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Abstract9

Advancements in sequencing technologies have highlighted the role of alternative splicing (AS) in increasing transcriptome10

complexity. This role of AS, combined with the relation of aberrant splicing to malignant states, motivated two streams of11

research, experimental and computational. The first involves a myriad of techniques such as RNA-Seq and CLIP-Seq to12

identify splicing regulators and their putative targets. The second involves probabilistic models, also known as splicing13

codes, which infer regulatory mechanisms and predict splicing outcome directly from genomic sequence. To date, these14

models have utilized only expression data. In this work we address two related challenges: Can we improve on previous15

models for AS outcome prediction and can we integrate additional sources of data to improve predictions for AS regulatory16

factors. We perform a detailed comparison of two previous modeling approaches, Bayesian and Deep Neural networks,17

dissecting the confounding effects of datasets and target functions. We then develop a new target function for AS prediction18

and show that it significantly improves model accuracy. Next, we develop a modeling framework to incorporate CLIP-Seq,19

knockdown and over-expression experiments, which are inherently noisy and suffer from missing values. Using several20

datasets involving key splice factors in mouse brain, muscle and heart we demonstrate both the prediction improvements21

and biological insights offered by our new models. Overall, the framework we propose offers a scalable integrative solution22

to improve splicing code modeling as vast amounts of relevant genomic data become available.23

Availability: code and data will be available on Github following publication.24

25

1 Introduction26

A key contributor to transcriptome complexity is alternative splicing (AS): the joining together of different exonic segments27

of a pre-mRNA to yield different gene isoforms. The most common type of AS event in human and mouse is exon skipping28

where a fraction of the mRNA produced include an exon while others skip it. Thousands of such variations were found to29

be highly conserved and common between tissues. Overall, more than 90% of multi-exon human genes are alternatively30

spliced [10, 17] and splicing defects have been associated with numerous diseases. This has motivated detailed studies of31

AS variations across tissues, developmental stages, and malignant states [12]. These studies monitor mRNA expression at32

exonic resolution using RNA-Seq in a variety of experimental conditions, including knockdown (KD), knockout (KO), or33

over-expression (OE) of condition specific splicing factors (SF). Other experiments monitor binding affinity of splice factors34

using several similar protocols involving UV cross-linking of the factor to the RNA, followed by immunoprecipitation and35

sequencing of the bound RNA fragments (CLIP-Seq).36

In parallel, the fact that splicing outcome is highly condition specific and regulated by many factors led to an effort37

to computationally derive predictive ‘splicing codes’: models that use putative regulatory features (e.g. sequence motifs,38

secondary structure) to predict splicing outcome in a condition specific manner (e.g. brain tissue) [2, 3]. Concentrating on39

cassette exons, the most common form of AS in mammals, these models aimed to predict percent splicing inclusion (PSI, Ψ)40

of the alternative exon, or changes of its inclusion (dPSI, ∆Ψ). Such models have been used successfully to identify novel41

regulators of splicing events in disease associated genes, and predict the effect of genetic variations on splicing outcome42

[7, 18, 14]. However, given the sharp growth in sequencing data, two main questions are: Can we leverage the new CLIP-Seq43

and splice factors KD/OE experiments and more generally, can we improve on current splicing code models?44

Previous work has shown that Bayesian Neural Networks compare favorably to a plethora of other modeling approaches45

including KNN, SVM, Naive Bayes, and Deep Neural Networks with Dropouts [19, 15]. Specifically, [15] described dropout46

as performing an approximation to the BNN Bayesian model averaging, and pointed to the latter as being advantageous47

for smaller datasets. However, later work using a Deep Neural Network with an autoencoder demonstrated improved48

performance compared to a BNN model [9]. Notably, these different works used different datasets and mixed the effect of49

modeling framework (BNN vs DNN) with changes of the target function. Thus, in this work we first reconstructed previous50

BNN and DNN models on the original dataset from [9]. After establishing these as a baseline, we then monitored the effect51
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of a new target function, of increasing dataset size by exploiting improvements in RNA-Seq quantification algorithms [16],52

and adding new types of experimental data.53

The first contribution of this work is in developing a new target function for splicing code models. Due to limitations of54

both available data and algorithms, previous works were unable to predict Ψ or ∆Ψ directly. Instead, they formulated a55

three way prediction task {pst,e | 0 ≤ pst,e ≤ 1,
∑

s p
s
t,e = 1} for any exon e in each condition t. In the original formulation, s56

represented the chances for increased inclusion, exclusion, or no change for exon e in condition t, compared to a hidden57

baseline of inclusion inferred from a set of 27 tissues [3]. This formulation allowed the learned model to concentrate its58

predictive power on tissue regulated exons, using a dedicated sparse factor analysis model to identify those exons from59

noisy micro-array data [2]. Subsequently, the same target function formulation was used, but instead of inferring splicing60

changes, s now represented binning of Ψ values into three levels: ”Low” (0 ≤ Ψ < 33%), ”Medium” (33% ≤ Ψ < 66%), and61

”High” (66% ≤ Ψ ≤ 100%). While useful, these target functions are inherently unsatisfying as an approximation to the62

underlying biological variability. Here, we develop a new target function which models Ψ directly, and demonstrate its63

improved accuracy compared to previous approaches. Serving as a baseline, Figure 1 depicts the improvement in percent64

variance explained by the new model compared to previous ones on the original dataset used by [9].65

The second contribution of this work is developing a framework to integrate additional types of experimental data66

into the splicing code models. Specifically, CLIP-Seq based measurements of in vivo splice factors binding are turned67

into an additional set of input features while knockdown and over-expression experiments are added with binary vectors68

coding which tissue and which factor (if any) are measured. A graphical representation of the various old and new model69

architectures is given in Figure 2. We demonstrate the effect of the new integrative modeling approach using a set of70

CLIP-Seq, knockdown and overexpression experiments for members of the Rbfox, Celf, and Mbnl splice factors in mouse71

heart, muscle and brain. Finally, we showcase some of the possible biological usage cases for these splicing code models for72

accurate in silico prediction of splice factors KO effect, and for identifying novel regulatory interplay between different73

splice factors.74

2 Methods75

2.1 Datasets76

Two RNA-Seq datasets were processed for this work. One, denoted Five Tissue Data, is the RNA-Seq data from five mouse77

tissues (brain, heart, kidney, liver and testis) produced by [5]. This dataset was used in the [9] paper and thus we use it to78

compare the old and new models. We generated genomic features and PSI quantification for approximately 12,000 cassette79

exons used in [4] for this dataset for the five tissues using MAJIQ [16] and AVISPA [4]. The second dataset, denoted MGP80

Data, was prepared by [8] and it contains RNA-Seq data from six tissues (heart, hippocampus, liver, lung, spleen, thymus)81

with average read coverage of 60 million reads. To this data we added 15 CLIP-Seq experiments (See Supplementary82

Table 10). Together, these datasets highlight some of the challenges involved in utilizing such diverse experiments. First,83

CLIP-Seq experiments give noisy measurement of where a splice factor binds. The measurements are noisy since binding84

signal (reads aligning to a certain area) may be false positives, may not indicate active regulation and may suffer from85

false negatives due to low coverage, indirect binding, antibody sensitivity, etc. Moreover, these experiments are typically86

executed by different labs, in different conditions and at varying levels of coverage. Thus, it is crucial that any learning87

framework that we develop should be able to handle missing and noisy measurements.88

In our learning setting, the CLIP-Seq data is turned to input features indicating possible binding in a region proximal89

to the alternative exon (e.g. upstream intron). The target in our problem formulation is the relative exon inclusion level in90

a given experiment, expressed as percent spliced in (PSI, Ψ ∈ [0, 1]). PSI serves to capture the proportion of isoforms that91

include the exon versus those that skip it. But since these are not observed directly, the short sequencing reads are used to92

construct a posterior beta distribution over PSI per exon P (Ψe
t ) ∼ β(αe

t,1, α
e
t,2). Similarly, when comparing two conditions93

the short reads are used to construct a posterior distribution over dPSI ∆Ψ ∈ [−1, 1] [16]. In practice many exons tend94

to be either highly included or highly excluded in any given condition, but approximately 20% of the measurements in95

our dataset have 0.1 < E[Ψ] < 0.9 and the concentration of the posterior Ψ or ∆Ψ distribution around that mean value96

depends on the total number of reads hitting that region and how these are distributed across the transcriptome[16].97

To enable comparison to previous works, we derived a feature set that excluded the additional CLIP based features98

described above. The 1,357 non CLIP-Seq features comprised of binary, integer and real valued features. These features99

have vastly different distributions with some being highly sparse, and some features being highly correlated (e.g. alternative100

representations of a splice factor binding motif). Finally, in any given condition only a small subset of those features are101

expected to represent relevant regulatory features.102

Since many splicing changes occur in complex/non-binary splicing events, limiting the splicing code model to the original103

predefined 12,000 cassette events means that we may lose many important splicing variations. To capture additional cassette104

or cassette-like splicing variations we developed a pipeline that parses gene splice graphs constructed by MAJIQ to find105

additional training samples in the dataset. This process allowed us to find 2, 876 more events changing in at least one tissue106

comparison in the MGP data.107

Next we processed seven splice factor knockdown, knockout and over-expression RNA-Seq datasets for four key splicing108

factors Celf1/2, Mbnl1 and Rbfox2 (for details of the datasets, see Supplementary Table 11). These datasets pose a challenge109

for any integrative learning framework since they are low coverage, noisy and generated by different labs.110

We divided our datasets into 5 folds. Three folds were used for training, one for validation and one for testing. We111

repeated the modeling tasks 3 times, permuting the dataset each time to produce standard deviation estimates in the112

performance evaluation.113
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2.2 Likelihood Target Function114

Motivated by the high noise in microarrays and later applied to RNA-Seq data, previous works translated the measurements115

of exon inclusion levels into a posterior distribution over random variable qec,s for each exon e and condition c with three116

possible assignments {qec,s} where qec,s ≥ 0 ∀e, c, s and
∑

s q
e
c,s = 1. For PSI prediction, s ∈ {L,M,H} represent chances of117

0 ≤ Ψ < 0.33, 0.33 ≤ Ψ < 0.66 and 0.66 ≤ Ψ ≤ 1 respectively. For changes in PSI, s ∈ {inc, exc, nc}, represent chances of118

increased inclusion, exclusion or no change. Consequently, an information theoretic code quality measure (Qc) was used to119

score the predictions made by the splicing code. Qc is expressed as the difference in the Kullback-Leibler (KL) divergence120

between each target and predicted distribution:121

Qc =

E∑
e=1

DKL(qec‖q̄)−DKL(qec‖pec)

=

E∑
e=1

∑
s∈{inc,exc,nc}

qec,s log(
pec,s
q̄s

),

(1)

where c is the splicing condition (e.g., CNS), E is the number of exons and pec,s and qec,s are the predicted and target122

probabilities. Alternatively, Qc can be interpreted as the log-likelihood of the predictions minus the log-likelihood of a naive123

predictor based on the marginal distribution only.124

Although useful, this target function suffers from several deficiencies when applied to RNA-Seq data. First, the binning125

process results in a rudimentary estimation of Ψ and ∆Ψ. Second, the optimization only aims to bring pec,s and qec,s closer,126

without any relation to order or meaning. For example, if a cassette event has low inclusion (qc,s=L ∼ 1) then predicting127

pc,s=M ∼ 1 or pc,s=H ∼ 1 are just as bad. Moreover, in cases where an event suffers from insufficient or highly variable read128

coverage we may have qc,s=L ∼ qc,s=M ∼ qc,s=H . In such cases, a model with high confidence (e.g. pc,s=H ∼ 1) based on129

sequence features will be penalized just the same, though there was no substantial evidence against it.130

In order to overcome the above limitations, for every pair of conditions c and c
′
, we define three target variables:131

TΨe,c = E[Ψe,c]

T∆Ψ
inc,c,c

′ = |max(ε, E[∆Ψc,c
′ ])|

T∆Ψ
exc,c,c

′ = |min(ε, E[∆Ψc,c
′ ])|

(2)

where TΨe,c is the expected PSI value of the event e in condition c. T∆Ψ
inc,c,c

′ captures the dPSI for events with increased132

inclusion between condition c and c
′

and T∆Ψ
exc,c,c

′ captures the dPSI for events with increased exclusion between condition133

c and c
′
. ε is a uniform random variable with values between 0.01 and 0.03, it is used to provide very low dPSI values134

for non-changing events. E[Ψc] and E[∆Ψc,c
′ ] were computed from the raw RNA-Seq data from condition c and c

′
using135

MAJIQ [16]. Given the above target variables definition, we define the new likelihood target function as136

L =
∑
c

E∑
e

kc,ewc,e

∑
t

Lt,c,e

Lt,c,e = t log t̂+ (1− t) log(1− t̂)

wc,e =

E[Ψe,c]+∆∑
Ψ=E[Ψe,c]−∆

P (Ψ)

(3)

where t ∈ {TΨe,c , T∆Ψ
inc,c,c

′ , T∆Ψ
exc,c,c

′ } and kc,e = 1 if exon e is quantifiable in condition c. The weight wc,e is defined by137

the probability mass in the area ±∆ around the expected Ψc as defined by MAJIQ. This definition carries several benefits.138

First, it allows us to combine many different datasets, where the same event may or may not be quantifiable. Second, even139

when an event is deemed quantifiable (kc,e = 1), the model can take into account how sure MAJIQ is in the Ψ inferred from140

the RNA-Seq experiment.141

2.3 Models142

2.3.1 Architecture143

The BNN model was described in detail in [19, 9]. Briefly, the network consists of one hidden layer with 12 hidden units and144

sigmoidal non-linearity was used for each hidden unit. Network weights are random variables with a Gaussian distribution145

and a spike and slab prior which encourages sparsity. Figure 2 shows the network architecture of BNN used in this work.146

We note that [9] only used the LMH variables for the BNN. We supplemented those with UDC variables to make the BNN147

targets equivalent to those of the DNN architecture used in that work, leading to improved performance for the BNN model148

(see Supplementary Table 4).149

The original DNN model shown in Figure 2 included an autoencoder layer with tanh activation and two hidden layers150

with ReLU activation units. Additionally tissue type was input as two, 5 (number of tissues) hot vectors where each bit151

represents a tissue and is active when the network is input an event comparing that tissue with another. For example, if the152

tissue order is [brain, heart, kidney, liver, testis] and the current comparison is brain versus heart, then the two tissue type153
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hot vectors will be [1 0 0 0 0] and [0 1 0 0 0]. Dropout with probability 0.5 was used in each layer except the autoencoder154

layer. The hyperparameters are described in Supplementary Table 12. We experimented with different types of network155

architectures with different number of hidden layers and hidden units, different activation units and batch normalization.156

Since non of those architectures performed significantly better (data not shown) we decided to maintain the original DDN157

architecture for the purpose of this work.158

The new DNN model architecture shown in Figure 2 includes the following additions. First, the target function has159

been changed as described in Section 2. We also added 874 CLIP features to the input dataset. We maintained the three160

layer structure of the original DNN models since we observed that adding additional layers did not improve performance.161

Batch normalization was performed at the second and third hidden layer and dropout with probability 0.5 was applied to162

both. We noticed that adding L1/L2-regularization did not have any impact on the model performance and we decided to163

exclude it from the final model. We allowed the learning rates of the three target variables to vary to capture optimal164

model performance.165

As shown in Figure 2, for splice factor modeling, we modified the tissue type input to include the splice factor166

knockdown/knockout or over-expression. We used two 4 (number of tissues) hot vectors to represent the tissues and two 4167

(number of splice factors) hot vectors to represent the splice factors. Since the datasets for this model were lower coverage168

and more noisy than the previous models, this model was more sensitive to different hyperparameter values during the169

tuning phase with cross validation. Three hidden layers were found to be optimal and L1-regularization was performed on170

the autoencoder layer. Dropout of 0.5 was used for the second and third hidden layers.171

2.3.2 Learning172

Following the procedure suggested by [9], we trained the first layer of the model as an autoencoder for dimensionality173

reduction. This procedure proved beneficial for the new models as well. Next, the set of weights from the first layer were174

fixed and the tissue input was added. In the second stage, the two layered feed forward neural network was trained using175

SGD with momentum and weights were fine tuned by backpropagation. Each sample input to the network consists of 1,357176

genomic (+ 874 CLIP) features and has three target variables, TΨe,c , T∆Ψ
inc,c,c

′ and T∆Ψ
exc,c,c

′ . Training batches are177

biased to prioritize changing events. Early stopping and dropout layers prevent the network from overfitting.178

The three target variables are different in nature since one learns the baseline PSI and the other two learn the inclusion179

and exclusion dPSI. Thus, varying the learning rates for them optimizes the model performance on each one. The180

autoencoder network was trained for 300-500 epochs and the feed-forward neural network was trained for 1,000-1,400 epochs.181

Validation data was used for the hyperparameter tuning and once the set of hyper parameters were fixed, the final model182

was trained with the training and the validation data. 15 models were trained with the 5 folds and 3 permutations of the183

whole datasets. The performance evaluation is on the concatenated predictions of the test set from the 5 folds and error184

bars are computed using the 3 permutations. Tensorflow was used to develop the deep model and GPUs were used to185

accelerate the training process.186

For the BNN, each tissue pair was trained as an independent model. Spike and slab prior was used to enforce sparsity187

and the weights were assumed to have a Gaussian distribution. 950 samples from the posterior distribution of weights were188

generated using 1,000 MCMC training iterations with Gibbs sampling. Initial 50 samples were discarded as burn-in. The189

final predictions are generated by averaging over the predictions from the 950 sampled weights. 15 models were trained190

per tissue comparison with 5 fold cross validation and 3 data permutations. After fixing the model hyperparameters, the191

validation data was included in training the final model.192

3 Results193

For assessing the prediction accuracy, two types of measures have been used in this work. The predicted E[Ψ̂c,e] is compared194

to the estimated E[Ψc,e] from the RNA-Seq experiments to compute the fraction of variance explained (R2). Area under the195

ROC curve (AUC) was computed for the predictions of exons that were differentially excluded/included (|∆Ψe,c,c
′ | ≥ 0.15)196

or not changing (|∆Ψe,c,c
′ | ≤ 0.05).197

We aim to measure the effect of each new element on the prediction accuracy. As a baseline, Figure 1 shows the effect of198

new target function on prediction with no other modeling additions on the original dataset used by [9]. We see significant199

improvement ( 10%− 25%) in PSI estimation and splicing target prediction (See Supplementary Table 6) by the new model200

(DNN-PSI) when compared to the DNN (DNN-LMH) and BNN (BNN-UDC) with the old target function. We added201

inclusion, exclusion and no change output variables for the Bayesian Neural Network since it improved splicing target202

prediction performance compared to the BNN without these labels (BNN-MLR [9],see Supplementary Table 4). DNN-LMH203

was designed according to the architecture and hyperparameters described in [9]. We note that the results for the previous204

models are not directly extracted from [9] but rather reconstructed to produce similar performance since both code and205

data were not available from the original publication. Also, since the DNN-LMH does not predict PSI directly, we computed206

the E[Ψ] as the weighted average of the {L,M,H} class prediction probabilities, following [18].207

As noted earlier, previous works [4, 9, 18] were performed on a predefined set of approximately 12,000 alternative cassette208

exons. This approach of using only predefined cassette exons can limit the performance of the learned models, especially209

those involving deep neural networks which require large datasets. Thus, we developed a process termed cassettization210

(see Section 2.1) to detect and quantify additional cassette and cassette like alternative exons from RNA-Seq data. Also,211

due to the limited coverage of [5], we performed subsequent analysis on the MGP six tissues data described in Section 2.1.212

To assess the effect of cassettization on performance, we used two identically configured BNN models and trained one on213

the original 12,000 cassette exons (BNN-UDC) while the second got an additional training set with the cassettized events.214
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Figure 3(a) shows that cassettization caused a substantial improvement in PSI estimation and splicing target prediction215

(See Supplementary Table 7) with all other factors being constant.216

Our next goal was to measure the effect of CLIP-Seq data on PSI estimation. Using the same setup described above, we217

trained two BNNs identical in every aspect except one was given the CLIP data as input features (BNN-CAS-CLIP) and218

the other was not (BNN-CAS). Introducing CLIP features added a modest improvement to the PSI estimation as seen in219

Figure 3(b). One possible explanation for the modest improvement could be underfitting of BNN-CAS-CLIP since CLIP is220

introduced as new features to the model but the model’s hidden layer size and other hyperparameters are fixed.221

In order to test the combined effect of the new target function, CLIP data and cassettization on the model’s performance222

and to compare BNN and DNN frameworks for the task of PSI estimation, we trained a BNN model with the old target223

function, cassettization and CLIP (BNN-CAS-CLIP) and a DNN model with the new target function, cassettization and224

CLIP (DNN-PSI-CAS-CLIP). Figure 3(c) and Table 1 summarize the results for the two model for both PSI estimation and225

splicing target prediction. Figure 3(c) shows large performance improvement of the new model for PSI estimation when226

compared to the BNN. This improvement carries over to the task of splicing target prediction seen in Table 1 as well, and227

for every tissue pair.228

Next, we turned to the new integrative framework that incorporates knockdown/knockout and over-expression experiments229

(see Section 2.3.1, Section 2.1). Figure 4(a) shows that the new integrative deep model generalizes well for this new type of230

KD/KO/OE data, offering large performance improvement for PSI estimation. One exception is the model performance231

on Rbfox2 KD in C2C12 cells. This may be due to the different experimental condition (C2C12 cells) or the number of232

samples, which require specific adjustments of the model’s training parameters.233

3.1 Regulatory Modelling with New Splicing Codes234

In order to demonstrate the usefulness of the new splicing codes for splicing regulatory analysis we tested how well the model235

predicts the effect of splice factor knockdowns on unseen test cases with or without the available KD data. Figure 4(b, left)236

shows the correlation between the experimental (RNA-Seq) overexpression dPSI and the new model′s predictions in Celf1237

heart OE experiment. Good correlation (R2 = 0.41) indicates that the model learns the effects of overexpression of the238

splice factor well. Figure 4(b, right) shows the correlation when the model performs in silico knockdown of Celf1 by zeroing239

out the features related to Celf versus the experimental Celf1 overexpression dPSI. Negative correlation (R2 = −0.35)240

even without KD data demonstrates how the splicing codes can now accurately predict changes in dPSI with in silico241

knockdowns (For similar plots for the other KO/KD/OE datasets, see Supplementary Figure 1).242

Finally, we wished to see if we could gain mechanistic insight into the regulation of physiologically relevant targets in243

these systems. Specifically, exons correctly predicted to have reduced inclusion upon Celf1 over-expression but are not244

affected by Celf1 related features (Figure 4b,right) are of particular interest in terms of alternative mechanisms of regulation.245

Two such cases in key genes are shown in Figure 4(c), for the myofibrillar protein Nrap [11] in muscle (top) and for the246

beta microexon in the key myogenic transcription factor Mef2d [13] in heart (bottom). Quantification using RNA-Seq data247

from these contexts confirmed the accuracy of the model in predicting Celf1 regulation in both cases (Fig. 4c, compare bars248

1 and 4). However, in silico removal of Celf related features did not lead to significant changes in exon inclusion in either249

case(Fig. 4c, compare bars 1 to 2), suggesting indirect regulation could be causing repression upon Celf1 over-expression. In250

line with this, no Celf1 CLIP peaks were found upstream of these regulated exons (Fig. 4c, right) where Celf proteins have251

been found to repress exon inclusion [1]. Strikingly, in silico removal of features related to the Rbfox family recapitulated252

the predicted splicing change upon Celf1 overexpression (Fig. 4c, compare bars 1 to 3). Analysis of Rbfox2 knockdown253

data from myotubes [13] (Fig 4c) or Rbfox1 muscle-specific knockout mice [11] supports that the Rbfox family typically254

enhances inclusion of these exons. Additionally, a number of Rbfox binding motifs (GCAUG) and CLIP peaks are located255

just downstream of these exons (Fig 4c, right), where these proteins enhance inclusion [13]. These observations motivated256

additional study in human T cells where we found Celf2 is a potent repressor of Rbfox2 [6], suggesting that a similar indirect257

mechanism may be at play in murine muscle and heart where Celf overexpression represses Rbfox proteins to drive splicing258

changes in these and other targets.259

4 Discussion260

In this study, we offered a new formulation for the task of learning condition specific splicing codes from a compendium261

of RNA features. First, we introduced a new target function which takes advantage of recent advances in RNA-Seq262

quantification algorithms [16] and results in a significant accuracy boost for PSI prediction, tissue specific variations, and263

splice factors target predictions. The new target function allowed us to incorporate samples with missing quantification264

values or with different degrees of quantification accuracy. This, combined with a pipeline to detect cassette and cassette like265

exons from RNA-Seq data enabled us to combine many datasets and further improve model accuracy. We also showed how266

new sources of data for splice factors binding affinity (CLIP-Seq) and regulation (KD/OE experiments) can be integrated267

to further improve code prediction accuracy.268

A known issue with deep models applications for bio-medical studies is their often cryptic nature. However, we were269

able to demonstrate here how the integrative deep models we developed can be used to gain biological insights for splicing270

regulation. This included high accuracy of target prediction w/wo available KD/KO experiments, and identifying putative271

novel regulatory interdependence between splice factors along with the affected targets. We believe this usage demonstration272

represents only a small portion of the potential of this new breed of models. Future work includes predicting non-cassette273

splicing variations, robust automated extraction of biological hypotheses from code models, and scaling up to create274

regulatory codes for many conditions and datasets.275
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Main text figures and tables334

Figure 1: Improvement in %variance explained by the new target function (light purple) compared to previous BNN and
DNN models on the original tissue data used by [9].
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Tissue Pair Model Inclusion Exclusion No Change

Heart-Hipp BNN-CAS-CLIP 92.97±0.12 88.22±0.16 92.26±0.06
DNN-PSI-CAS-CLIP 95.70±0.06 94.09±0.34 94.72±0.06

Heart-Liver BNN-CAS-CLIP 78.09±0.49 89.38±0.24 85.13±0.15
DNN-PSI-CAS-CLIP 92.15±0.60 96.26±0.18 94.11±0.26

Heart-Lung BNN-CAS-CLIP 82.52±0.67 89.77±0.18 87.94±0.18
DNN-PSI-CAS-CLIP 92.15±0.80 95.42±0.30 93.60±0.26

Heart-Spleen BNN-CAS-CLIP 79.37±0.21 91.03±0.13 87.45±0.08
DNN-PSI-CAS-CLIP 93.18±0.22 96.98±0.47 95.22±0.33

Heart-Thymus BNN-CAS-CLIP 82.01±0.64 86.20±0.24 85.91±0.23
DNN-PSI-CAS-CLIP 92.76±0.36 95.83±0.15 94.06±0.32

Hipp-Liver BNN-CAS-CLIP 83.33±0.08 93.16±0.02 90.32±0.07
DNN-PSI-CAS-CLIP 94.36±0.41 97.33±0.24 95.60±0.07

Hipp-Lung BNN-CAS-CLIP 84.19±0.23 92.71±0.05 90.61±0.04
DNN-PSI-CAS-CLIP 93.32±0.33 95.92±0.11 94.47±0.16

Hipp-Spleen BNN-CAS-CLIP 83.84±0.34 93.36±0.06 90.75±0.10
DNN-PSI-CAS-CLIP 93.77±0.09 96.86±0.13 95.51±0.10

Hipp-Thymus BNN-CAS-CLIP 83.10±0.36 88.63±0.15 87.83±0.18
DNN-PSI-CAS-CLIP 91.77±0.27 95.64±0.10 94.46±0.05

Liver-Lung BNN-CAS-CLIP 84.60±0.36 81.73±0.37 83.07±0.42
DNN-PSI-CAS-CLIP 98.14±0.54 94.23±0.15 95.71±0.28

Liver-Spleen BNN-CAS-CLIP 85.41±0.40 87.66±0.15 87.59±0.21
DNN-PSI-CAS-CLIP 97.01±0.61 94.46±0.29 96.04±0.63

Liver-Thymus BNN-CAS-CLIP 84.25±1.10 74.23±0.03 77.03±0.14
DNN-PSI-CAS-CLIP 96.80±0.76 93.27±0.38 93.44±0.20

Lung-Spleen BNN-CAS-CLIP 79.82±0.32 80.71±0.49 80.71±0.09
DNN-PSI-CAS-CLIP 96.83±0.75 96.03±1.13 96.91±0.39

Lung-Thymus BNN-CAS-CLIP 79.97±0.41 78.41±0.44 79.57±0.30
DNN-PSI-CAS-CLIP 94.98±1.05 96.51±0.47 95.91±0.16

Spleen-Thymus BNN-CAS-CLIP 70.55±1.31 70.73±1.14 70.99±0.76
DNN-PSI-CAS-CLIP 97.91±0.47 91.86±1.23 92.21±0.85

Table 1: Comparison of splicing target prediction of DNN-PSI-CAS-CLIP vs. BNN-CAS-CLIP in terms of AUCs of inclusion
vs. all, exclusion vs. all and change vs. no change.
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Figure 2: Architecture of the Bayesian Neural Network, old and new Deep Neural Network models

(a) (b) (c)

Figure 3: (a) Effect of cassettization on PSI estimation. (b) Effect of CLIP data on PSI estimation. (c) Comparison of old
and new models with cassettization and CLIP
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Figure 4: (a) Improvement in % variance explained in PSI for the splice factor modelling for BNN with old target function
(blue) versus new model (orange) (b) Correlation plots for Celf1 Overexpression(OE) in mouse heart. Left, showing correlation
between experimental and model predicted Overexpression dPSI for Celf1 heart OE. Right, showing correlation between
experimental OE and in silico KD of Celf. (R: Pearson correlation coefficient) (c) Left: Model predicted changes in exon
inclusion for Nrap in muscle (top) or Mef2d in heart (bottom) upon Celf1 overexpression, removal of features related to the
Celf family, or removal of features related to the Rbfox family (right bars) as well as quantification of change in inclusion from
RNA-Seq upon overexpression Celf1 or knockdown of Rbfox2 in myotubes (left bars). Right: UCSC genome browser view of
regulated cassette exons in Nrap (top) and Mef2d (bottom) showing locations of RNA-seq reads in given conditions, Celf1 and
Rbfox2 CLIP peaks, and the Rbfox family binding motif GCAUG.
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