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Proteins are one of the primary functional units in biology. Protein levels 
within a cell directly influence rates of enzymatic reactions and pro-

tein-protein interactions. Protein concentration depends on the balance be-
tween several processes including transcription and processing of mRNA, 
translation, post-translational modifications, and protein degradation. 
The proteome within a cell is highly dynamic, and changes in response 
to different environmental conditions and stresses. Indeed, protein levels 
directly influence cellular processes and molecular phenotypes, contribut-
ing to the variation between individuals and populations (Wu et al. 2013). 
	 Given the influence that changes in protein levels have on cellular phe-
notypes, reliable quantification of all proteins present is necessary for a 
complete understanding of the functions and processes that occur within 
a cell. The first analyses of protein abundance relied on measurements of 
gene expression, and due to the relative ease of measuring mRNA levels, 
protein abundance levels were inferred from global mRNA quantification 
by microarray technologies (Spellman et al. 1998; Lashkari et al. 1997). 
Since proteins are influenced by various post-transcriptional, transla-
tional, and degradation mechanisms, accurate measurements of protein 
concentration require direct measurements of the proteins themselves.   
	 The most comprehensive proteome-wide abundance studies have been 
applied to the budding yeast model organism, Saccharomyces cerevisiae, 
whose proteome is currently estimated at 5858 proteins [Saccharomy-
ces Genome Database, www.yeastgenome.org, accessed October 28, 
2016]. Several methods for quantifying protein abundance have been 
employed, including tandem affinity purification (TAP) followed by 
immunoblot analysis, mass spectrometry (MS), and green fluorescent 
protein (GFP) tag–based methods. The generation of a yeast collection 
with each open reading frame (ORF) fused with a TAP tag allowed for 
one of the first global analyses of protein expression in yeast. Immu-
noblot and chemiluminescence detection of yeast extracts containing 
TAP-tagged proteins was performed, and absolute protein abundance 
determined by comparison to internal standards (Ghaemmaghami et al. 

2003). Mass spectrometry further advanced global analysis of protein 
copy number in cells. The advantage of mass spectrometry-based ap-
proaches is that they do not require tagged proteins for quantification. 
Targeted proteomic approaches, including total ion signal, internal scal-
ing, and selected reaction monitoring, have been used to quantify protein 
levels (Liebler & Zimmerman 2013). Collectively, TAP-immunoblot 
and mass spectrometry analyses of global protein expression provide 
highly sensitive measurements and 87% coverage of the yeast proteome.  
	 While protein concentration largely influences cellular processes, 
protein localization has emerged as another important factor in protein 
functionality, prompting the construction of a yeast collection where each 
ORF is tagged with a GFP protein (Huh et al. 2003). This system allows 
simultaneous measurements of GFP-tagged protein intensity, as a proxy 
for protein abundance, and localization. The GFP strain collection has 
been extensively used to understand the cellular response to a variety of 
environmental conditions that include DNA damage, osmotic stress, star-
vation, and oxidative stress (Lee et al. 2007; Davidson et al. 2011; Tkach 
et al. 2012; Denervaud et al. 2013; Breker et al. 2013; Mazumder et al. 
2013; Chong et al. 2015). GFP-based measurements of protein abundance 
typically correlate well with both TAP-immunoblot and mass spectrom-
etry based approaches, suggesting that GFP fluorescence intensity is a 
reliable reporter for protein abundance (Torres et al. 2016). High-through-
put microscopic studies have provided a comprehensive view of the 
plasticity of the yeast proteome under genetic and chemical perturbation 
(Tkach et al. 2012; Denervaud et al. 2013; Breker et al. 2013; Mazum-
der et al. 2013; Chong et al. 2015; Koh et al. 2015; Breker et al. 2014). 
	 Existing protein abundance studies correlate well with one another, yet 
it remains difficult to derive reliable and accurate measurements of the 
abundance of any one protein, or of protein abundance across the pro-
teome, from any one study. Only five existing data sets quantify protein 
abundance in molecules per cell (Ghaemmaghami et al. 2003; Kulak et al. 
2014; Lu et al. 2007; Peng et al. 2012; Lawless et al. 2016), and no single 
study offers full coverage of the proteome. Proteome-scale abundance 
studies of the yeast proteome in the literature currently number nineteen 
(Ghaemmaghami et al. 2003; Newman et al. 2006; Lee et al. 2007; Lu 
et al. 2007; de Godoy et al. 2008; Davidson et al. 2011; Lee et al. 2011; 
Thakur et al. 2011; Nagaraj et al. 2012; Peng et al. 2012; Tkach et al. 2012; 
Breker et al. 2013; Denervaud et al. 2013; Mazumder et al. 2013; Webb et 
al. 2013; Kulak et al. 2014; Chong et al. 2015; Lawless et al. 2016; Yofe et 
al. 2016), providing an opportunity for comprehensive analysis of protein 
abundance in a eukaryotic cell. We describe such an analysis, incorporat-
ing all existing global studies of protein expression in yeast. We provide 
a single protein abundance estimate for each of 5702 proteins, covering 
97% of the yeast proteome. We evaluate the protein concentration ranges 
that are most effectively measured by the existing methodologies. We find 
that two-thirds of the proteome is expressed within a narrow concentration 
range of 1000-5000 molecules per cell. Finally, we note that C-terminal 
fusion tags have only a modest effect on protein abundance.

Materials and Methods
Data Collection and Processing
We gathered 19 data sets from published studies measuring protein abun-
dance across the yeast proteome, either reported in arbitrary units or in 
molecules per cell (Ghaemmaghami et al. 2003; Newman et al. 2006; Lee 
et al. 2007; Lu et al. 2007; de Godoy et al. 2008; Davidson et al. 2011; 
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Lee et al. 2011; Thakur et al. 2011; Nagaraj et al. 2012; Peng et al. 2012; 
Tkach et al. 2012; Breker et al. 2013; Denervaud et al. 2013; Mazumder et 
al. 2013; Webb et al. 2013; Kulak et al. 2014; Chong et al. 2015; Lawless 
et al. 2016; Yofe et al. 2016). Throughout our analysis, we used designated 
codes to refer to each study (Table 1). Unperturbed measurements derived 
from (Chong et al. 2015) are the mean of the three technical replicates 
in their study, and for stress conditions the 160 minute data for hydroxy-
urea and the 700 minute data for rapamycin were used. Measurements in 
unperturbed cells derived from (Denervaud et al. 2013) are the mean of 
all time points prior to their treatment condition. For (Peng et al. 2012), 
the average of all data was used. For (Webb et al. 2013), the average of 
the emPAI values from the three micro MudDPIT replicates was used. 
	 For the purposes of our analysis, we consider the yeast proteome to 
consist of 5858 proteins [Saccharomyces Genome Database, www.
yeastgenome.org, accessed October 28, 2016], encoded by 5157 verified 
ORFs and 701 uncharacterized ORFs. We excluded 746 dubious ORFs, 
as defined in the Saccharomyces Genome Database, from our analysis. 
Although some had peptides detected by mass spectrometry as annotated 
in the PeptideAtlas (http://www.peptideatlas.org) and Global Protein Ma-
chine (GPM, http://www.thegpm.org) databases, only 6 had good evidence 
for expression as defined by GPM. Proteins encoded by transposable ele-
ments, although readily detected, are not included in our analysis because 
most do not map to a unique ORF. Abundance data were called out of each 
of the 19 datasets using the 5858 protein ORFeome (Table S1).

Data Transformation and Assessing Correlation
The natural logarithm was taken for each data set, since this is approximate-
ly normally distributed and thus suitable for linear regression analyses. All 
analyses and calculations were performed on natural log transformed data, 
unless specified otherwise. The Pearson correlation coefficient (r) was 
used for all correlation analyses in our study. 

Normalization of Arbitrary Unit Abundance Values 
Mode shift normalization was applied to all studies that measured relative 
protein abundance and reported values in arbitrary units (Table 1). Each 
study that required normalization was natural log transformed and divid-
ed into 50 bins of equal abundance range. The median value of the bin 
with the greatest number of observations (values reported) was defined 
as the mode of the distribution. A scalar value was applied to each study 
to shift the mode to an arbitrarily chosen value of 100 arbitrary units. 
Mode shift normalized values were used for the remainder of the analysis.  
	 For comparison to the mode shift normalization, studies were also quan-
tile normalized and center log ratio transformed. For quantile normaliza-
tion, proteins with a reported measurement from every study were retained 
for analysis, and quantile normalization was performed as described (Qiu 

et al. 2013). To normalize data sets by the center log ratio transformation 
method, arbitrary abundance measurements for each protein from each 
study were divided by the geometric mean and log10 transformed: center 
log ratio = log10 ( Xi / geometric mean (X)).

Converting Protein Abundance From Arbitrary Units to Mol-
ecules per Cell
Mean protein abundance for each ORF was calculated for the four mass 
spectrometry-based studies reporting absolute protein abundance (Lu et al. 
2007; Peng et al. 2012; Kulak et al. 2014; Lawless et al. 2016). We used the 
mean values as our calibration set (Table S1), as all four studies measured 
untagged proteins and reported protein abundance in molecules per cell. 
The mean abundance for each protein was natural log transformed and a 
least-squares linear regression was fitted between the calibration set and 
the natural log transformed mean mode-shifted arbitrary units, resulting in 
the following equation:

			   MPC=1.074 × IAU+1.039

Protein molecules per cell (MPC) were then estimated from arbitrary inten-
sity units (IAU) by applying the linear regression model to each individual 
dataset reported in arbitrary units.

Calculating Coefficients of Variation
For each ORF, the coefficient of variation (CV) was calculated by:

			   CV= ( SDORF/Mean ) × 100

The CV was calculated for each ORF when at least two measurements 
were reported.

Outlier Detection between GFP and Mass Spectrometry 
Studies
The mean abundance value for each ORF was calculated for MS- and 
GFP-based studies. A least squares linear regression model was fitted be-
tween these variables. This regression was used to identify point leverage 
by calculating hat values, outliers by calculating studentized residuals, 
and influential observations by calculating Cook’s distance. Outliers were 
defined as observations with studentized residuals greater than 2 or less 
than -2. 

Gene Ontology Term Enrichment
GO term analysis was performed using the GO term finder tool (http://
go.princeton.edu/) using a P-value cutoff of 0.01 and applying Bonferroni 
correction, querying biological process or component enrichment for each 
gene set. After removing high frequency terms (>10% of background gene 
set), GO term enrichment results were further processed with REViGO 
(Supek et al. 2011) using the “Medium (0.7)” term similarity filter and 

Abbreviation Reference Type of Study Detection Abundance 
measure

Media Temp Growth 
phase

LU Lu et al. 2007 [32] Mass spectrometry label-free spectral counting absolute YPD 30°C mid-log
PENG Peng et al. 2012 [40] Mass spectrometry label-free spectral counting and 

ion volume based quantitation
absolute Minimal early log

KUL Kulak et al. 2014 [25] Mass spectrometry label-free spectral counting absolute YPD 30°C mid-log
LAW Lawless et al. 2016 [27] Mass spectrometry stable-isotope labeled internal 

standards and selected reaction 
monitoring

absolute Minimal chemostat

DGD de Godoy et al. 2008 [12] Mass spectrometry SILAC and ion chromatogram 
based quantification

relative Minimal mid-log

LEE2 Lee et al. 2011 [28] Mass spectrometry isobaric tagging and ion intensities relative YPD 30°C mid-log

THAK Thakur et al. 2011 [48] Mass spectrometry summed peptide intensity relative Minimal mid-log
NAG Nagaraj et al. 2012 [36] Mass spectrometry spike-in SILAC relative YPD 30°C mid-log
WEB Webb et al. 2013 [58] Mass spectrometry label-free spectral counting relative YPD 30°C mid-log
TKA Tkach et al. 2012 [50] GFP-microscopy live cells; confocal relative Minimal 30°C mid-log
BRE Breker et al. 2013 [5] GFP-microscopy live cells; confocal relative Minimal 30°C mid-log
DEN Denervaud et al. 2013 [13] GFP-microscopy live cells; wide field relative Minimal 30°C steady-state
MAZ Mazumder et al. 2013 [33] GFP-microscopy fixed cells; wide field relative Minimal 30°C mid-log
CHO Chong et al. 2015 [8] GFP-microscopy live cells; confocal relative Minimal 30°C mid-log
YOF Yofe et al. 2016 [61] GFP-microscopy N-teminal GFP; live cells; confocal relative Minimal 30°C mid-log
NEW Newman et al. 2006 [37] GFP-flow cytometry live cells relative YPD 30°C mid-log
LEE Lee et al. 2007 [29] GFP-flow cytometry live cells relative YPD 30°C mid-log
DAV Davidson et al. 2011 [11] GFP-flow cytometry live cells relative YPD 30°C mid-log
GHA Ghaemmaghami et al. 2003 [19] TAP-immunoblot SDS extract; immunoblot with 

internal standard
absolute YPD 30°C mid-log

Table 1. The nineteen protein abundance datasets considered
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simRel score as the semantic similarity measure.

Spatial Analysis of Functional Enrichment (SAFE)
Functional annotation of protein abundance measurements on available 
genetic similarity networks constructed by Constanzo et al. (2016) was 
performed as previously described (Baryshnikova 2016), using Cytoscape 
v3.4.0 (Cline et al. 2007; Shannon et al. 2003).

All statistical analysis, data manipulation, and data visualization was per-
formed in R (https://www.r-project.org).

Results
Comparisons of global quantifications of the yeast proteome
With 19 global quantitative studies of the yeast proteome (Ghaemmagha-
mi et al. 2003; Newman et al. 2006; Lee et al. 2007; Lu et al. 2007; de 
Godoy et al. 2008; Davidson et al. 2011; Lee et al. 2011; Thakur et al. 
2011; Nagaraj et al. 2012; Peng et al. 2012; Tkach et al. 2012; Breker et 
al. 2013; Denervaud et al. 2013; Mazumder et al. 2013; Webb et al. 2013; 
Kulak et al. 2014; Chong et al. 2015; Lawless et al. 2016; Yofe et al. 2016), 
14 of which are reported in arbitrary units, we sought to derive absolute 
protein molecules per cell for the proteome for each data set and analyze 

Figure 1. Scatterplot matrix of pairwise comparisons between protein abundance studies. Protein abundance measurements from 19 studies were 
natural log transformed and each pairwise combination was plotted as a scatterplot (bottom left). The least squares best fit for each pairwise comparison 
is shown (red line). The corresponding Pearson correlation coefficient (r) for each pairwise comparison is shown (top right) and shaded according to the 
strength of correlation. Mass spectrometry-based studies are indicated in orange, and GFP-based studies are indicated in green. Each abundance study 
is indicated by a letter code as described in Table 1.
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the resulting data. We extracted the raw protein abundance values from 
the 19 datasets (Table S1) for the 5858 proteins in the yeast proteome, 
and compared the values (absolute abundance or arbitrary units) from each 
study with one another, resulting in 171 pairwise correlation plots (Figure 
1). The studies agree well with one another, with Pearson correlation coef-
ficients (r) ranging from 0.46 – 0.96. Notably, all studies with abundance 
measurements derived from GFP fluorescence intensity correlate better 
with one another than they correlate with the TAP-immunoblot or mass 
spectrometry-based studies. 

Protein copy number in S. cerevisiae
The most intuitive expression of protein abundance is molecules per cell. 
In order to convert all 19 datasets to a common scale of molecules per 
cell we had to first normalize the datasets and then apply a conversion 
factor to those data not expressed in molecules per cell. The experimental 
design, data acquisition and processing for the different global proteome 
analyses differ between studies. Moreover, the method for calculating 
GFP fluorescence intensity differs between high-throughput microscopic 
analyses. For example, (Chong et al. 2015) measured mean GFP intensity 
whereas (Tkach et al. 2012) calculated the integrated GFP intensity. As a 
result, protein abundance is reported on drastically different scales (Figure 
S1A). We tested three different methods to normalize all the data reported 
in arbitrary units (mode shifting, quantile normalization, and center log 
ratio transformation).  The results of all three methods of normalization 
correlate very highly with one another (r = 0.96 – 0.97) indicating that 
the protein abundance values we calculate are largely independent of the 
specific normalization technique applied (Figure S1B). We also consid-
ered a normalization scheme where each protein is quantified relative 
to all other proteins in the dataset, as was done in PaxDb (Wang et al. 
2012; Wang et al. 2015). While this relative expression of abundance 
(parts per million) has the advantage of being independent of cell size 

and sample volume, it makes comparison between different datasets 
difficult if the datasets measure different numbers of proteins. Thus, the 
parts per million normalization alters the pairwise correlations between 
datasets (Figure S2). By contrast, normalization by mode-shifting or 
center log ratio transformation allows comparison between datasets by 
expressing them on a common scale (Figure S1) and preserves the cor-
relations that are evident in the raw data (Figure S2). Normalization by 
mode-shifting or center log ratio transformation also allows us to retain 
proteins whose abundance is not reported in all data sets in our aggre-
gate analysis, thereby affording the greatest possible proteome coverage.  
	 Currently five protein abundance data sets are reported in molecules 
per cell, four of which are mass spectrometry–based studies and one of 
which used an immunoblotting approach (Lu et al. 2007; Peng et al. 2012; 
Kulak et al. 2014; Lawless et al. 2016; Ghaemmaghami et al. 2003). The 
four mass spectrometry studies correlate well with one another (r = 0.64 
to 0.81; Figure 1) and all measure native unaltered proteins, and so we 
reasoned that they could be used to generate a conversion from relative 
protein abundance in arbitrary units, to molecules per cell. We used the 
mean of these four data sets as a calibration dataset to convert every 
other dataset to molecules per cell. Although it is difficult to discern the 
accuracy of the protein abundance values in the calibration dataset, we 
find that the median difference between the calibration dataset values and 
the protein abundance values reported for 38 proteins in two small scale, 
internally calibrated studies (Picotti et al. 2009; Thomson et al. 2011), 
was 1.6-fold (Table S2), suggesting that protein abundance measurements 
from large scale studies are similar to those from smaller scale studies.  
	 To convert all datasets to molecules per cell, a least-squares linear re-
gression between the natural log transformed calibration dataset (reported 
in molecules per cell) and the natural log transformed mode-shifted or cen-
ter log transformed studies (reported in arbitrary units) was generated. The 
correlation between the calibration dataset and the aggregate mode-shifted 

Figure 2. Protein abundance in nineteen data sets, in absolute molecules per cell. (A) The nineteen protein abundance data sets were normalized 
and abundance measurements were converted to molecules per cell and plotted. The mean protein abundance value, in molecules per cell, was cal-
culated for each protein, and the proteins were ordered by increasing mean abundance on the x-axis. (B) Detected and quantified proteins from each 
study are highlighted (blue) and plotted with the abundance measurements from all nineteen data sets (grey). Proteins are ordered by increasing mean 
abundance along the x-axis. Letter codes are as in Table 1. Mass spectrometry-based studies are indicated in black text, GFP-based studies in green, 
and the TAP-immunoblot study in orange.
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dataset was similar to the center log transformed dataset (Figure S1C) 
but had a lower sum of standardized residuals, so we proceeded with 
normalization by mode-shifting. Conversion of GFP measurements to 
molecules per cell resulted in a unified dataset covering 97% of the yeast 
proteome (Table S3). Of the 5858 protein proteome, only 156 proteins 
were not detected in any study (Table S4). The 156 proteins are enriched 
for uncharacterized ORFs (hypergeometric p = 6.9 x 10-81) and for genes 
involved in proton transport and glucose import (p = 5.9 x 10-5 and p = 
0.0080, respectively). 353 proteins were detected in only a single study. 
	 In general, there is agreement in the molecules per cell for each protein 
among the data sets analyzed in our study, with protein abundances ranging 
from 5 to 1.3 x 106 molecules per cell (Figure 2A and Table S3). Notably, 
the mass spectrometry-based analysis by Kulak et al. exhibits the greatest 
sensitivity, reportedly capable of measuring less than 50 molecules per cell, 
and has the greatest detection range (Kulak et al. 2014). Many studies only 
provide values of protein copy number above ~2000 molecules per cell 
(Figures 2B and 3A). In particular, the GFP fluorescence–based studies 
tend to have a limited ability to detect low abundance proteins, likely be-
cause cellular autofluorescence presents a large obstacle to measuring the 
levels of low abundance proteins. In fact, one GFP-based study removed 
proteins whose fluorescence was close to background from their analysis 
(Chong et al. 2015), and in all GFP-based studies there are few values 

reported below 1000 molecules per cell (1794 values of 32318 reported).  
	 Genetic interaction networks have been extensively characterized 
in yeast, mapping genes and pathways into functional modules (Cos-
tanzo et al. 2016). We used spatial analysis of functional enrichment 
(SAFE) (Baryshnikova 2016) to identify the regions of the genetic 
interaction similarity network (Costanzo et al. 2016) that are enriched 
for high and low abundance proteins in our normalized protein abun-
dance dataset (Figure 3B). We found high abundance proteins were 
specifically overrepresented in network regions associated with cell 
polarity and morphogenesis, and with ribosome biogenesis (Figure 
3B, orange).  Low abundance proteins were overrepresented in the 
region associated with DNA replication and repair (Figure 3B, teal). 
	 GO-term enrichment analysis yielded results consistent with SAFE 
analysis. The decile comprising the least abundant proteins was enriched 
for DNA recombination (p = 2.7 x 10-3) and protein ubiquitination (p = 
1.3 x 10-4), perhaps reflecting a limited requirement for these processes 
during unperturbed cell proliferation. The most highly expressed proteins 
tended to be proteins involved in translation in the cytoplasm (p = 3 x 
10-122) and related processes, consistent with the key role of protein biosyn-
thetic capacity in cell growth and division (Warner 1999; Volarevic et al. 
2000; Jorgensen et al. 2002; Bernstein and Baserga 2004; Yu et al. 2006; 
Bjorklund et al. 2006; Teng et al. 2013).

Figure 3. Distributions of protein abundance and functional enrichment. (A) The distribution of yeast protein abundance, as measured in each 
independent study in molecules per cell, is plotted, with the first quartile (Q1), median, and third quartile (Q3) indicated by horizontal bars. The areas of 
the violin plots are scaled proportionally to the number of observations. Mass spectrometry– , GFP–, and TAP immunblot–based studies are coloured 
in grey, green, and orange, respectively. The number of proteins detected and quantified by each study is also indicated. (B) SAFE annotation of the 
yeast genetic interaction similarity network (Costanzo et al. 2016) with protein abundance data.  The protein abundance enrichment landscape is shown. 
Coloured nodes represent the centers of local neighborhoods enriched for high or low abundance proteins, shaded according to the log enrichment score. 
The outlines of the GO-based functional domains of the network where protein abundance enrichment is concentrated are shown.
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Figure 4. Variability of each protein abundance measurement. 
Proteins were ordered by increasing mean abundance and then 
binned into deciles. The coefficient of variation was calculated for 
each protein and plotted. The protein abundance levels associated 
with each bin are indicated below the scatter plot, as is the median CV 
for each bin. The red lines indicate the third quartile, the median, and 
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Variance in protein abundance measurements 
Since each of the 19 studies in our analysis independently measured protein 
concentration using different methodologies and analyses, we explored 
the variation in reported values for each ORF among the 19 experiments. 
We calculated the coefficient of variation (CV; standard deviation / mean, 
expressed as a percentage) across the yeast proteome. The greatest median 
CVs were exhibited by proteins with the lowest and the highest abundance 
(Figure 4). While many factors can contribute to variation in the data, (e.g., 
experimental design, differences in media composition and acquisition 
of data) variation is the least for protein abundances between ~1000 and 
~2000 molecules per cell, and the lowest median CV values are reported 
for abundances ranging from 1151 – 1337 molecules per cell. 

Comparison of RNA expression and translation rates to 
protein abundance
For most proteins, expression appears to be tightly regulated to maintain 
levels within an appropriate range of copies per cell. To determine the con-
tribution of RNA expression to steady-state protein levels, we compared 
protein copy number per cell to mRNA levels from three microarray and 
three RNA-seq datasets (Roth et al. 1998; Causton et al. 2001; Lipson et al. 
2009; Nagalakshmi et al. 2008; Yassour et al. 2009). In general, our protein 
abundance values correlate with mRNA levels as measured by microar-
ray (r = 0.60 – 0.68) and RNA-seq (r = 0.65 – 0.75) (Figure 5A). Higher 
correlations between mRNA and protein abundance have been reported 
(r = 0.66 - 0.82) (Futcher et al. 1999; Greenbaum et al. 2003; Franks et 
al. 2015) in studies using less comprehensive protein abundance datasets 
(2044 proteins at most), suggesting that a more complete view of the 
relationship between transcript and protein abundance could be obtained 
using our more comprehensive protein abundance dataset. In addition to 
capturing a large fraction of mRNA abundance variance, our protein abun-
dance dataset correlates well with translation rates derived from ribosome 
profiling studies (McManus et al. 2014) (r = 0.71, Figure 5B).

Protein fusion tags have limited effect on native protein 
abundance
The yeast strains used to measure protein abundance and localization by 
GFP fluorescence all express proteins with C-terminal fusions to GFP (Huh 
et al. 2003), with the exception of the Yofe et al. study, which analyzed 
1554 N-terminal GFP fusions (Yofe et al. 2016). C-terminal fusion to GFP 
sequences adds an extra 27 kDa to the native protein, alters the identity of 
the C-terminus, and changes the DNA sequence of the 3’ untranslated re-
gion of the gene. Evidence suggests that fusion to GFP has a limited effect 
on the intracellular localization of the proteome (Huh et al. 2003), although 

a fraction of the proteome is inaccessible with C-terminal tags (Yofe et al. 
2016). The effect of fusion to GFP on protein abundance has yet to be ex-
amined systematically. We reasoned that proteins whose expression differs 
greatly between mass spec data sets (which measure native proteins) and 
GFP data sets are likely affected by the presence of the tag. We compared 
the mean ln abundance between mass spectrometry and GFP-based abun-
dance studies. Since they correlate well (r = 0.68), we fitted a least squares 
linear regression model through the ln-transformed data. We used a stu-
dentized residuals threshold approach, defining proteins with studentized 
residuals greater than 2 and less than -2 as outliers (Figure 6 and Table S5). 
A total of 260 proteins were identified, with 107 proteins exhibiting great-
er abundance in the native protein state, ranging from 5-fold to 221-fold, 
compared to the GFP-tagged protein (Figure 6B, C). The 107 proteins were 
enriched for ribosome components (29 proteins; p =  1.1 x 10-11), suggesting 
that caution is warranted when tagging ribosome subunits. Sixty-two of the 
107 proteins with reduced abundance when GFP-tagged have also been 
assessed as C-terminal fusions to the 21 kDa TAP-tag (Ghaemmaghami et 
al. 2003). Of the 62, 37 proteins also had reduced abundance (by at least 
2-fold) when TAP-tagged, suggesting that these proteins, again enriched 
for ribosome components (14 proteins; p = 8.5 x 10-7), are either destabi-
lized by the presence of any protein tag at the C-terminus, or require their 
native 3’ UTR for mRNA stability (Figure 6D). Interestingly, 26 of the 107 
proteins with reduced abundance when C-terminal GFP-tagged were also 
assessed as N-terminal GFP fusions (Yofe et al. 2016). All but one had re-
duced abundance (by at least 2-fold) irrespective of the location of the GFP 
tag. Twenty-five proteins decreased in abundance when GFP-tagged but 
not when TAP tagged. These 25 proteins, which were not enriched for any 
GO process terms, could represent GFP-specific protein destabilization, 
or protein-specific issues with fluorescence detection (Waldo et al. 1999). 
	 We also observed 153 outliers that had greater abundance in GFP studies 
than in mass spectrometric analyses, by 1.5-fold to as much as 2700-fold. 
While it is possible that a GFP-fusion tag could cause an increase in the 
abundance of a given protein, perhaps by increasing protein stability, one 
likely explanation is that many of these proteins are in low copy number 
per cell and therefore below the accurate detection limit for GFP fluores-
cence intensity (Figure 6C). A conservative estimate of the lower limit for 
accurate detection of GFP fluorescence intensity is the minimum number 
of molecules per cell reported in any GFP-based study, 370. Removing 
outliers with less than 370 molecules per cell as measured by mass spectro-
metric methods leaves only 31 proteins that increased in abundance when 
fused to GFP. Thus, although some specific changes in abundance occur 
for a small number of proteins upon adding additional sequences to the 
C-terminus, it appears that most yeast proteins (95% of the 5342 proteins 
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measured with C-terminal GFP tags) can tolerate C-terminal tags without 
large changes in protein expression.

Changes in protein abundance under environmental stresses
External stressors can perturb cellular processes and activate the environ-
mental stress response, a mechanism for cells to protect themselves from 
fluctuating conditions in the environment (Gasch et al. 2000; Gasch and 
Werner-Washburne 2002). High-throughput (HTP) fluorescence micros-
copy and mass spectrometry have enabled large scale analyses of the 
proteome after exposure to diverse stresses, including quiescence, DNA 
replication stress conditions, oxidative stress, nitrogen starvation, reduc-
tive stress, and rapamycin treatment. Given that protein concentration 
directly influences cellular processes and function, we were interested in 
quantifying absolute protein molecules per cell and comparing changes 
in protein levels across studies investigating condition-dependent protein 
abundance changes. To simplify the comparisons, we focused on GFP-
based studies, which are available for hydroxyurea, methyl methanesul-
fonate, oxidative stress, reductive stress, nitrogen starvation, rapamycin 
treatment, and quiescence (Davidson et al. 2011; Tkach et al. 2012; Breker 
et al. 2013; Denervaud et al. 2013; Mazumder et al. 2013; Chong et al. 
2015). Mass spectrometry datasets are available for diploid cells, heat 
shock, high salt, quiescence, and 13 different carbon sources (de Godoy et 
al. 2008; Nagaraj et al. 2012; Lee et al. 2011; Webb et al. 2013; Usaite et 
al. 2008; Paulo et al. 2015; Paulo et al. 2016), but are not considered here. 
	 Since the majority of proteins do not change in abundance in any given 
stress condition, we normalized GFP intensities from each study by the 
mode-shifting method and applied the same linear regression used previ-
ously to convert arbitrary units to protein molecules per cell (Table S6). 
We applied a cut-off for changes in protein abundance, corresponding to 
either a two-fold increase or a two-fold decrease (Table S7). At this cut-

off, which is more conservative than that used in most of the individual 
studies, 1250 of 4263 proteins assessed change in abundance in at least one 
condition: 580 proteins increase in abundance, and 744 proteins decrease 
in abundance.  The magnitude of abundance changes spans a range of 
60-fold for increases and 57-fold for decreases (Table S7; the Lee et al. 
dataset was excluded from analysis of abundance decreases as its inclusion 
results in maximum –fold decreases that greatly exceed the dynamic range 
of GFP fluorescence detection that is evident in Figure 3).  Proteins that 
increased or decreased in abundance during stress tended to be of higher 
abundance in unperturbed cells than the proteome median (Figure S3). 
	 Eighty-two percent of the abundance changes observed were specific 
to one or two conditions, suggesting significant stress-specific regulation. 
Two proteins, Hsp12 and Ynl134c, were the most universal stress respond-
ers, increasing in abundance in 9 of 11 perturbation datasets. Finally, we 
note that in the case of MMS treatment, where four datasets are available 
(Lee et al. 2007; Tkach et al. 2012; Denervaud et al. 2013; Mazumder et al. 
2013), only a single protein (Yml131w) has a statistically supported abun-
dance change greater than 2-fold when the four datasets are compared. 
Since the conditions of growth, treatment, image acquisition, and image 
analysis differ between studies, we suggest that use of standardized pro-
tocols will be the first step towards evaluating protein abundance changes 
during stress conditions.

Discussion
Here we provide a comprehensive view of protein abundance in yeast 
by normalizing and combining 19 abundance datasets, collected by mass 
spectrometry (Lu et al. 2007; de Godoy et al. 2008; Lee et al. 2011; Thak-
ur et al. 2011; Peng et al. 2012; Nagaraj et al. 2012; Kulak et al. 2014; 
Lawless et al. 2016), GFP fluorescence flow cytometry (Newman et 
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al. 2006; Lee et al. 2007; Davidson et al. 2011), GFP fluorescence mi-
croscopy (Tkach et al. 2012; Breker et al. 2013; Denervaud et al. 2013; 
Mazumder et al. 2013; Chong et al. 2015; Yofe et al. 2016), and western 
blotting (Ghaemmaghami et al. 2003). Despite different experimental 
design, conditions, and methodologies for detection and analysis, protein 
abundance correlates well between the different studies, ranging from r = 
0.46 – 0.96.  Correlation is highest among the datasets collected using GFP 
fluorescence, however the detection range of GFP intensities is limited. 
Low abundance proteins are difficult to distinguish from cellular auto-flu-
orescence, and high abundance protein intensity measurements approach 
saturation of the GFP fluorescence detection.  Our estimates of mean pro-
tein abundance could likely be improved if cellular autofluorescence levels 
were reported in the GFP intensity datasets such that low-confidence, 
low fluorescence values could be filtered. The mass spectrometry-based 
analyses provide the greatest sensitivity and dynamic range for protein 
measurements, reporting protein abundance measurements for the full 
range of abundance levels in the proteome. Collectively, our analysis sug-
gests protein abundance in the yeast proteome ranges from zero to 1.3 x 
106 molecules per cell. Interestingly, 75% of yeast proteins quantified are 
present at between 1000 and 10 000 molecules per cell, indicating that it 
is rare for proteins to be present at very high or very low copy numbers.  
	 Measurements of coefficients of variation reveal that while there is vari-
ance in abundance measurements across the entire range of abundance val-
ues, the greatest variation is exhibited at the abundance extremes. Measure-
ment of low abundance proteins is confounded by detection and resolution 
limits of all but the most sensitive mass spectrometry-based approaches. 
Highly abundant proteins likely have greater variance for two reasons: 
(1) GFP-based quantification of highly expressed proteins underestimates 
the true value due to saturation, and (2) the correlation between MS-
based studies is lesser for highly expressed proteins than it is on average. 
	 Construction of the TAP and GFP collections involved tagging the 3’ 
end of each annotated ORF, at the chromosomal locus. Our data indicate 
that C-terminal tags have little effect on the abundance of most proteins, 
since 95% (5083 of 5343) of the proteins measured showed no large 
change in abundance when tagged. Only 515 proteins are not represented 
in the C-terminal GFP datasets, and of these 156 were not detected by 
any method, and so it is unlikely tagging specifically destabilized these 
proteins. We infer that at most an additional 359 proteins could be affected 
by tagging, leaving 89% of the yeast proteome unaffected by C-terminal 
tagging. Thus, the 515 proteins absent from existing datasets are unlike-
ly to affect the general conclusion that the yeast proteome can tolerate 
C-terminal tags well, without large effects on protein expression levels.  
	 The yeast proteome is dramatically remodeled in response to stress 
(Tkach et al. 2012; Breker et al. 2013; Denervaud et al. 2013; Mazum-
der et al. 2013; Chong et al. 2015; Breker et al. 2014; Koh et al. 2015). 
Upon aggregating all condition-dependent studies and providing absolute 
protein abundance values in stress conditions we found that 1250 yeast 
proteins experienced an abundance change of at least 2-fold (Table S7). 
This is almost certainly an underestimate.  Most stress condition studies 
rely on the GFP collection, which covers only 70% of the proteome. Fur-
ther, the number of environmental conditions that have been assessed to 
date is considerably fewer than those for which mRNA abundance data 
is available. Therefore, it is perhaps surprising that only 234 proteins in 
this analysis (4% of the proteins assessed as GFP fusions) were upregu-
lated or downregulated in even three stress conditions. This contrasts with 
the almost 900 core stress response genes identified through microarray 
analyses (Gasch et al. 2000; Hughes et al. 2000; Causton et al. 2001). 
What could account for this apparent discrepancy?  First, the half-life of a 
typical mRNA (~32 minutes) (Geisberg et al. 2014) is short compared to 
the typical protein (~ 43 minutes) (Belle et al. 2006), and so it might be 
expected that mRNA levels would show a more rapid response to stress 
than would protein levels.  Secondly, diverse post-transcriptional regula-
tion modes can be brought to bear on protein function, including regulation 
of translation, protein degradation, protein modification, and intracellular 
localization changes so protein function needn’t be altered at the level of 
abundance alone. Finally, the environmental stress response at the mRNA 
level was typically defined by clustering analysis, rather than by –fold 
mRNA abundance changes, and so many core transcriptional responses 
are below the 2-fold cutoff that we applied to the protein abundance data.

Protein abundance directly influences cellular processes and phenotypes. 
The plasticity of the proteome in stress conditions has been extensively 
investigated in yeast. We unified the available data and report protein 
abundance in a single common unit of molecules per cell, in both 
unperturbed cells and in response to stress, providing a useful resource for 
further analysis of the dynamic regulation of the proteome.
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Figure S1. Normalization methods and comparisons to the calibration abundance data set. (A) Raw 
protein abundance measurements from studies reporting arbitrary units (left) were mode-shift normalized 
(right). (B) Protein abundance measurements were normalized using mode-shift, quantile, or centre-log 
ratio normalization methods. The mean abundance for each protein was calculated following each 
normalization, and each was compared to the others. (C) Each normalization method was compared with 
the mean abundance from the calibration data set. Pearson correlation coefficients (r) are indicated in each 
plot. 
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Figure S2. Comparison of parts per million and mode-shift normalization methods. Pearson 
correlation coefficients were calculated for each pairwise comparison of the seven studies indicated. 
Correlation coefficients were calculated for the raw abundance measurements (left), parts per million 
normalized datasets (middle), or mode-shifted datasets (right). Boxes shaded in red indicate correlations 
that are not equivalent to correlations among the original raw datasets. 
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Figure S3. Abundance distributions of the proteome and proteins that change in stress. The protein 
abundance distribution in molecules per cell is presented as a violin plot for all proteins in the proteome, 
for proteins that decrease in abundance by 2-fold in at least one study, and for proteins that increase in 
abundance by 2-fold in at least one study. The horizontal bars represent the medians, and violins are 
scaled such that all have the same area.
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