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Abstract 

 

To understand cellular coordination of multiple transcriptome regulation mechanisms, we 

simultaneously measured three parameters – transcription rate (TR), mRNA abundance (RA) and 

translation activity (TA) – and assessed mRNA stability with the RA to TR ratio. This revealed multiple 

quantitative insights. First, the dataset enabled an assessment of the contribution of the stabilization-by-

translation regulatory mechanism. We observed an overall positive correlation between mRNA stability 

and translation activity. However, the correlation is moderate. Many genes deviate from the overall 

trend in a pathway/function specific manner. Second, the moderateness of this correlation can be 

explained by variation in individual mRNAs’ proportions occupied by un-translated regions (UTR), as 

the UTR proportion exhibits a negative relationship with the level of correlation between the two 

factors. High-UTR-proportion mRNAs largely defy the stabilization-by-translation regulatory 

mechanism, in that they stay out of the polysome complex but remain relatively stable; mRNAs with 

little UTRs, on the contrary, follow this regulation much better. Third, the genomic profiles of the three 

parameters are systematically different in terms of key statistical features. Sequentially more genes 

exhibit extreme low or high expression values from TR to RA, and then to TA.  In other words, as a 

consequence of the cellular activities in coordinating these regulatory mechanisms, sequentially higher 

levels of selectivity are imposed on the gene expression process as genetic information flow from the 

genome to the proteome. In summary, we presented a quantitative delineation of the relationship among 

multiple transcriptome regulation parameters, i.e., how the cells coordinate corresponding regulatory 

mechanisms.  
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Introduction 

 

The genomic sequences are readily available for a large and ever-increasing number of species. These 

sequences, like English literature, represent static strings of symbols/alphabets (A, T, C, and G). Hence, 

genomic sequences are often termed as the “book” of life. To some degree, the cell can be considered as 

the “reader” of the genomic “book”, and the multi-stepped gene expression process as the “reading” 

process (Searls 1997, Searls 2001, Searls 2002, Wang 2005). Through the gene expression process, the 

seemingly simplistic genomic alphabetical strings are selectively and dynamically transcribed into 

transcriptome sequences, which are in turn translated into amino acid sequences in the proteome – the 

main machinery that controls biochemical reactions and processes in support of cellular functions. This 

process is integral to essentially all cellular activity. Lately, the complexity of this process has been the 

target of intensive investigative efforts (Schwanhausser, Busse et al. 2011, Vogel and Marcotte 2012, Li, 

Bickel et al. 2014, Rabani, Raychowdhury et al. 2014, Jovanovic, Rooney et al. 2015, McManus, Cheng 

et al. 2015, Liu and Aebersold 2016).  

 

The transcriptome and the proteome have long been routinely measured with high-throughput 

technologies, currently primarily in the form of mRNA and protein abundance. Perhaps due to the 

availability of more powerful technologies, transcriptome analysis is more prevalent than proteome 

analysis. The next generation sequencing (NGS) techniques have gradually become the technique of 

choice to measure mRNA abundance, due to their ultra-high throughput, scalability, relatively good data 

quality and repeatability. Essentially all expressed transcript can be reliably and quantitatively detected. 

Proteomic analysis, on the other hand, does not have a technology that is nearly as effective. Mass 

spectrometry, arguably the most widely used proteomic technology, has the power to reliably detect 

thousands of proteins in human cells. Many expressed proteins are missed. Nevertheless, proteins are the 

direct executers and/or regulators of most biochemical reactions, and therefore, proteomic analysis is of 

great biomedical importance. 

 

In some experiments, mRNA and protein abundance are measurs simultaneously. One lesson we learned 

is that correlation between the two is not always satisfactory enough for mRNA abundance to be a 

reliable predictor of protein abundance. This discrepancy had been observed prior to the genomic era 

(Anderson and Seilhamer 1997, Gygi, Rochon et al. 1999). It was confirmed in the yeast S. cerevisiae by 
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one of the first simultaneous transcriptome and proteomic measurement (Ideker, Thorsson et al. 2001), 

and then observed in many other high-throughput studies (Griffin, Gygi et al. 2002, Ghaemmaghami, 

Huh et al. 2003, Washburn, Koller et al. 2003, Le Roch, Johnson et al. 2004, Tian, Stepaniants et al. 

2004, Flory, Lee et al. 2006, Schwanhausser, Busse et al. 2011, Jovanovic, Rooney et al. 2015, 

McManus, Cheng et al. 2015, Cheng, Teo et al. 2016).  

 

Transcriptome analysis techniques have also been coupled to conventional experimental protocols to 

measure other gene expression parameters. Initially micro-array (Garcia-Martinez, Aranda et al. 2004, 

Molina-Navarro, Castells-Roca et al. 2008, Romero-Santacreu, Moreno et al. 2009, Marin-Navarro, 

Jauhiainen et al. 2011), and then NGS (Core, Waterfall et al. 2008, Hah, Danko et al. 2011), were 

coupled to the nuclear run-on technique for genome-wide transcription rate measurement. Additionally, 

NGS was coupled to metabolic labeling of nascent transcripts to measure transcription rate (Dolken, 

Ruzsics et al. 2008, Friedel, Dolken et al. 2009, Rabani, Levin et al. 2011, Schwanhausser, Busse et al. 

2011, Eser, Demel et al. 2014). These strategies enabled simultaneous transcription rate and mRNA 

abundance measurement. Once again, some levels of discrepancy were observed in that mRNA 

abundance was not always a good predictor of transcription rate. 

 

These observed discrepancies among gene expression parameters were thought as a reflection of the 

complexity of the gene expression process, (Greenbaum, Colangelo et al. 2003) and should be 

informative for us to unravel the complexity. At the same time nascent RNA and protein are produced, 

existing RNA and protein are being selectively degraded. The abundance of protein and mRNA 

represent the balance of the respective production and degradation. Discrepancy among gene expression 

parameters is considered evidence for some levels of decoupling among transcription, translation, 

mRNA degradation and protein degradation; that is, the gene expression parameters can be divergently 

regulated. Given the technical feasibility, multi-parameter approaches are being used to study the 

discrepancy and glean out fundamental gene expression regulation principles. Such studies will 

potentially lead to more efficient gene expression analysis strategies that generate more informative 

data.  

 

Such multi-parameter approaches should be especially valuable for transcriptome analysis. The 

ribosome profiling analysis utilizes NGS to quantify polysome-associated mRNAs, i.e., actively 
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translating mRNAs, thus enabling genome-wide analysis of translation activity (Ingolia, 

Ghaemmaghami et al. 2009, Brar, Yassour et al. 2012). Thus, all techniques are in place for genome-

wide integration of transcription rate (GRO-seq), mRNA abundance (RNA-seq) and mRNA translation 

activity (ribosome profiling). This will generate an integrative view of the transcriptome and its dynamic 

regulation, i.e., how the multiple transcriptome regulatory mechanisms are coordinated. 

 

Additionally, such data is needed as a platform to study mRNA untranslated regions (UTR), where the 

majority of regulatory signals for post-transcriptional regulation are embedded. It is well documented 

that mRNA UTRs are responsible for mRNA stability and translation control. They contain binding sites 

for microRNA and many regulatory RNA-binding proteins. They are common in mammalian mRNAs. 

Human mRNAs, on average, have ~1000 nucleotide long UTRs (~800 nucleotide 3’- and ~200 

nucleotide 5’-UTRs). Systematic functional study of the UTRs, however, awaits multi-parameter 

datasets that enables simultaneous study of mRNA stability and translation activity. 

 

Thus, we generated a multi-parameter snapshot of the transcriptome of a human cell line. Genome-wide 

transcription rate (TR), mRNA abundance (RA) and translation activity (TA) are simultaneously 

measured. Briefly, we observed different statistical features of the genomic profiles of the three 

parameters. We indirectly assessed mRNA stability/degradation by the RA to TR ratio. We also assessed 

the effect of translation on mRNA degradation, as it is known that actively translating mRNA is 

protected from degradation (Coldwell, Gray et al. 2010, Morozov, Jones et al. 2012). Even though a 

general trend of positive correlation between mRNA stability and translation activity was observed, 

many genes deviate from this general trend in a function-specific manner. Analysis of the data in 

conjunction with mRNA UTRs revealed insights into, and the roles of UTRs in, cellular coordination of 

these transcriptome regulatory mechanisms.  

 

Results 

 

Significant discrepancy among the three parameters 
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Previously, we have analyzed publicly available genomic datasets, in which multiple gene expression 

parameters are simultaneously measured (Wang 

2008, Hayles, Yellaboina et al. 2010). In those 

studies, we attempted to explain the 

discrepancy among gene expression parameters, 

which seemed then mysterious to most 

scientists, from the perspectives of biochemical 

pathway/network control and cellular 

operations. The genome-wide measurement 

techniques have since greatly advanced, and 

many datasets have recently been published 

(Goodwin, McPherson et al. 2016). However, 

we have not seen a dataset that integrate TR, 

RA, TA and mRNA stability; the translational 

data in such studies are mass-spectrometry-

based, and thus the coverage is not nearly 

genome-wide. Thus, in the present work, we 

took advantage of the genome-wide analysis 

power of NGS and its versatility through successful coupling to a variety of conventional experimental 

protocols. Our goal is to simultaneously measure TR, RA and TA, that is, to obtain a genome-wide 

multi-parameter snapshot of the transcriptome, in the HCT116 human cells.  The experimental strategy 

is illustrated in Figure 1. The experiments were done with cells in exponential growth (log) phase (see 

Materials and Methods for details). We measured RA with the standard RNA-seq method. 

Simultaneously, we measured genome-wide TR and TA, using the GRO-seq technique and a protocol 

similar to the ribosome profiling technique, respectively. The NGS reads were aligned to the human 

genome with TopHat (Kim, Pertea et al. 2013) and the read counts for expressed genes were calculated 

with the HTSeq-count software (Anders, Pyl et al. 2015). The read counts were then converted into 

Reads Per Kilo-base Per Million Mapped Reads (RPKM) values. With a cut-off of 1 RPKM for at least 

one of the three parameters, 12921 genes were found expressed in the HCT116 cells.	 

 

Transcription
Rate

Translation
Activity

Nuclear	
Run-on

Ribosome	
Isolation

mRNA
Abundance	

Sequencing

mRNA	
Isolation

Bromo-UTP
Labeled	RNA

Figure 1: Experimental strategy. Log-phase HCT116 
cells were split up into three parts. One part was 
used to extract total mRNA for RNA-seq analysis to 
measure steady-state mRNA abundance (RA) (black 
texts and arrows). One part was used to perform 
nuclear run-on to generate bromo-UTP labeled 
nascent RNA for sequencing, that is, GRO-seq 
analysis to measure transcription rate (TR) (green 
texts and arrows). The last part was used to isolate 
and quantify polysome associated mRNA to 
measure translation activity (TA) (green texts and 
arrows). 
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Comparative analysis of the three gene expression parameters revealed extensive difference among 

them. Individual pairwise comparison resulted in, as expected, a general trend of good correlation; that 

is, association of a high value of one parameter with high values of other parameters. However, when 

analyzed together, they revealed quite dramatic differences, which are way beyond intrinsic 

experimental 

noises, 

among the 

three 

parameters 

(Fig. 2). In 

Figure 2A, 

TR and one 

RA 

biological 

replicate are 

plotted 

against 

another RA 

biological 

replicate, 

with the two 

RA 

replicates 

illustrating 

the level of the intrinsic experimental noises. The two RA replicates agree with each other well, with a 

linear regression slope of about 1 and a low level of dispersion along the regression line. However, the 

regression of TR versus the RA replicate is dramatically different. The slope of regression line is only 

0.44, suggesting systematic difference between the two parameters. Additionally, as shown in Figure 

2B, the regression line between RA and TA is also different from that between the two RA replicates. 

The change in the slope of the regression line, an increase to 1.11, is not as dramatic. But, statistically, it 

is highly significant, with a p-value of less than 1E-200 – essentially zero (see Materials and Methods 
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Figure 2: Comparison of TR, RA and TA to illustrate the discrepancy among the three 
parameters. A. Scatter plot of TR (red) and a RA experimental replicate (black) versus 
another RA experimental replicate. B. Scatter plot of TA (red) and a RA experimental 
replicate (black) versus another RA experimental replicate. The same two RA 
experimental replicates are used in A and B. The linear regression lines are also 
shown.	
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for detail). Thus, our approach is able to reveal the inherent differences among the three key 

transcriptome analysis parameters. We then further dissected the dataset to decipher how the cells 

coordinate the multiple transcriptome regulatory processes that give rise to the observed discrepancies.	 

 

Moderate correlation between mRNA stability and translation activity, and its pathway/function specific 

pattern 

 

The discrepancy between TR and RA is a reflection of mRNA stability (or the rate of mRNA 

degradation); a high degradation rate or unstable mRNA leads to lower RA level implicated by the TR – 

and vice versa. Furthermore, it is well known that active translation shields mRNAs from degradation, 

thus stabilizing the mRNA species and contributing to the discrepancy between TR and RA (Coldwell, 

Gray et al. 2010). In other words, translation activity should be a major determinant of how RA deviates 

from TR. Our data provide a unique opportunity, to our knowledge for the first time, for a genome-wide 

and quantitative assessment of the contribution of this stabilization-by-translation regulatory mechanism 

to transcriptome regulation. For this purpose, we used the log2(TA/RA) and log2(RA/TR) log ratios as 

translation index and stability index, respectively. The former is the log ratio between actively translated 

mRNA abundance and total mRNA abundance, thus a measurement of mRNA translation activity 

normalized against RA; the latter is the log ratio between total mRNA abundance and transcription rate, 

a measurement of discrepancy between the two parameters.  

 

We hypothesized that the stabilization-by-translation regulatory mechanism should exert a significant 

effect on the relationship between the two indices. If our hypothesis is wrong, the two indices should be 

negatively correlated, since RA is the numerator in the stability index and denominator in the translation 

index. However, our experimental results turned out to be the contrary and, thus, support our hypothesis. 

As shown in Figure 3A, a dot-plot of the two indices illustrates an overall positive relationship, with a 

correlation coefficient of 0.39; the linear regression line is also shown to quantify the relationship, with a 

slope of 0.19. In other words, an overall positive correlation was observed. To illustrate the level of the 

significance of this observation, we randomized the data by simultaneous permutation of the TR and TA 

parameters to generate a statistical background model for our analysis. As expected, randomizing the 

data led to negative correlation coefficients and negative slopes of the linear regression line between the 

two indexes. We performed the randomization for 1000 times. This generated 1000 correlation 
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coefficients and 1000 slopes of the corresponding linear regression lines, the boxplots of both of which 

were shown in Figure 3B. Out of the 1000 randomization, not a single positive correlation was observed 

– both values were always negative. Figure 3B also shows the experimentally determined positive 

values of the correlation 

coefficient and the linear 

regression line slope, 

demonstrating a sharp contrast 

with the respective randomly 

generated values. This contrast 

illustrates the magnitude of the 

difference, i.e., the effect of the 

stabilization-by-translation 

regulation mechanism on the 

relationship between the two 

indices. Thus, consistent with 

our hypothesis, the stabilization-

by-translation regulatory 

mechanism renders the 

relationship into an overall 

positive one. These results 

reflect that the higher the 

proportion of a mRNA species 

being translated, the lower the proportion that is being degraded. Thus, the dependency of mRNA 

stability on translation activity, that is, the stabilization-by-translation regulatory mechanism, seems to 

nicely outline the relationship among transcription rate, mRNA abundance, mRNA stability and 

translation activity. To put it another way, we were able to delineate the overall relationship among three 

major transcriptome regulation processes – transcription, mRNA degradation and mRNA translation.	

	

Nevertheless, the correlation between the two indices, even though statistically significant, is not nearly 

unequivocal; too many genes deviate significantly from the overall trend – the linear regression line. We 

asked whether this is due to function specific patterns of gene expression regulation, as genes involved 
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Figure 3: Overall positive correlation between the stability index 
(log2(RA/TR)) and the translation index (log2(TA/RA)). A. Scatter 
plot of the stability index versus the translation index. The 
correlation coefficient and the linear regression line between the 
two indices are also shown. The red rectangle identifies mRNAs 
with high stability but low translation activity to be further 
analyzed later (see text and Figure 8). B. Box plot of the 
correlation coefficient and the slope of linear regression lines 
between the two indexes upon randomization of the experimental 
dataset. Values from 1000 randomization were used to generate 
the boxplot. Experimental values are also shown and denoted. 
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in the same biological process have been shown to share a similar pattern in other datasets. To answer 

this question, we performed two systematic analyses. First, we calculated the distances between the 

coordinates of 

each gene pair in 

Figure 3A. We 

then created the 

histograms of the 

pairwise distances 

between gene 

pairs associated 

with similar sets 

of gene ontology 

(GO) terms (see 

Materials and 

Methods for 

detail), and also a 

histogram for the 

distances between 

gene pairs with 

no significant GO similarity. The distance between genes associated with similar GO terms tend to be 

smaller than those between genes with no significant similarity in their GO association (Figure 4A). The 

trend is correlated with the GO similarity score; the higher the score, the more the histogram shifts 

toward short distance range. Second, we performed this comparison of distances between gene pairs 

whose proteins interact with each other versus gene pairs whose proteins have not been found to interact 

with each other. This was done with protein-protein interaction data, which was, as we have previously 

done (Guo, Jiang et al. 2014), downloaded from the IntAct database (Kerrien, Aranda et al. 2012, 

Orchard, Ammari et al. 2014). As shown in Figure 4B, the interacting pairs exhibit shorter distance than 

non-interacting pairs. And the trend is correlated with the confidence score assigned to the protein pairs 

in the IntAct database. Since the protein-protein interaction datasets are generally considered noisy, the 

confidence score quantify the reliability of the interaction. As shown in Figure 4B, the more reliable the 

interaction, the more the histogram shifts toward short distance range.  
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Figure	4:	Pathway/function	specific	pattern	of	the	correlation	between	the	
stability	 and	 the	 translation	 indexes.	 A.	 Histograms	 of	 the	 distances	
between	 their	 mRNAs’	 coordinates	 in	 Figure	 3A	 for	 gene	 pairs	 with	
different	 levels	 of	 GO	 similarity.	 B.	 Histograms	 of	 the	 distances	 for	 gene	
pairs	whose	proteins	were	shown	to	mutually	interact	with	different	levels	
of	interaction	confidence	score.	
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This function specific pattern is illustrated by the distinct patterns of two exemplary functional groups of 

genes – the genes for the proteasome subunit (PMS) 

proteins (PMSA1 to 7 and PMSB1 to 7) and the like-Sm 

(LSM) genes (LSM1 to 8) (Figure 5). The PMS genes 

code for proteins that constitute the proteasome 20S core 

structure (Kish-Trier and Hill 2013). Their mRNAs share 

a pattern of high levels of both stability and translation 

activity. The LSM genes code for subunits of two single-

stranded-RNA-binding hetero-heptameric ring structures 

– one cytoplasmic and the other nucleus (Khusial, Plaag 

et al. 2005). Subunits LSM1 to 7 form the heptamer that 

is part of the P-body and functions during mRNA 

degradation in the cytoplasm. Consistently, LSM1-7 

mRNAs share a common pattern. However, the pattern is 

strikingly different from the pattern shared by the PMS 

mRNAs. While the LSM1-7 mRNA exhibit relatively 

high stability, unlike PMS mRNA, they exhibit largely 

lower than average translation activity. The LSM8 

subunit interacts with, and nucleus-retains, LSM2 to 7 

subunits to form the nucleus heptameric ring structure 

(Khusial, Plaag et al. 2005). That is, it replaces the LSM1 

subunit to form the nucleus heptameric structure. This heptameric structure binds to the U6 snRNA and 

U8 small nucleolar RNA (snoRNA), and thus functions during general RNA maturation in the nucleus. 

Consistent with this unique LSM8 function, the LSM8 mRNA does not follow the pattern shared by 

LSM1 to 7 mRNAs, in that it is relatively unstable (Figure 5).	 

 

mRNA UTR proportion is a major determinant of the level of correlation 

 

−6 −4 −2 0 2

−3
−2

−1
0

1

Stability Index

Tr
an

sl
at

io
n 

In
de

x

LSM mRNAs

PSM mRNAs

LSM8

Figure	 5:	 Scatter	 plot	 of	 the	 stability	
and	the	translation	indices	for	mRNAs	
of	 the	 PMS	 and	 the	 LSM	 functional	
groups	 of	 genes.	 The	 PMS	mRNAs	 are	
shown	 in	 red	 color,	 and	 the	 LSM	
mRNAs	 in	 black	 color.	 LSM8	 mRNA	
was	denoted.	
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Next, we tried to gain a mechanistic understanding of this lack of high level of correlation between the 

translation and the stability indexes, and turned our attention to other post-transcription regulatory 

mechanisms and the untranslated region (UTR) of mRNAs. Besides the stabilization-by-translation 

regulation, many other mechanisms exist in multi-cellular eukaryotic species, but have not been 

accounted for in our analysis. For instance, the miRNAs/siRNAs target and regulate a large portion of 

the transcriptome. Essentially all regulatory signals for such regulation are embedded in mRNA UTR 

sequences. Consistently, UTRs are abundant in multi-cellular transcriptomes. This is especially true in 

human. As shown in Figure 6A, on average, the ORF occupies only ~50% of a human mRNA; the other 

half is 

devoted to the 

UTRs. In 

many 

mRNAs, the 

UTR occupies 

more than 

90% of the 

total length; 

for instance, 

the mRNAs 

of the all-

important 

CREB1 

(cyclic AMP-responsive element-binding protein 1) gene. Since the regulatory signals for mRNA post-

transcription regulation are mostly embedded in the UTR sequences, the proportion of an mRNA that is 

occupied by the UTRs should serve as a good measure of the degree to which the mRNA is controlled 

by these regulatory mechanisms. Thus, we hypothesized that this proportion should be a major 

explanatory factor for the lack of a high level correlation between the mRNA stability and translation 
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Figure	 6:	 The	 proportion	 of	 a	 mRNA	 that	 is	 occupied	 by	 the	 UTRs	 is	 a	
determinant	 of	 the	 level	 of	 the	 correlation	 between	 the	 stability	 and	 the	
translation	 indices.	 A:	 Histogram	of	 the	UTR	 proportions	 of	 human	mRNAs.	 B	
and	C:	The	correlation	coefficient	(B)	and	the	slope	of	the	linear	regression	line	
(C)	between	the	stability	and	the	translation	indices	decrease	as	the	mRNA	UTR	
proportion	increases.		
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indexes. Indeed, our results support this hypothesis. First, the correlation coefficient between the two 

indices is optimal at ~20% UTR, but steadily decreases as this proportion further increases (Fig. 6B); 

and so is the slope of the linear regression line between the two indices (Fig. 6C). This is further 

illustrated by a 

contrast between 

mRNAs with 

~20% UTRs and 

those with ~90% 

UTRs, that is, the 

higher level of 

correlation 

between the two 

indices for the 

former and a poor 

correlation for the 

latter (Fig. 7). 

Second, the 

mRNAs that defy 

the stabilization-

by-translation 

regulatory mechanism, those that show low translation activity but high stability as identified by the red 

rectangle in Figure 3A, display higher proportion 

of UTRs. The histogram of their UTR proportions, 

when compared with that of the whole 

transcriptome, shifts toward high proportion 

ranges. 

 

In order to illustrate our observation, we once 

again used the PMS and the LSM groups of genes 

shown in Figure 5 (Table 1). The mRNAs of the PMS genes have high levels of both stability and 

translation activity, and thus exemplify mRNAs controlled by the stabilization-by-translation 

Table 1: Comparison of the UTR proportions of 

the PSM and the LSM mRNAs 

 No. of Genes Median Mean 

LSM 8 68.6% 69.6% 

PSM 14 26.4% 35.3% 

p-value = 0.0004 (two-sample t-test with a 

“greater than” alternative hypothesis) 
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Figure 7. Scatter plots of the stability and the translation indices for mRNAs 
with a ~20% UTR proportion (A) and those mRNAs with a ~90% UTR 
proportion (B).  The correlation coefficient and the linear regression lines are 
also shown.	
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mechanism. Consistently, as shown in table 1, they have less-than-average UTR proportions (an average 

of 35.3% and a median of 26.4%). The 

mRNAs for the LSM genes, on the other 

hand, have low levels of translation 

activity but stay relatively stable, and thus 

exemplify mRNAs defying the 

stabilization-by-translation regulatory 

mechanism. Not surprisingly, they have 

higher-than-average UTR proportions (a 

mean of 69.6% and a median of 68.6%). 

The difference between the UTR 

proportions of the two groups of mRNAs 

has, according to a t-test, a significant p-

value of 0.0004 (Table 1). Thus, the low 

quality of the overall correlation between 

the two indices can be partially explained 

by post-transcription regulatory 

mechanisms mediated by mRNA UTRs. 

To put it another way, multiple regulatory 

mechanisms control the transcriptome. 

Multi-parameter approaches, such as ours 

as shown here, have the urgently needed 

power to dissect the process and visualize 

cellular co-ordination of these 

mechanisms.	 

 

Sequentially higher levels of gene expression selectivity from TR to RA, and then to TA 

 

We also set out to explore whether these post-transcription regulations lead to systematic differences 

among the genomic profiles of the three parameters; that is, whether the consequences of these 

regulations are manifested in differences in statistical features among the three parameters. As described 
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Figure 8: Histogram of the UTR proportions of the 
mRNAs that have relative high stability but lower-than-
average translation activity in comparison with that of 
the whole human transcriptome. The mRNAs with high 
stability but low translation activity were selected with 
the red rectangle in Figure 3A. 
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earlier and shown in Figure 2, scatter-plotting and linear regression revealed significant differences 

among the three parameters. Here, we directly compared the statistical features of the genomic profiles 

of the three parameters. A systematic trend was indeed observed. The levels of dispersion of the three 

distributions increase from transcription rate to mRNA abundance and then to translation activity (Fig. 

9). As a quantification of this trend, the standard  

deviation increases in the same direction, and 

the ranges of the distributions also become 

sequentially larger (Table 2). Consequently, 

more and more genes display extreme (either 

low or high) parameter values in this direction. 

In other words, the gene expression process 

becomes more and more selective as the 

genetic information flow in the direction dictated by the Central Dogma. 

 

Discussion 

 

Regulation of the transcriptome is a major underpinning of cellular operation. It involves, in addition to 

transcription, many post-transcriptional processes. Multiple parameters, such as TR, RA and mRNA 

degradation rate, are relevant to this multi-faceted process. Many multi-parameter studies have been 

reported and revealed significant discrepancies among the parameters, such as those between TR and 

RA and those between RA and protein abundance, prompting an appreciation for the complexity of 

transcriptome regulation.  

 

We have previously participated in the study of the complexity of transcriptome regulation, with a desire 

for a mechanistic understanding of the discrepancies among TR, RA and protein abundance as well as 

potential operational advantages the cells gain from them. In this study, we took advantages of the 

power and versatility of NGS analysis through its coupling to traditional experimental protocols. We 

simultaneously measured three transcriptome regulation parameters: TR, RA and TA. We also indirectly 

estimate mRNA stability (or degradation rate) by the log ratio of RA and TR (log2(RA/TR)). Given the 

importance of mRNA UTRs in post-transcriptional regulation, the data was analyzed in conjunction with 

individual mRNAs’ proportions that are UTRs. To put it another way, we broke open the “blackbox” of 

Table 2: Comparison of the statistical features of the 
genomic profiles of the three parameters. 
 Standard 

Deviation 
Mean 

Value Range 

From To 

log2(TR) 1.53 3.85 -2.68 10.41 

log2(RA) 2.38 3.18 -6.02 12.33 

log2(TA) 2.77 2.74 -7.18 13.04 
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transcriptome regulation and peeked inside for mechanistic insight into how the cells co-ordinate 

multiple factors that regulate the transcriptome. In the present paper, we publish, to our knowledge, the 

first genome-wide dataset that enables integrative 

analysis of TR, RA and TA and mRNA stability. 

 

It is well known that actively translating mRNA are 

likely protected from degradation, and thus 

stabilized. In bacteria, this is considered the primary 

mechanism for mRNA stability regulation. In 

eukaryotes, more post-transcriptional regulatory 

mechanisms, such as micro-RNA control, 

evolutionarily emerged, giving rise to a more 

complicated scheme of mRNA stability regulation. 

However, it is certain that the stabilization-by-

translation mechanism still play prominent roles in 

eukaryotic transcriptome regulation. We provide a 

quantitative analysis of the impact of translation 

activity on mRNA stability, by showing a moderate 

but significant positive correlation between mRNA 

translation and stability indices.  

 

This correlation between mRNA translation activity 

and stability has some explanatory power over the 

discrepancy between TR and RA. High translation 

activity protects a mRNA species from degradation, 

while other less translated mRNAs are being actively 

degraded and removed out of the transcriptome. This leads to enrichment of the mRNA species, 

resulting in higher steady-state abundance level than that implied by its production rate, i.e., TR. 

Conversely, low translation activity makes a mRNA species more susceptible to the degradation 

process, leading to situations where the steady-state abundance level is lower than that implied by the 
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Figure	 9:	 Comparison	 of	 the	 genomic	
profiles	 of	 the	 three	 transcriptome	
parameters	–	TR,	RA	and	RA.	Histograms	of	
TR	 (black),	 RA	 (red)	 and	 TA	 (blue)	 are	
shown.	 The	 RA	 and	 TA	 histograms	 are	
shifted	 a	 little	 bit	 so	 that	 the	 three	
histograms	have	theirs	peaks	in	the	same	x-
axis	 range,	 in	 order	 to	 better	 display	 the	
increased	 levels	of	dispersion	 from	TR	and	
RA	and	then	to	TA.	
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production rate. The operational advantages the cells gained by implementing this regulatory scheme 

remain to be elucidated. 

 

Our multi-parameter approach represents a feasible option to enable the much needed systematic 

analysis of mRNA UTRs. The UTRs are much more abundant in the human transcriptome than in any 

other transcriptome. Their functions in post-transcriptional regulation are well documented. Essentially, 

all signals for post-transcriptional regulation reside in the UTRs; for instance, microRNA and siRNA 

target sites, ARE, IRE-IRP etc. But systematic study of mRNA UTRs has been lacking, and our 

knowledge about their functions remains fragmentary at best. This is perhaps due to a lack of relevant 

genomic experimental approaches and datasets. mRNA abundance measurement alone is ill-suited for 

the study of post-transcription regulatory mechanisms and functional analysis of mRNA UTRs. 

Additionally, though microRNAs/siRNAs target mRNA UTRs and are major regulators of both 

translation and mRNA degradation, to our knowledge, microRNA/siRNA study has not been integrated 

with simultaneous genome-wide measurement of translation activity and mRNA stability. Thus, our 

integrative multi-parameter analysis represents a novel functional genomic approach to mRNA UTR 

analysis. It is able to reveal that the UTRs play an important role in maintaining the stability of 

translationally inactive mRNA species, thus conferring to human cells the capacity for a post-

transcriptional regulatory mechanism that is absent in prokaryotic species and mostly in uni-cellular 

species such as the yeast S. cerevisiae. It should be noted that our results represent only a single time-

point snap-shot of actively growing human cells. More power of this analysis approach, we believe, is 

yet to be relished in analyzing dynamic changes of the three parameters during physiological processes.  

 

Additionally, computational analysis of mRNA UTRs for key regulatory signals embedded in the UTR 

sequences remains technically challenging. This is due to low signal-to-noise ratio and the lack of a 

general guiding principle. For instance, a typical microRNA target site is no more than 8 nucleotide 

long. Our approach provides a way to classify the mRNAs based on their patterns in the generated 

datasets, i.e., their behavior in the multi-faceted transcriptome regulation process. Key regulatory signals 

shall be shared by the UTRs of similarly classified mRNAs, and thus can be computationally extracted 

from them – a much easier approach than de novo computational analysis of mRNA UTR sequences. 

That is, datasets generated through this approach should provide a functional context for enhancing the 

signal-to-noise ratio in computational analysis of mRNA UTR sequences. 
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We also quantitatively describe the trend of sequentially higher levels of selectivity as the genetic 

information flow from the genome to the proteome in the gene expression process. In other words, the 

gene expression machinery focuses its resources on less and less genes, so that only mission critical 

proteins are expressed in the proteome. The multi-stepped gene expression process can be considered as, 

to some degree, a selective amplification process. Transcription selectively amplifies the genomic 

sequences into multiple copies of mRNA sequences. Translation, in turn, selective amplifies individual 

mRNA molecules into multiple copies of protein sequences. The selectivity of this process is further 

enhanced by selective mRNA degradation. Even though obvious from the results in previous 

publications, this trend of sequentially higher levels of selectivity in the gene expression process has not 

received much attention, and was never explicitly stated in these reports. In this study, we quantitatively 

described this trend by comparing the dispersions of the genomic profiles of the three gene expression 

parameters. Our results also suggest that mRNA degradation plays perhaps the biggest role in this trend, 

as the jump in selectivity from transcription rate to mRNA abundance is much bigger than the increase 

from mRNA abundance to translation activity. That is, selective degradation of those mRNAs, which are 

not protected from degradation by active translation or other processes mediated by their UTRs, play an 

important role in shaping up the transcriptome and priming it for efficient production of mission-critical 

proteins.   

 

In summary, we present a quantitative delineation of cellular coordination of transcription, mRNA 

abundance, mRNA stability and mRNA translation activity, as well as mechanistic involvement of 

mRNA UTRs in the coordination process. As a consequence of the coordination activity, the cells 

exhibit sequentially higher level of gene expression selectivity from transcription to mRNA abundance, 

and then to translation activity. The results contribute to our understanding of the complexity of the 

multi-stepped gene expression process, through which the cells “read” the genomic “book” of seemingly 

simplistic string of nucleotides and “translate” information embedded in the sequences into cellular 

operations, that is, dynamic control of the biochemical flow through biochemical reactions, pathways 

and networks (Searls 1997, Searls 2001, Searls 2002, Wang 2005). 

 

Materials and Methods 
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Tissue Culture and mRNA Isolation for RNA-seq Analysis  

 

The human HCT116 cells were cultured in a serum-free medium (McCoy's 5A (Sigma) with pyruvate, 

vitamins, amino acids and antibiotics) supplemented with 10 ng/ml epidermal growth factor, 20 µg/ml 

insulin and 4 µg/ml transferrin. Cells were maintained at 37 °C in a humidified incubator with 5% CO2.  

 

To extract mRNA for RNA-seq analysis, RNeasy kit (Qiagen) was used to extract total RNA from the 

HCT116 cells according to manufacture’s specification. GeneRead Pure mRNA Kit (Qiagen) was then 

used to isolate mRNA from the total RNA for Illumina NGS sequencing according to manufacture’s 

specification. 

 

GRO-seq Analysis 

 

Global run-on was done as previously described (Core, Waterfall et al. 2008, Wang, Garcia-Bassets et 

al. 2011, Jin, Li et al. 2013). Briefly, two 100cm plates of HCT116 cells were washed 3 times with cold 

PBS buffer. Cells were then swelled in swelling buffer (10mM Tris-pH7.5, 2mM MgCl2, 3mM CaCl2) 

for 5min on ice. Harvested cells were re-suspended in 1ml of the lysis buffer (swelling buffer with 0.5% 

IGEPAL and 10% glycerol) with gentle vortex and brought to 10ml with the same buffer for nuclei 

extraction. Nuclei were washed with 10ml of lysis buffer and re-suspended in 1ml of freezing buffer 

(50mM Tris-pH8.3, 40% glycerol, 5mM MgCl2, 0.1mM EDTA), pelleted down again, and finally re-

suspended in 100µl of freezing buffer. 

 

For the nuclear run-on step, re-suspended nuclei were mixed with an equal volume of reaction buffer 

(10mM Tris-pH 8.0, 5mM MgCl2, 1mM DTT, 300mM KCl, 20 units of SUPERase-In, 1% Sarkosyl, 

500µM ATP, GTP, and Br-UTP, 2µM CTP) and incubated for 5 min at 30°C. Nuclei RNA were 

extracted with TRIzol LS reagent (Invitrogen) following manufacturer’s instructions, and was 

resuspended in 20µl of DEPC-water. RNA was then purified through a p-30 RNAse-free spin column 

(BioRad), according to the manufacturer’s instructions and treated with 6.7µl of DNase buffer and 10µl 

of RQ1 RNase-free DNase (Promega), purified again through a p-30 column. A volume of 8.5µl 

10×antarctic phosphatase buffer, 1µl of SUPERase-In, and 5µl of antarctic phosphatase was added to the 
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run-on RNA and treated for 1hr at 37°C. Before proceeding to immuno-purification, RNA was heated to 

65°C for 5min and kept on ice. 

 

Anti-BrdU argarose beads (Santa Cruz Biotech) were blocked in blocking buffer (0.5×SSPE, 1mM 

EDTA, 0.05% Tween-20, 0.1% PVP, and 1mg/ml BSA) for 1 hr at 4°C. Heated run-on RNA (~85µl) 

was added to 60µl beads in 500µl binding buffer (0.5×SSPE, 1mM EDTA, 0.05% Tween-20) and 

allowed to bind for 1hr at 4°C with rotation. After binding, beads were washed once in low salt buffer 

(0.2×SSPE, 1mM EDTA, 0.05% Tween-20), twice in high salt buffer (0.5% SSPE, 1mM EDTA, 0.05% 

Tween-20, 150mM NaCl), and twice in TET buffer (TE pH7.4, 0.05% Tween-20). BrdU-incorporated 

RNA was eluted with 4×125µl elution buffer (20mM DTT, 300mM NaCl, 5mM Tris-pH 7.5, 1mM 

EDTA, and 0.1% SDS). RNA was then extracted with acidic phenol/chloroform once, chloroform once 

and precipitated with ethanol overnight. The precipitated RNA was re-suspended in 50µl reaction (45µl 

of DEPC water, 5.2µl of T4 PNK buffer, 1µl of SUPERase_In and 1µl of T4 PNK (NEB)) and incubated 

at 37°C for 1 hr. The RNA was extracted and precipitated again as above before being processed for 

Illumina NGS sequencing. 

 

Polysome Isolation and mRNA extraction 

 

Polysome was isolated as previously described (Feliers, Duraisamy et al. 2005, Day, Cavaglieri Rde et 

al. 2010). Briefly, the HCT116 cells were incubated with 100µg/ml cycloheximide for 15 minutes, 

washed three times with PBS, scraped off into PBS, and then pelleted by micro-centrifugation. Cell 

pellet was homogenized in a hypertonic re-suspension buffer (10 mM Tris (pH 7.5), 250 mM KCl, 2 

mM MgCl2 and 0.5% Triton X100) with RNAsin RNAse inhibitor and a protease cocktail. Homogenates 

were centrifuged for 10 min at 12,000 g to pellet the nuclei. The post-nuclear supernatants were laid on 

top of a 10-50% (w/v) sucrose gradient, followed by centrifugation for 90 min at 200,000 g. The 

polysomal fractions were identified by OD254 and collected. RNeasy kit (Qiagen) was used to extract 

RNA from the polysome fractions according to manufacture’s specification. GeneRead Pure mRNA Kit 

(Qiagen) was then used to isolate mRNA for Illumina NGS sequencing from the RNA according to 

manufacture’s specification. 

 

Illumina NGS Sequencing 
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Sequencing libraries was generated with the Illumina TruSeq RNA Sample Preparation Kit. Briefly, 

RNA molecules were fragmented into small pieces using divalent cations under elevated temperature. 

The cleaved RNA fragments are copied into first strand cDNA synthesis using reverse transcriptase and 

random primers. This was followed by second strand cDNA synthesis using DNA Polymerase I and 

RNase H. These cDNA fragments were end-repaired using T4 DNA polymerase, Klenow polymerase 

and T4 polynucleotide kinase. The resulting blunt-ended fragments were A-tailed using a 3′–5′ 

exonuclease-deficient Klenow fragment and ligated to Illumina adaptor oligonucleotides in a ‘TA’ 

ligation. The ligation mixture was further size-selected by AMPure beads and enriched by PCR 

amplification following Illumina TruSeq DNA Sample Preparation protocol. The resulting library is 

attached and amplified on a flow-cell by cBot Cluster Generation System.  

 

The sequencing was done with an Illumina HiSeq 2000 sequencer. Multiplexing was used to pool 4 

samples into one sequencing lane. After each sequencing run, the raw reads were pro-processed to filter 

out low quality reads and to remove the multiplexing barcode sequences.  

 

NGS Data Analysis 

 

The sequencing reads were mapped to the UCSC hg19 human genome sequences with the TopHat 

software, using the default input parameter values. For each sample, at least 80% of the reads were 

successfully mapped. For the sake of consistence across the three transcriptome regulation parameters, 

we counted the reads for each gene for the exon regions only. The counting was performed with the 

HTSeq-count software, and the counts were then transformed into Reads Per Kilo-base Per Million 

Mapped Reads (RPKM) values. 12921 genes have a minimal RPKM value of 1 for at least one of the 

three parameters, and were considered expressed in the HCT116 cells.  

 

Statistical Analysis 

 

The R open source statistical software (version 3.3.1) installed on a Mac Pro desktop computer was used 

for statistical analysis. The student t-test, standard deviation calculation, correlation coefficient 

calculation, linear regression and other statistical procedure are all done with this R software.  
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The procedure for comparing the linear regression slopes/coefficients shown in figure 2B is described as 

follows. We first applied the following linear regression models to the data: 

 log2(TA) = µ1+b1log2(RA1) + e1, 

 log2(RA2) = µ2+b2log2(RA1) + e2, 

            and e1 and e2 follow normal distribution. 

It is estimated that 

 𝛽"= 1.11, 𝜎 𝛽" =0.003058, and 𝛽" 𝜎 𝛽"
~ T12920,  

𝛽$ = 0.99,	𝜎 𝛽$ = 0.001879	and	𝛽$ 𝜎 𝛽$
		~𝑇"$/$0.	

Therefore, the 97.5% confidence interval for 𝛽" is 

𝛽" ±	𝑡0.0"$3,"$/$0𝜎 𝛽" = 1.101403, 1.115113 . 

The 97.5% confidence interval for 𝛽$ is 

𝛽$ ±	𝑡0.0"$3,"$/$0𝜎 𝛽$ = 0.9819329, 0.9903571 . 

These two confidence intervals do not overlap, implying that, at significant level 0.05, the two 

regression coefficients are different. 

 

In addition, because T distribution with degrees of freedom of 12920 is very close to standard normal 

distribution, the t-score, calculated as below, 

𝛽$ − 𝛽"
𝜎$ 𝛽$ + 𝜎$ 𝛽"

	

approximately follow standard normal distribution. This allows p-value calculation. The p-value is 

essentially 0 (smaller than 1E-200). 

 

Gene Ontology (GO) Similarity Analysis 

 

Pairwise GO similarity score between human genes was computed as previously described (Tsoi, 

Boehnke et al. 2009, Qin, Tsoi et al. 2012, Qin, Matmati et al. 2014). Briefly, for each gene, we first 

generated GO fingerprint – a set of ontology terms enriched in the PubMed abstracts linked to the gene, 

along with the adjusted p-value reflecting the degree of enrichment of each term.  The GO similarity 
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score quantifies similarity between the GO fingerprints of corresponding gene pair. For detail about GO 

fingerprint generation and similarity calculation, please see description in previous publications (Qin, 

Tsoi et al. 2012). 
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