ 0.22 in cattle ​(Sandor ​et al. 2012) or 0.15 in Soay sheep                 

(Johnston ​et al. 2016) ​, but see below for a discussion on the comparison with Soay sheep). We had                  

little information on the environmental factors that could influence recombination rate, but did find              

a suggestive effect of the month of insemination on GRR, especially we found increased GRR at the                 

month of May. Confirmation and biological interpretation of this result would need dedicated             

studies, but it was consistent with the fact that fresh ( ​i.e. not frozen) semen is used for insemination                  

in sheep and that the reproduction of this species is seasonal ​(Rosa and Bryant 2003)​. 
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The genetic determinism of GRR discovered in our study closely resembles what has been found in                

previous studies, especially in ruminants. Three major loci affected recombination rate in Lacaune,             

two of them common to cattle and Soay sheep. The underlying genes and mutations for these two                 

QTLs are not yet resolved but the fact that the two regions harbour interacting genes ( ​RNF212 and                 

HEI10 ​(Qiao ​et al. 2014; Rao ​et al. 2016) ​) involved in the maturation of crossovers, make these two                  

genes likely functional candidates. The third gene identified here, ​KCNJ15​ , is a novel candidate,              

and its role and mechanism of action in the repair of DSBs needs to be confirmed and elucidated.                  

Interestingly, these three genes are linked to the reparation of DSBs and crossover maturation              

processes. This is only one of the stages of recombination which is a complicated process ​(Baudat                

et al. 2013) ​. In our study, sixty percents of the additive genetic variance in GRR remained                

unexplained by large effect QTLs and were due to polygenic effects. This could be interpreted in                

the light of recent evidence that has shown that other mechanisms, involved in chromosome              

conformation during meiosis, explain a substantial part of the variation in recombination rate             

between mouse strains ​(Baier ​et al. 2014) and bovids ​(Ruiz-Herrera ​et al. 2017) ​. Our results               

indicate that the genetic determinism of such processes is most likely of polygenic nature.              

Elucidating this genetic determinism would thus require much larger sample sizes or different             

experimental approaches ​(Baier ​et al.​  2014; Ruiz-Herrera ​et al.​  2017) ​. 

 

Mechanism of Evolution of Recombination Rates in Soay        

sheep as informed by the Lacaune population 

 

Our study is the second work on the genetic determinism of recombination rate in the sheep.                

Recently, a thorough study in Soay sheep highlighted how recombination rate variation is             

genetically determined in this population of feral sheep leaving unmaintained on an island             

(Johnston ​et al. 2016) ​. By comparing the genetic maps of the two populations, our analysis showed                

that Soay males have an increase of 50% of recombination compared to Lacaune males. Thus it is                 

clear that Soay sheep have experienced strong selection that had the effect of increasing their               

recombination rate, especially in males. 

One of the most striking difference between our two studies is that the two QTLs that were detected                  

in common had no effect in Soay males, whereas they had strong effects in Lacaune males.                
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However, the two populations had very similar polygenic heritability: accounting for the fact that              

the Lacaune QTLs explain about 40% of the additive genetic variance, we could estimate the               

polygenic additive genetic variance in Lacaune males at 0.16, very similar to the 0.15 found in Soay                 

males.  

Hence, interpreting the Soay results in the light of our study reveals that (i) Soay sheep have                 

experienced selection on increased recombination rate and (ii) that this happened without fixation of              

large effect QTLs that affect recombination rate. If selection acted on recombination rate through              

the processes affected by ​RNF212 and ​HEI10​ , namely the maturation of DSBs into crossovers,              

these two phenomenons would be unlikely to happen: selection should have fixed the increasing              

alleles at the QTLs. Thus, we can put forward the hypothesis that increased recombination rate in                

Soay is a consequence of selection on processes that are not genetically linked to maturation of                

crossovers. This is another piece of evidence that recombination rate is governed by multiple,              

independent biological processes that have distinct genetic determinisms. 

 

Conclusion 
Recombination is a complex biological process that results from the cumulation of several steps              

leading eventually to the formation of crossovers that can be detected experimentally. Our study              

exemplifies how a genetical approach can help to separate out these different stages and their               

genetic determinisms. Further work is needed to get a more detailed picture of the genetic control of                 

recombination and will likely require combining multiple inferences from genetics, cytogenetics,           

molecular biology and bioinformatics analyses. 
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Tables 
 
 
 

Chromosome Window span (Mb) p-value /cρs  

3 109-110 6.4 10​-5 0.31 

6 35-38 2.3 10​-7 0.22 

10 29-30 1.0 10​-4 0.32 

10 36-37 2.7 10​-7 0.22 

10 42-44 3.8 10​-12 0.13 

13 63-64 9.3 10​-5 0.32 

10 72-73 6.0 10​-10 6.2 

12 4-5 7.4 10​-6 3.8 

20 28-29 3.3 10​-6 3.9 

23 10-11 7.7 10​-7 4.3 

 
Table 1. Genome regions were meiotic and population-based recombination rates differ           
significantly. : population-based recombination rate, c: meiotic recombination rate. : ratio of ρs         /cρs    
population to meiotic recombination rate. Details on the estimation of these parameters are given in               
the text. Regions with p-values  10​-4​ were considered outliers (FDR = 0.02).≤  
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Table 2. Decomposition of the inter-individual variation in Genome-wide Recombination Rate.  

Phenotype Number of sires Genetic 
Variance 

Phenotypic 
Variance 

Heritability 

GRR 345 6.86 
(0.75) 

29.73 
(0.84) 

0.23 
(0.02) 

 
Genetic variance, phenotypic variance and heritability of GRR among 345 male individuals. Figures             
in brackets are standard errors. 
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Table 3 : SNPs associated with GRR. 

SNP name 
(n° rs) Chromosome Position 

(pb) 
Minor 
allele Frequency β 

effect Pvalue pQTL 

rs419107626 1 268604660 T 0.24 -2.94 2.83 10​-6 0.18 

rs411987057 6 116517201 C 0.22 -2.44 1.12 10​-18 0.31 

rs401206888 6 116525109 T 0.22 -2.44 1.08 10​-18 0.29 

rs412583165 6 116525709 C 0.25 -2.53 8.96 10​-19 0.24 

rs430346236 7 22730150 C 0.22 4.14 2.18 10​-8 0.44 

rs413147562 7 22798236 A 0.17 2.17 5.86 10​-8 0.51 

3 SNPs, whose the most significant, from chromosome 6 are highly associated with GRR.              
Additional loci were found on chromosome 1 and 7. P-values are given for a Wald test of an animal                   
model with SNP genotype fitted as a fixed effect. β corresponds to the effect of SNP on GRR and                   
pQTL corresponds to the probability for the SNP to be a QTL. 
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Table 4 : Detected mutations in the RNF212 gene. 

Mutation name Bases 
change 

Positions on 
v3.1 Sheep 

genome 

Positions 
on ​OA 

Musimon 
genome 

Rebuilt 
positions 
on v3.1 
Sheep 

genome 

Frequenc
y 

β 
effect Pvalue pQTL 

RNF212_14431
_AG A>G 

contig 
Un_JH92297

0:5925 

Scaffold0
1089:132

229 

6:116786
13 0.14 -2.15 5.77 10​-16 0.34 

RNF212_18411
_GA G>A 6:116438363 

Scaffold0
1089:136

209 

6:116825
93 0.14 -2.16 2.76 10​-15 0.29 

RNF212_22570
_CG C>G 6:116442942 

Scaffold0
1089:140

368 

6:116867
52 0.13 -2.24 2.54 10​-15 0.33 

RNF212_22594
_AG A>G 6:116442966 

Scaffold0
1089:140

392 

6:116867
76 0.12 2.38 0.443 0.18 

Detected polymorphisms in the RNF212 gene, after sequencing of key animals. Then, their             
association with the phenotype was tested through a GWAS on the 266 animals for which the                
mutations were genotyped. The positions on v3.1 Sheep genome correspond to the real mutations              
positions on the genome before the integration of the ​OA Musimon scaffold, the first mutation is the                 
only one which is localized in a non assembly contig. On the other hand, rebuilt positions correspond                 
to the supposed mutations positions after the integration of the scaffold in the Sheep genome. As for                 
the Table 3, p-values are given for a Wald test, β corresponds to the effect of the mutation on GRR                    
and pQTL corresponds to the probability for the mutation to be a QTL. 
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Figures 
 
 

Figure 1 : Families used to infer crossovers events ​. Crossover events were identified in              
meioses of 345 focal individuals (FIDs). 281 FID had their father known (left) while 64 FID                
did not (right).  
 
Figure 2 : Comparison between population-based recombination rate and meiotic          
recombination rate for two 1 Mb windows on Sheep chromosome 24. ​Top: meiotic             
recombination rate along chromosome 24. Two windows with high (left,red) and low            
(right,blue) meiotic recombination rates estimates are zoomed in. Each panel represents, from            
top to bottom: meiotic recombination rate estimates (c) in SNP intervals of the 50K SNP               
array, population-based recombination rate estimates (ρ) in SNP intervals of the 50K SNP             
array and population-based recombination rate estimates (ρ) in SNP intervals of the HD             
(~600K) SNP array.  
 
Figure 3: Population-based and meiotic recombination rates in windows of one           
megabase. ​The dashed line is the regression for population recombination rate on the family              
recombination rate. Values are shown on a logarithmic scale.  
 
Figure 4: Genome-wide association study identifies three main QTLs for GRR. Top:            
-log10 (p-value) for single SNP tests for association. The genome-wide significance level            
(FDR=5%) is represented by the horizontal dotted line. Bottom: posterior probability that a             
region of 20 SNPs harbors a QTL, using a Bayesian multi-QTL model. 
 
Figure 5 : Recombination intensity in Soay males compared to Lacaune males, for each              
chromosome. ​For each chromosome a linear regression of the Lacaune (male) recombination            
rate on the Soay (male) recombination rate was fitted. Left plot shows the resulting slopes for                
each chromosome. The solid vertical line correspond to a slope of 1 (identical recombination              
rates). The dashed line to the median across chromosomes. Right plot shows the resulting              
slopes as a function of the average recombination rate in Lacaune.  
 
Figure 6 : Comparison of GWAS results for the OAR 6 QTL between Soay (top) and                
Lacaune (bottom). ​Top : -log10(p-value) for single SNP test association for the            
sex-averaged Soay. Bottom : the same representation for Lacaune males. The star point             
corresponds to the most associated SNP on Soay, the square point corresponds to the most               
associated SNP on Lacaune. The vertical dark line highlights the position of the ​RNF212              
gene.  
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Supplementary Figures 
 

Figure S1. Patterns of recombination along Sheep autosomes. ​Left: recombination rate of            
one megabase windows along metacentric chromosomes (1,2,3). Center: recombination rate          
of one megabase windows along acrocentric chromosomes (4-26). Right: recombination rate           
of one megabase windows against distance to nearest chromosome end. 
 
Figure S2. Recombination rates of Sheep autosomes. ​Left: from recombination rate           
estimates in windows of one megabase. Right: from recombination rate estimates in SNP             
array intervals. Top: for each chromosome. Bottom: as a function of chromosome physical             
size. Dotted line: c = f(log(size)), dashed line: c = f(1/size)​. 
 
Figure S3. Genomewide distribution of recombination rate using the approach of           
Sandor et al. (2012). These estimates were calculated from observed crossover frequencies.            
Fitting a gamma distribution on the observed estimates (red line) provided a prior distribution              
for the subsequent Bayesian inference on recombination rates (parameters given in the box).             
See methods for details. 
 
Figure S4. Distribution of recombination intensities among intervals of the HD SNP            
array. The green curve represents the distribution under the null hypothesis that there is no               
hotspots (log10(λ​i​) = 0). It is estimated by fitting a mixture of Gaussian distribution to the                
observed distribution and extracting the relevant component. Intervals where recombination          
intensity was particularly high (FDR = 5%) were considered as harbouring recombination            
hotspots and are shown in red.  
 
Figure S5 : Distribution of recombination on the genome. ​The figure represents the             
proportion of the physical genome size affected by recombination, for increasing coverage of             
the genetic map. 60% of recombination events occur in only 20% of the genome (in green)                
and 80% of recombination events occur in about 40% of the genome (in red). 
 
Figure S6 : Validation of imputed genotypes for the GWAS. ​The figure shows the              
proportion of correct genotype calls as a function of their posterior probability calculated             
with BIMBAM 
 
Figure S7: Local alignments of the Sheep and Human genome around the OAR7 QTL              
region. ​Dotplot of the alignements of sheep OAR7 on human HSA14. Vertical cyan bars are               
located at significant SNP positions. Three functional candidate genes surrounding the           
association signal (shaded) are indicated. 
 
 
Figure S8: Relative intensity of population to meiotic recombination rates in windows of             
1 Mb along the sheep genome. 
 
Figure S9: Individual variation in recombination rates among Lacaune Males. ​Additive           
genetic values on Genome-wide Recombination Rate genetic for all Lacaune sires of our             
dataset (in black) and for the 345 FID (in grey). The vertical black line is placed at the mean. 
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Figure S10 : Linkage disequilibrium between ​RNF212 polymorphisms and chromosome          
6 QTL SNPs. ​The top figure represents the mRNA and the protein of ​RNF212​ . The four                
genotyped mutations are indicated : the two first are intronic and the two others are exonic.                
We replace the gene on a zoom on the chromosome 6 QTL (middle figure). The four left                 
solid lines highlight the mutations, whereas the dashed lines represent the 3 most significant              
SNPs. Middle points show the intermediate SNPs between the mutations and the significant             
SNPs. Finally, the figure at the bottom indicates the pairwise LD between the mutations and               
all the SNPs presented on the middle figure. It highlights two haplotype blocks : one between                
the 3 most significant mutations and another between the 3 most significant SNPs. 
 

   
Figure S11 : ​RNF212 gene structure in various species. ​RNF212 gene is not annotated on               
the ovine reference genome Oar_v3.1, but can be located at the telomeric end of OAR6               
(116,4Mb) by homologies (dashed lines) with the ​RNF212 gene from Ovis aries musinon             
(Oor1_1.0). Some anotated predicted non-coding RNA sequence (nc_RNA in brown) were           
part of the ​RNF212 sequence. The ovine ​RNF212 gene is also partly present in the unplaced                
scaffold005259, that can be virtually located in the largest assembly gap (in blue). In Ovis               
orientalis musimon, the ​RNF212 gene exibited 14 putative exons with alternative splicing            
(mRNA models in green). Homology analysis (dashed lines) with annotated ​RNF212 gene in             
other ruminant species (bovine on BTA6 and caprine on CHI6) indicated a good gene              
structure conservation between ovine and bovine ​RNF212​ , but only a partial conservation            
with goat ​RNF212​ , where the six last predicted exons match with intronic region in ovine.               
When compared to human ​RNF212 on HSA4 and mouse ​RNF212 on MMU5 chromosomes,             
only four to five exons are conserved with ruminants indicated a non-conserved gene             
structure. Red lines located SNP associated with global recombination rate (GRR) in the             
present study, and those previously shown in bovine (Sandor et al. 2012; Kadri et al. 2016) ,                 
in human (Kong et al. 2008; Chowdhury et al. 2009; Fledel-Alon et al. 2011; Kong et al.                 
2014) and in mouse (Fujiwara et al. 2014). Gene scales are in base pair and gene structures                 
were constructed with CLC Main Workbench software v7.7.3 using the NCBI query module             
(Qiagen Aarhus).  
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