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Abstract 26 
 27 
Conventional methods for profiling the molecular content of biological samples fail to resolve 28 
heterogeneity that is present at the level of single cells. In the past few years, single cell RNA 29 
sequencing has emerged as a powerful strategy for overcoming this challenge. However, its 30 
adoption has been limited by a paucity of methods that are at once simple to implement and cost 31 
effective to scale massively. Here, we describe a combinatorial indexing strategy to profile the 32 
transcriptomes of large numbers of single cells or single nuclei without requiring the physical 33 
isolation of each cell (Single cell Combinatorial Indexing RNA-seq or sci-RNA-seq). We show 34 
that sci-RNA-seq can be used to efficiently profile the transcriptomes of tens-of-thousands of 35 
single cells per experiment, and demonstrate that we can stratify cell types from these data. Key 36 
advantages of sci-RNA-seq over contemporary alternatives such as droplet-based single cell 37 
RNA-seq include sublinear cost scaling, a reliance on widely available reagents and equipment, 38 
the ability to concurrently process many samples within a single workflow, compatibility with 39 
methanol fixation of cells, cell capture based on DNA content rather than cell size, and the 40 
flexibility to profile either cells or nuclei. As a demonstration of sci-RNA-seq, we profile the 41 
transcriptomes of 42,035 single cells from C. elegans at the L2 stage, effectively 50-fold 42 
“shotgun cellular coverage” of the somatic cell composition of this organism at this stage. We 43 
identify 27 distinct cell types, including rare cell types such as the two distal tip cells of the 44 
developing gonad, estimate consensus expression profiles and define cell-type specific and 45 
selective genes. Given that C. elegans is the only organism with a fully mapped cellular lineage, 46 
these data represent a rich resource for future methods aimed at defining cell types and states. 47 
They will advance our understanding of developmental biology, and constitute a major step 48 
towards a comprehensive, single-cell molecular atlas of a whole animal.   49 
  50 
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Introduction 51 
 52 
Individual cells are the natural unit of form and function in biological systems. However, 53 
conventional methods for profiling the molecular content of biological samples usually mask 54 
cellular heterogeneity that is likely present even in ostensibly homogenous tissues. The 55 
averaging of signals from large numbers of single cells sharply limits what we are able to learn 56 
from the resulting data (1). For example, differences between samples cannot easily be attributed 57 
to differences within cells of the same type vs. differences in cell type composition.   58 
 59 
In the past few years, profiling the transcriptome of individual cells (i.e. single cell RNA-seq) 60 
has emerged as a powerful strategy for resolving heterogeneity in biological samples. The 61 
expression levels of mRNA species are readily linked to cellular function, and therefore can be 62 
used to classify cell types in heterogeneous samples (2–10) as well as to order cell states in 63 
dynamic systems (11). Although methods for single cell RNA-seq have proliferated, they 64 
universally rely on the isolation of individual cells within physical compartments, whether by 65 
pipetting (12–14), sorting (2, 8, 13, 15–17), microfluidics-based deposition to microwells (18), or 66 
by dilution to emulsion-based droplets (5, 19, 20). As a consequence, the cost of preparing single 67 
cell RNA-seq libraries with these methods scales linearly with the numbers of cells processed. 68 
Although droplet-based methods are generally more cost-effective than well-based methods, they 69 
are nonetheless limited by linear cost-scaling, the need for specialized instrumentation, and an 70 
incompatibility with profiling nuclei or fixed cells (21, 22). Furthermore, droplet-based systems 71 
capture cells based on cell size, which may bias analyses of heterogeneous tissues.   72 
 73 
We set out overcome these limitations with a new method for single cell RNA-seq based on the 74 
concept of combinatorial indexing. Combinatorial indexing uses split-pool barcoding to uniquely 75 
label a large number of single molecules or single cells, but without requiring the physical 76 
isolation of each molecule or cell. We previously used combinatorial indexing of single 77 
molecules (high molecular weight genomic DNA fragments) for both haplotype-resolved 78 
genome sequencing and de novo genome assembly (23, 24). More recently, we and others 79 
demonstrated single cell combinatorial indexing (“sci”) to efficiently profile chromatin 80 
accessibility (sci-ATAC-seq) (25), genome sequences (sci-DNA-seq) (26), and genome-wide 81 
chromosome conformation (sci-Hi-C) (27) in large numbers of single nuclei.  82 
 83 
Here we describe sci-RNA-seq, a straightforward method for profiling the transcriptomes of 84 
large numbers of single cells or nuclei per experiment, using off-the-shelf reagents and 85 
conventional instrumentation. For single cells, the protocol relies on methanol fixation, which 86 
can stabilize and preserve RNA in dissociated cells for weeks (28), thereby minimizing 87 
perturbations to cell state before or during processing. In this proof-of-concept, we apply sci-88 
RNA-seq to profile the transcriptomes of ~16,000 mammalian cells in a single experiment, and 89 
show that we can separate synthetic mixtures of inter- or intraspecies cell types. We then apply 90 
sci-RNA-seq to Caenorhabditis elegans worms at the L2 stage, sequencing the transcriptomes of 91 
42,035 single cells. This includes 37,734 somatic cells, effectively 50x coverage (i.e. 92 
oversampling) of this organism’s entire cellular content (762 cells at the L2 stage). From these 93 
data, we identify 27 distinct cell types, estimate their consensus expression profiles and define 94 
cell-type specific and selective genes, including for some fine-grained cell types that are present 95 
in only one or two cells per animal.  96 
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Results 97 
 98 
Overview of method 99 
 100 
In its current form, sci-RNA-seq relies on the following steps (Fig. 1a): (1) Cells are fixed and 101 
permeabilized with methanol (alternatively, cells are lysed and nuclei recovered), and then split 102 
across 96- or 384-well plates. (2) To introduce a first molecular index to the mRNA of cells 103 
within each well, we perform in situ reverse transcription (RT) with a barcode-bearing, well-104 
specific polyT primer with unique molecular identifiers (UMI). (3) All cells are pooled and 105 
redistributed by fluorescence activated cell sorting (FACS) to 96- or 384-well plates in limiting 106 
numbers (e.g. 10-100 per well). (4) We then perform second strand synthesis, transposition with 107 
Tn5 transposase (Nextera), lysis, and PCR amplification. The PCR primers target the barcoded 108 
polyT primer on one end, and the Tn5 adaptor insertion on the other end, such that resulting PCR 109 
amplicons preferentially capture the 3’ ends of transcripts. Critically, these primers introduce a 110 
second barcode, specific to each well of the PCR plate. (5) Amplicons are pooled and subjected 111 
to massively parallel sequencing, resulting in 3’-tag digital gene expression profiles, with each 112 
read associated with two barcodes corresponding to the first and second rounds of cellular 113 
indexing (Fig. 1b). 114 
 115 
Because the overwhelming majority of cells pass through a unique combination of wells, each 116 
cell is effectively “compartmentalized” by the unique combination of barcodes that tag its 117 
transcripts. As we previously described, the rate of “collisions”, i.e. two or more cells receiving 118 
the same combination of barcodes, can be tuned by adjusting how many cells are distributed to 119 
the second set of wells (25). The sub-linear cost-scaling of combinatorial indexing follows from 120 
the fact that the number of possible barcode combinations is the product of the number of 121 
barcodes used at each stage. Consequently, increasing the number of barcodes used in the two 122 
rounds of indexing leads to an increased capacity for the number of cells that can be profiled and 123 
a lower effective cost per cell (Fig. S1). Additional rounds of molecular indexing can potentially 124 
offer even greater complexity and lower costs. Pertinent to experiments described below, we 125 
note that multiple samples (e.g. different cell populations, tissues, individuals, time-points, 126 
perturbations, replicates, etc.) can be concurrently processed within a single sci-RNA-seq 127 
experiment, simply by using different subsets of wells for each sample during the first round of 128 
indexing. 129 
 130 
Application of sci-RNA-seq to mammalian cells  131 
 132 
To evaluate the scalability of this strategy, we performed a 384 well x 384 well sci-RNA-seq 133 
experiment. During the first round of indexing, half of the 384 wells contained pure populations 134 
of either human (HEK293T or HeLa S3) or mouse (NIH/3T3) cells, whereas half of the wells 135 
contained a mixture of human and mouse cells. After barcoded RT, cells were pooled and then 136 
sorted to a new 384 well plate for further processing, including the second round of barcoding 137 
and deep sequencing of pooled PCR amplicons. From this single experiment, we recovered 138 
15,997 single cell transcriptomes.  139 
 140 
At a read depth corresponding to ~25,000 reads per cell (~65% duplication rate), we recovered 141 
(on average) 11,024 UMIs per HEK293T cell, 7,832 UMIs per HeLa S3 cell, and 5,260 UMIs 142 
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per NIH/3T3 cell. Cells originating in wells containing an interspecies mixture were readily 143 
assignable as human or mouse, with a rate of collision 16% (6.3% expected) (Fig. 1c). Species 144 
mixing experiments provide a means of estimating ‘impurities’ that might result from mRNA 145 
leakage between permeabilized cells. In this initial experiment, the rate of human reads 146 
appearing in mouse-assigned cells was 6.2%, and the rate of mouse reads appearing in human 147 
cells was 2.9%.  148 
 149 
To reduce mRNA leakage as well as to increase the number of unique transcripts profiled per 150 
cell, we extensively optimized the protocol, most importantly the choice of reverse transcriptase 151 
and the washing steps. In an experiment that is representative of the culmination of these 152 
optimizations, we performed 96 well x 96 well sci-RNA-seq on five mammalian cell 153 
populations, split across 96 wells during the first round of barcoding: HEK293T cells (8 wells); 154 
HeLa S3 cells (8 wells); an intraspecies mixture of HEK293T and HeLa S3 cells (32 wells); and 155 
interspecies mixtures of HEK293T and NIH/3T3 cells (24 wells) or nuclei (24 wells). After 156 
barcoded reverse transcription across these 96 wells, cells were pooled, sorted to a new 96 well 157 
plate for a second round of barcoding by PCR, and then all amplicons pooled.  158 
 159 
We deeply sequenced this library to a read depth corresponding to ~250,000 reads per cell (~88% 160 
duplication rate). We grouped reads that shared the same first and second round barcodes 161 
(inferring that each such group originated from the same single cell), which yielded 744 single 162 
cell and 175 single nucleus transcriptomes. Transcript tags were aligned to a combined human 163 
and mouse reference genome with STAR (29). Transcriptomes originating in ‘human only’ wells 164 
overwhelmingly mapped to the human genome (99%), including 51,311 UMIs per cell from 165 
HEK293T-only wells and 31,276 UMIs per cell from HeLa S3-only wells (on average), much 166 
higher transcript counts per cell than our original experiment. 81% of reads mapped to the 167 
expected strand of genic regions (47% exonic, 34% intronic), and the remainder to the 168 
unexpected strand of genic regions (9%) or to intergenic regions (10%). These proportions are 169 
similar to other studies (17). Whereas exonic reads show the expected enrichment at the 3’ ends 170 
of gene bodies, intronic reads do not, and may be the result of poly(dT) priming from poly(dA) 171 
tracts in heterogeneous nuclear RNA (Fig. S2). However, because like exonic reads they 172 
overwhelmingly derived from the expected strand of genic regions, we retained them in 173 
subsequent analyses.  174 
 175 
In this experiment, transcriptomes originating in wells containing an interspecies mixture of 176 
human (HEK293T) and mouse (NIH/3T3) cells overwhelmingly mapped to the genome of one 177 
species or the other (289 of 294 cells), with only 5 clear ‘collisions’ (3.4% collision rate; 4.3% 178 
expected) (Fig. 2a). Excluding these collisions, we observed 24,454 UMIs per human cell and 179 
17,665 UMIs per mouse cell (Fig. 2b-c), with an average of 1.9% and 3.3% of reads per cell 180 
mapping to the incorrect species, respectively, a level of impurity that is lower than our original 181 
experiment and comparable to the droplet-based Drop-Seq method (19). 182 
 183 
We next sought to confirm that we can separate cell types with sci-RNA-seq, focusing on the 184 
two human cell types (HEK293T and HeLa S3 cells) included in this experiment. We performed 185 
t-stochastic neighbor embedding (t-SNE) on standardized expression values of single cells 186 
derived from wells containing pure HEK293T cells, pure HeLa S3 cells, or mixed HEK293T and 187 
HeLa S3 cells. The mixed cells readily separate into two clusters, with one corresponding to 188 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 2, 2017. ; https://doi.org/10.1101/104844doi: bioRxiv preprint 

https://doi.org/10.1101/104844
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 6	

HEK293T cells and the other to HeLa S3 cells (Fig. 2d). To further validate the result, we 189 
identified single nucleotide variants (SNVs) that distinguish HEK293T and HeLa S3 cells and 190 
found that our assignments are in agreement with the SNV-based assignments (Fig. S3a). Of 191 
note, the intronic reads alone are sufficient to separate HEK293T and HeLa S3 cells (Fig. S3b). 192 
 193 
To evaluate whether sci-RNA-seq is biased compared to bulk measurements, we compared in 194 
silico aggregated transcriptomes from all 220 identified HEK293T cells against the output of a 195 
related bulk RNA-seq workflow (Tn5-RNA-seq (30)) without methanol fixation. The resulting 196 
estimates of gene expression were highly correlated (Pearson: 0.93; Fig. 2e). 197 
 198 
Application of sci-RNA-seq to mammalian nuclei  199 
 200 
Protocols for dissociating tissues to single cell suspensions are labor intensive, do not easily 201 
standardize, potentially impact cell states, and potentially bias cell type composition. To address 202 
this, several groups have developed single nucleus RNA-seq protocols (since single nuclei are 203 
much more readily obtained than single cells), but these ‘one-nucleus-per-well’ approaches (8, 204 
10, 17) do not efficiently scale.  205 
 206 
We therefore evaluated sci-RNA-seq for profiling the transcriptomes of single nuclei extracted 207 
from a synthetic mixture of mouse (NIH/3T3) and human (HEK293T) cells. From the above-208 
described experiment in which these nuclei were sorted to 24 of the 96 wells during the first 209 
round of barcoding, we recovered 175 single nucleus transcriptome profiles. Transcript tags were 210 
aligned to a combined human and mouse reference genome with STAR (29). As with single cells, 211 
reads associated with single nuclei mapped overwhelmingly to the genome of one species or the 212 
other (48 human nuclei; 124 mouse nuclei) with 3.4% collisions rate (4.3% expected)  (Fig. 3a).  213 
 214 
Excluding collisions and at a read depth corresponding to ~210,000 reads per nucleus (~88% 215 
duplication rate), we observed 32,951 UMIs per human nucleus and 20,123 UMIs per mouse 216 
nucleus (Fig. 3b-c), with an average of 2.2% and 1.9% of reads per cell mapping to the incorrect 217 
species. 84% of reads mapped to the expected strand of genic regions (35% exonic, 49% intronic) 218 
and 16% to intergenic regions or to the unexpected strand of genic regions. These proportions are 219 
similar to previous descriptions of single nucleus RNA-seq (17), which together with the number 220 
of transcript molecules recovered indicate that sci-RNA-seq can flexibly and scalably profile the 221 
transcriptomes of either cells or nuclei. As a further check, we aggregated the transcriptomes of 222 
identified NIH/3T3 nuclei (n = 124) and compared them against the aggregated transcriptomes of 223 
identified NIH/3T3 cells (n = 129) and found the resulting estimates of gene expression to be 224 
highly correlated (Pearson: 0.97; Fig. 3d). 225 
 226 
Single cell RNA profiling of C. elegans 227 
 228 
The roundworm C. elegans is the only multicellular organism for which all cells and cell types 229 
are defined, as is its entire developmental lineage (31, 32). As the extent to which contemporary 230 
single cell experimental and computational methods can comprehensively recover and 231 
distinguish cell types remains a matter of debate, we applied sci-RNA-seq to whole C. elegans 232 
larvae. Of note, the cells in C. elegans larvae are much smaller, more variably sized, and have 233 
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markedly lower mRNA content than mammalian cells, and therefore represent a much more 234 
challenging test of sci-RNA-seq’s technical robustness. 235 
 236 
We pooled ~150,000 larvae synchronized at the L2 stage and dissociated them into single-cell 237 
suspensions. We then performed in situ reverse transcription across 6 96-well plates (i.e. 576 238 
first-round barcodes), with each well containing ~1,000 C. elegans cells and also 1,000 human 239 
cells (HEK293T) as internal controls. After pooling cells from all plates together, we sorted the 240 
mixture of C. elegans cells and HEK293T cells into 10 new 96-well plates for PCR barcoding 241 
(i.e. 960 second-round barcodes), gating on DNA content to distinguish between C. elegans and 242 
HEK293T cells. This sorting was carried out such that 96% of wells harbored only C. elegans 243 
cells (140 each), and 4% of wells harbored a mix of C. elegans and HEK293T cells (140 C. 244 
elegans cells and 10 HEK293T cells each). 245 
 246 
This single experiment yielded 42,035 C. elegans single-cell transcriptomes (number of UMI 247 
counts for protein-coding transcripts > 100). 93.7% of reads mapped to the expected strand of 248 
genic regions (91.7% exonic, 2.0% intronic). At a sequencing depth of ~20,000 reads per cell 249 
and a duplication rate of 79.9%, we identified a median of 575 UMIs mapping to protein coding 250 
genes per C. elegans cell (mean of 1,121 UMIs per cell), likely reflective of the lower mRNA 251 
content of C. elegans cells relative to mammalian cells (Fig. S4a). Importantly, control wells 252 
containing both C. elegans and HEK293T cells demonstrated clear separation between the two 253 
species (Fig. S4b). 254 
 255 
Semi-supervised clustering analysis segregated the cells into 29 distinct groups with the largest 256 
containing 13,205 cells (31.4%) and the smallest containing only 131 cells (0.3%) (Fig. 4a). 257 
Somatic cell types comprised 37,734 cells. We identified genes that were expressed specifically 258 
in a single cluster, and by comparing those genes to expression patterns reported in the literature 259 
assigned the clusters to cell types (Table S2). Of the 29 clusters, 21 represented exactly one 260 
literature-defined cell type, 5 contained >1 distinct cell types, and 3 contained cells of unclear 261 
type. Neurons, which were present in 7 clusters from the global analysis, were independently 262 
subclustered, revealing 10 major neuronal subtypes (Fig. 4b). 263 
 264 
Overall, the global and neuron-specific clustering analyses allowed for the construction of 265 
expression profiles of 27 well-defined cell types (Fig 4e; not counting “unclassified neurons” 266 
and “other glia”). 11 of these cell types are represented by 1 to 6 cells in an individual L2 worm. 267 
Examples of these fine-grained cell types include the distal tip cells of the developing gonad (2 268 
cells), the excretory canal cell (1 single cell) and canal associated neurons (2 cells), and the 269 
amphid/phasmid sheath cells (4 glial cells). 270 
 271 
Each C. elegans animal contains exactly the same number of cells, which are generated 272 
deterministically in a defined lineage (31, 32). Comparing the observed proportions of each cell 273 
type to their known frequencies in L2 larvae showed that sci-RNA-Seq captured many cell types 274 
at or near expected frequencies (Fig. 4c; 15 types had abundance ³ 50% of the expectation). 275 
Body wall muscle was 2.4-fold more abundant in our data than in the animal, probably reflecting 276 
its ease of dissociation. Only one abundant cell type, the intestinal cells, was absent. We 277 
speculate that this was due to our gating strategy during FACS, which excluded cells based on 278 
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DAPI signal. Intestinal cells at the L2 stage are polyploid, containing 8 copies of each (haploid) 279 
chromosome. 280 
 281 
Previous analyses of single-cell transcriptomes have shown that cells can often be distinguished 282 
with relatively light sequencing per cell on the basis of a small set of highly specific genes (33). 283 
This raised the possibility that despite being able to detect many distinct cell types in the worm, 284 
our molecular definition for each would be incomplete. However, we observed that half of all C. 285 
elegans protein-coding genes were expressed in at least 80 cells in the full dataset, and 64% of 286 
protein-coding genes were expressed in at least 20 cells. As many genes are expressed 287 
specifically in embryos or adults, our gene expression measurements likely include most of the 288 
protein-coding genes that are truly expressed in L2 C. elegans. The “whole-worm” expression 289 
profile derived by aggregating all sci-RNA-Seq reads correlated well with published whole-290 
organism bulk RNA-seq (34) for L2 C. elegans (Fig. 4d, Spearman r = 0.795). Furthermore, 291 
consensus expression profiles for each cell type segregated as expected in a hierarchical 292 
clustering analysis (Fig. 4e). Thus, despite the fact that sci-RNA-Seq captures a minority of 293 
transcripts in each cell, our ‘oversampling’ of the cellular composition of the organism (i.e. 294 
37,734 somatic cells, effectively 50x coverage of the L2 worm’s 762 somatic cells), enables us to 295 
construct faithful expression profiles for individual cell types. 296 
  297 
Discussion 298 
 299 
We describe a new method for single cell RNA-seq based on the principle of combinatorial 300 
indexing of cells or nuclei. At the scale described here (e.g. 576 x 960 indexing), sci-RNA-seq 301 
can be applied to profile the transcriptomes of tens-of-thousands of single cells per experiment. 302 
Library preparation can be completed by a single individual in two days. The cost of library 303 
preparation, currently $0.03-$0.20 per cell, is dominated by enzymes. The method relies on off-304 
the-shelf reagents and widely available instrumentation (e.g. FACS, sequencer).  305 
 306 
sci-RNA-seq has several practical advantages over contemporary alternatives:  307 
 308 
First, it is compatible (and indeed relies on) cell fixation, which can minimize perturbations to 309 
cell state or RNA integrity before or during processing.  310 
 311 
Second, sci-RNA-seq facilitates the concurrent processing of multiple samples (e.g. 312 
corresponding to different cell populations, tissues, individuals, time-points, perturbations, 313 
replicates, etc.) within a single experiment, simply by using different subsets of wells for each 314 
sample during the first round of indexing. This may have the benefit of reducing batch effects, 315 
relative to platforms requiring the serial processing of samples, an area of paramount concern for 316 
the single cell RNA-seq field (35). Furthermore, given that the second barcode is introduced after 317 
flow sorting, it is also possible to associate wells on the PCR plate with FACS-defined 318 
subpopulations (e.g. corresponding to cell size, cell cycle, immunostaining, etc.), as we did while 319 
sorting mixed HEK293T and C. elegans cells.  320 
 321 
Third, as we show, sci-RNA-seq is readily compatible with the processing of nuclei. Single 322 
nucleus RNA-seq is possible with “well-per-well” methods but is not currently supported on 323 
droplet-based platforms. The ability to process nuclei, rather than cells, may be particularly 324 
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important for tissues for which unbiased cell disaggregation protocols are not well established 325 
(which may be most tissues).  326 
 327 
Fourth, sci-RNA-seq is highly scalable. Here we demonstrate up to 576 x 960 combinatorial 328 
indexing, which enables the generation of ~5 x 104 single cell transcriptomes. While beyond the 329 
scope of this proof-of-concept, one can imagine simply using more barcoded RT and PCR 330 
primers (e.g. 1,536 x 1,536 combinatorial indexing), which would enable processing of many 331 
more cells with sub-linear scaling of the cost per cell. A complementary approach is simply to 332 
introduce additional rounds of indexing, e.g. by using indexed Tn5 complexes during in situ 333 
transposition (24, 25). With 384 x 384 x 384 combinatorial indexing, we can potentially uniquely 334 
barcode the transcriptomes of >10 million cells within a single experiment.  335 
 336 
In this proof-of-concept, we apply sci-RNA-Seq to generate the first catalog of single cell 337 
transcriptomes at the scale of a whole organism. In a single experiment, we generated ~50X 338 
coverage of the somatic cellular composition of L2 C. elegans, detecting 27 cell types and 339 
constructing consensus transcriptional profiles for each. While not all cell types are detected at 340 
expected frequencies, 15 cell types had abundance ³ 50% of the expectation. Half of C. elegans 341 
protein-coding genes were expressed in at least 80 cells in the full dataset, demonstrating that our 342 
expression profile for this stage of C. elegans development is mostly comprehensive. Taken 343 
together, these analyses show that sci-RNA-Seq constitutes a reliable platform for molecular 344 
dissection of complex tissues and potentially whole organisms. 345 
 346 
sci-RNA-seq further expands the repertoire of single cell molecular phenotypes that can be 347 
resolved by combinatorial indexing (which now includes mRNA, chromatin accessibility, 348 
genome sequence, and chromosome conformation). Looking forward, we anticipate that 349 
additional forms of single cell profiling can be achieved with combinatorial indexing. Provided 350 
that multiple aspects of cellular biology can be concurrently barcoded, combinatorial indexing 351 
may also facilitate the scalable generation of ‘joint’ single cell molecular profiles (e.g. RNA-seq 352 
and ATAC-seq from each of many single cells). 353 
  354 
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Materials & Methods 355 
 356 
Cell Culture 357 
All cells were cultured at 37°C with 5% CO2, and were maintained in high glucose DMEM 358 
(Gibco cat. no. 11965) supplemented with 10% FBS and 1X Pen/Strep (Gibco cat. no. 15140122; 359 
100U/ml penicillin, 100µg/ml streptomycin). Cells were trypsinized with 0.25% typsin-EDTA 360 
(Gibco cat. no. 25200-056) and split 1:10 three times a week. 361 
 362 
Generation of whole C. elegans cell suspensions  363 
A C. elegans strain (RW12139 stIs11435(unc-120::H1-Wcherry;unc-119(+));unc-119(tm4063)) 364 
carrying an integrated Punc-120::mCherry gene in a wild type background was used in all 365 
experiments. A synchronized L2 population was obtained by two cycles of bleaching gravid 366 
adults to isolate fertilized eggs allowing the eggs to hatch in the absence of food to generate a 367 
population of starved L1 animals. Around 150,000 L1 larvae were plated on each 100 mm petri 368 
plate seeded with NA22 bacteria and incubated at 24 °C for 15 hr to produce early L2 larvae. 369 
Dissociated cells were recovered following a published protocol (36) with modification. 370 
Specifically, L2 stage worms were collected by adding 10 ml sterile ddH2O to each plate. The 371 
collected L2s were pelleted by centrifugation at 1300 g for 1 min.  The larval pellet was washed 372 
five times with sterile ddH2O to remove bacteria. The resulting pellet was transferred to a 1.6 ml 373 
microcentrifuge tube. Around 40 µl of the final compact pellet was used for each cell 374 
dissociation experiment. The worm pellet was treated with 250 µl of SDS-DTT solution (20 nM 375 
HEPES pH8, 0.25% SDS, 200 mM DTT, 3% sucrose) for 4 min.  Immediately after SDS-DTT 376 
treatment, egg buffer was added to the SDS-DTT treated worms.  Worms were pelleted at 500 g 377 
for 1 min, then washed 5 times with Egg buffer (118 mM NaCl. 48 mM KCl. 3 mM CaCl2. 3 378 
mM MgCl2. 5 mM HEPES (pH 7.2)). Pelleted SDS-DTT treated worms were digested with 200 379 
µl of 15 mg/ml pronase (Sigma-Aldrich, St. Louis, MO) for 20 min. The treated worms were 380 
broken up to release cells by pipetting up and down with 21G1 ¼ needle.  When sufficient single 381 
cells were observed the reaction was stopped by adding 900 µl L-15 medium containing 10% 382 
fetal bovine serum. Cells were separated from worm debris by centrifuging the pronase-treated 383 
worms at 150 g for 5 min at 4°C. The supernatant was transferred to 1.6 ml microcentrifuge tube 384 
and centrifuged at 500 g for 5 min at 4°C.  The cell pellet was washed twice with egg-buffer 385 
containing 1% BSA.  386 
 387 
Sample Processing 388 
All cell lines were trypsinized, spun down at 300xg for 5 min (4°C). and washed once in 1X PBS. 389 
C. elegans cells were dissociated as described above. 390 
 391 
For sci-RNA-seq on whole cells, 5M cells were fixed in 5 mL ice-cold 100% methanol at -20 °C 392 
for 10 min, washed twice with 1 ml ice-cold 1X PBS containing 1% Diethyl pyrocarbonate (0.1% 393 
for C. elegans cells) (DEPC; Sigma-Aldrich), washed three times with 1 mL ice-cold PBS 394 
containing 1% SUPERase In RNase Inhibitor (20 U/µL, Ambion) and 1% BSA (20 mg/ml, 395 
NEB). Cells were resuspended in wash buffer at a final concentration of 5000 cells/ul. For all 396 
washes, cells were pelleted through centrifugation at 300xg for 3 min, at 4°C.  397 
 398 
For sci-RNA-seq on nuclei, 5M cells were combined and lysed using 1 mL ice-cold lysis buffer 399 
(10 mM Tris-HCl, pH 7.4, 10 mM NaCl, 3 mM MgCl2 and 0.1% IGEPAL CA-630 from (37)), 400 
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modified to also include 1% SUPERase In and 1% BSA). The isolated nuclei were then pelleted, 401 
washed twice with 1 mL ice-cold 1X PBS containing 1% DEPC, twice with 500 µL cold lysis 402 
buffer, once with 500 µL cold lysis buffer without IGEPAL CA-630, and then resuspended in 403 
lysis buffer without IGEPAL CA-630 at a final concentration of 5000 nuclei/µL. For all washes, 404 
nuclei were pelleted through centrifugation at 300xg for 3 min. at 4°C).  405 
 406 
For cell-mixing experiments, trypsinized cells were counted and the appropriate number of cells 407 
from each cell line were combined prior to fixation or lysis. Fixed cells or nuclei were then 408 
distributed into 96- or 384-well plates (see Table S1). For each well, 1,000-10,000 cells or nuclei 409 
(2 µL) were mixed with 1 µl of 25 µM anchored oligo-dT primer (5′-410 
ACGACGCTCTTCCGATCTNNNNNNNN[10bp 411 
index]TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTVN 412 
-3′, where “N” is any base and “V” is either “A”, “C” or “G”; IDT) and 0.25 µL 10 mM dNTP 413 
mix (Thermo), denatured at 55°C for 5 min and immediately placed on ice. 1.75 µL of first-414 
strand reaction mix, containing 1 µL 5X Superscript IV First-Strand Buffer (Invitrogen), 0.25 µl 415 
100 mM DTT (Invitrogen), 0.25 µl SuperScript IV reverse transcriptase (200 U/µl, Invitrogen), 416 
0.25 µL RNaseOUT Recombinant Ribonuclease Inhibitor (Invitrogen), was then added to each 417 
well. Reverse transcription was carried out by incubating plates at 55°C for 10 min, and was 418 
stopped by adding 5 µl 2X stop solution (40 mM EDTA, 1 mM spermidine) to each well. All 419 
cells (or nuclei) were then pooled, stained with 4',6-diamidino-2-phenylindole (DAPI, Invitrogen) 420 
at a final concentration of 3 µM, and sorted at varying numbers of cells/nuclei per well 421 
(depending on experiment; see Table S1) into 5 uL buffer EB using a FACSAria III cell sorter 422 
(BD). 0.5 µl mRNA Second Strand Synthesis buffer (NEB) and 0.25 µl mRNA Second Strand 423 
Synthesis enzyme (NEB) were then added to each well, and second strand synthesis was carried 424 
out at 16°C for 150 min. The reaction was then terminated by incubation at 75°C for 20 min. 425 
 426 
Tagmentation was carried out on double-stranded cDNA using the Nextera DNA Sample 427 
Preparation kit (Illumina). Each well was mixed with 5 ng Human Genomic DNA (Promega), as 428 
carrier to avoid over-tagmentation and reduce losses during purification, 5 µL Nextera TD buffer 429 
(Illumina) and 0.5 µL TDE1 enyzme (Illumina), and then incubated at 55 °C for 5 min to carry 430 
out tagmentation. Note that because the PCR primers used to amplify libraries are specific to the 431 
RT products, tagmented carrier genomic DNA are not appreciably amplified or sequenced. The 432 
reaction was then stopped by adding 12 µL DNA binding buffer (Zymo) and incubating at room 433 
temperature for 5 min. Each well was then purified using 36 uL AMPure XP beads (Beckman 434 
Coulter), eluted in 16 µL of buffer EB (Qiagen), then transferred to a fresh multi-well plate. 435 
 436 
For PCR reactions, each well was mixed with 2µL of 10 µM P5 primer (5′-437 
AATGATACGGCGACCACCGAGATCTACAC[i5]ACACTCTTTCCCTACACGACGCTCTT438 
CCGATCT-3′), 2 µL of 10 µM P7 primer (5′-439 
CAAGCAGAAGACGGCATACGAGAT[i7]GTCTCGTGGGCTCGG-3′), and 20 µL NEBNext 440 
High-Fidelity 2X PCR Master Mix (NEB). Amplification was carried out using the following 441 
program: 75°C for 3 min, 98°C for 30 sec, 18-22 cycles of (98°C for 10 sec, 66°C for 30 sec, 442 
72°C for 1 min) and a final 72°C for 5 min. After PCR, samples were pooled and purified using 443 
0.8 volumes of AMPure XP beads. Library concentrations were determined by Qubit (Invitrogen) 444 
and the libraries were visualized by electrophoresis on a 6% TBE-PAGE gel. Libraries were 445 
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sequenced on the NextSeq 500 platform (Illumina) using a V2 75 cycle kit (Read 1: 18 cycles, 446 
Read 2: 52 cycles, Index 1: 10 cycles, Index 2: 10 cycles). 447 
 448 
Read alignments and construction of gene expression matrix 449 
Base calls were converted to fastq format and demultiplexed using Illumina’s bcl2fastq/ 450 
2.16.0.10 tolerating one mismatched base in barcodes (edit distance (ED) < 2). Demultiplexed 451 
reads were then adaptor clipped using trim_galore/0.4.1 with default settings. Trimmed reads 452 
were mapped to the human reference genome (hg19), mouse reference genome (mm10), 453 
C.elegans reference genome (PRJNA13758) or a chimeric reference genome of hg19, mm10 and 454 
PRJNA13758, using STAR/v 2.5.2b (38) with default settings and gene annotations (GENCODE 455 
V19 for human; GENCODE VM11 for mouse, WormBase 456 
PRJNA13758.WS253.canonical_gene set for C.elegans). Uniquely mapping reads were 457 
extracted, and duplicates were removed using the unique molecular identifier (UMI) sequence 458 
(ED < 2, including insertions and deletions), reverse transcription (RT) index, and read 2 end-459 
coordinate (i.e. reads with identical UMI, RT index, and tagmentation site were considered 460 
duplicates). Finally, mapped reads were split into constituent cellular indices by further 461 
demultiplexing reads using the RT index (ED < 2, including insertions and deletions). For 462 
mixed-species experiment, the percentage of uniquely mapping reads for genomes of each 463 
species was calculated. Cells with over 85% of UMIs assigned to one species were regarded as 464 
species-specific cells, with the remaining cells classified as mixed cells. The collision rate was 465 
calculated as twice the ratio of mixed cells (as we are blind to any collisions involving cells of 466 
the same species). For gene body coverage analysis of exonic reads, the split human and mouse 467 
single cell SAM files were concatenated and exonic reads were selected and analyzed using 468 
RSEQC/2.6.1, using BED annotation files downloaded from the UCSC Golden Path. For read 469 
position analysis for intronic reads, the split human and mouse single cell SAM files were 470 
concatenated and intronic reads were selected; the fractional position of each intronic read along 471 
the genomic distance between the TSS and transcript terminus was calculated, and these values 472 
used to generate a density plot.  473 
 474 
To generate digital expression matrices, we calculated the number of strand-specific UMIs 475 
mapping to the exonic and intronic regions of each gene, for each cell; generally, fewer than 3% 476 
of total UMIs strand-specifically mapped to multiple genes. For multi-mapped reads, reads were 477 
assigned to the closest gene, except in cases where another intersected gene fell within 100 bp to 478 
the end of the closest gene, in which case the read was discarded. For most analyses we included 479 
both intronic and exonic UMIs in per-gene single-cell expression matrices. 480 
 481 
t-SNE visualization of HEK293T cells and HeLa S3 cells 482 
We visualized the clustering of sci-RNA-seq data from populations of pure HEK293T, pure 483 
HeLa S3 and mixed HEK293T + HeLa S3 cells using t-Distributed Stochastic Neighbor 484 
Embedding (tSNE). The top 3,000 genes with the highest variance in the digital gene expression 485 
matrix for these cells were first given as input to Principal Components Analysis (PCA). The top 486 
10 principal components were then used as the input to t-SNE, resulting in the two-dimensional 487 
embedding of the data show in Fig. 2D. The process was repeated using only intronic reads (Fig. 488 
S3B). For this analysis, the top 2,000 (instead of 3,000) highly variable genes were used as input 489 
to PCA; all other parameters remained unchanged. 490 
 491 
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Genotyping of single HeLa cells by 3’ tag sequences 492 
HeLa S3 cell identity was verified on the basis of homozygous alleles not present in the hg19 493 
assembly, using a callset derived from (39). Single-cell BAM files (with cellular indices encoded 494 
in the “read_id” field) were concatenated, and then processed as follows using a python wrapper 495 
of the samtools API (i.e. pysam). For each homozygous alternate SNV overlapping with a 496 
GENCODE V19 defined gene (n = 865,417) in the HeLa S3 variant callset, we computed the 497 
fraction of matching (i.e. HeLa S3 specific) alleles, and computed this value for all cells where at 498 
least 1 read containing a polymorphic site. We then re-plotted in R the tSNE visualization shown 499 
in Fig. 2D, now colored by the relative fraction of homozygous alternate alleles called for each 500 
cell. 501 
 502 
Analysis of C. elegans whole-organism sci-RNA-seq experiment 503 
A digital gene expression matrix was constructed from the raw sequencing data as described 504 
above. The dimensionality of this matrix was reduced first with PCA (40 components) and then 505 
with t-SNE, giving a two-dimensional representation of the data. Similar to the approach in (40), 506 
cells in this two-dimensional representation were clustered using the density peak algorithm (41) 507 
as implemented in Monocle 2. Genes specific to each cluster were identified and compared to 508 
microscopy-based expression profiles reported in the literature (Table S2), allowing the distinct 509 
cell types represented in each cluster to be identified. Based on these results, we manually 510 
merged two clusters that both corresponded to body wall muscle, and manually split two clusters 511 
that included hypodermis, somatic gonad cells, and glia. Seven clusters exclusively contained 512 
neurons. We identified neuronal subtypes applying PCA, t-SNE, and density peak clustering to 513 
this subset of cells using the same approach as for the global cluster analysis. 514 
 515 
Consensus expression profiles for each cell type were constructed by first dividing each column 516 
in the gene-by-cell digital gene expression matrix by the cell's size factor and then for each cell 517 
type, taking the mean of the normalized UMI counts for the subset of cells assigned to that cell 518 
type. These mean normalized UMI counts were then re-scaled to transcripts per million. Cells 519 
that were part of a cluster corresponding to a cell type but did not express any of the marker 520 
genes used to define that cell type were excluded when generating these consensus expression 521 
profiles. 522 
 523 
Comparing sci-RNA-seq and bulk RNA-seq data for HEK293T cells 524 
To compare aggregated sci-RNA-seq single cell transcriptomes with bulk RNA-seq, we 525 
performed bulk RNA-seq using a modified protocol (30). In brief, 500 ng total RNA extracted 526 
from three biological replicate HEK293T samples (extraction using RNeasy kit (Qiagen)) with 527 
the RNeasy kit (Qiagen) were used for reverse transcription following the standard SuperScript 528 
II protocol. 500 ng total RNA (in 9 µL water) was mixed with 2 µL 25 uM oligo-dT(VN) (5′-529 
ACGACGCTCTTCCGATCTNNNNNNNN[10bp 530 
index]TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTVN 531 
-3′, where “N” is any base and “V” is either “A”, “C” or “G”; IDT) and 1 µL 10 mM dNTPs, 532 
then incubated at 65°C for 5 min Following incubation, 8 µL reaction mix (4 µL 5X Superscript 533 
II First-Strand Buffer, 2 µl 100 mM DTT, 1 µl SuperScript II reverse transcriptase, 1 µL 534 
RnaseOUT) was added. Reactions were incubated at 42°C for 50 min and terminated at 70°C for 535 
15 min. For second strand synthesis, 2 µL RT product was mixed with 6.5 µL water, 1 µL 536 
mRNA Second Strand Synthesis buffer (NEB) and 0.25 µl mRNA Second Strand Synthesis 537 
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enzyme (NEB). Second strand synthesis was carried out at 16°C for 150 min, followed by 75°C 538 
for 20 min. Tagmentation was carried out by adding 10 µL Nextera TD buffer, 1 µL Nextera Tn5 539 
enyzme  and incubating at 55°C for 5 min. Tagmented cDNA was purified using a Clean & 540 
ConcentratorTM-100 kit (Zymo) and eluted in 16 uL buffer EB. PCR, purification, and 541 
quantification were then performed as detailed above.  542 
 543 
For comparing single cell RNA-seq and bulk RNA-seq, single cell gene counts of exonic reads 544 
and intronic reads were added for the same gene from sci-RNA-seq of pure HEK293T cells as 545 
well as HEK293T cells identified from HEK293T and NIH/3T3 mixed cells. Counts for bulk 546 
RNA-seq of HEK293T cells were extracted based on the RT barcode and aggregated separately, 547 
again adding exonic and intronic read counts per gene. Transcript counts were converted to 548 
transcripts per million (TPM) and then transformed to log(TPM + 1). Pearson correlation 549 
coefficients were calculated between the aggregated sci-RNA-seq and bulk RNA-seq data using 550 
R. 551 
 552 
Cost estimation 553 
For 576 x 960 sci-RNA-seq, reagent costs are largely enzyme-driven and include SuperScript IV 554 
reverse transcriptase ($934), second strand synthesis mix ($750), Nextera Tn5 enzyme ($5,000), 555 
NEBnext master mix ($1,150) and other reagents and plates ($500). If we sort 60 cells per well 556 
(assuming recovery rate is 100%) for 960 wells (5% collision rate), then the reagent cost of 557 
library preparation per single cell is around $0.14 (expected yield of around 55,000 cells). 558 
However, it is worth noting that simply increasing the number of cells sorted per well also 559 
decreases costs (e.g. sort 150 cells to each well would yield around 140,000 cells at a cost of 560 
$0.05 per cell), but also results in an increased collision rate (12%). Alternatively, by increasing 561 
to 1,536 barcodes during the first (RT-based) round of indexing, we can sort up to 320 cells per 562 
well at a 10% collision rate, thereby reducing the cost per cell to less than $0.025 per cell. 563 
Straightforward reductions in reaction volumes at all steps may also lead to further reductions in 564 
costs, as would additional rounds of molecular indexing.  565 
 566 
 567 
 568 
 569 
 570 
 571 
 572 
 573 
 574 
 575 
 576 
 577 
 578 
 579 
 580 
 581 
 582 
 583 
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Figure Legends 861 
 862 
Figure 1: sci-RNAseq enables massively multiplexed single cell transcriptome profiling. a.) 863 
Schematic of the sci-RNA-seq workflow. Methanol-fixed cells or unfixed nuclei are split to one 864 
or more 96-well or 384-well plates for reverse transcription with different barcodes (first round 865 
of barcoding) in each well. Cells from different wells are pooled together and flow-sorted into 866 
one or more 96-well or 384-well plates for second strand synthesis, tagmentation and PCR with 867 
well-specific barcode combinations (second round of barcoding). The resulting PCR amplicons 868 
are pooled and deep sequenced to generate single cell 3’ digital gene expression profiles. b.) sci-869 
RNA-seq library amplicons include Illumina adapters, PCR indices (i5 and i7), a reverse 870 
transcription barcode and UMI, in addition to the cDNA fragment to be sequenced. Read 1 871 
covers the reverse transcription barcode (10 bp) and unique molecular identifier (UMI, 8 bp). 872 
Read 2 covers the cDNA fragment. The combination of the PCR indices and the reverse 873 
transcription barcode define a cellular index. c.) Scatter plot of unique human and mouse UMI 874 
counts from a 384 x 384 sci-RNA-seq experiment. This 384-well experiment included multiple 875 
different mixtures of cells (see Methods), but only cells originating from a well containing mixed 876 
human (HEK293T or HeLa S3) and mouse (NIH/3T3) cells during the first round of barcoding 877 
are plotted here. Inferred mouse cells are colored in blue; inferred human cells are colored in red, 878 
and “collisions” are colored in grey.  879 
 880 
Figure 2: Representative results from an optimized protocol for sci-RNA-seq. a.) Scatter 881 
plot of unique human and mouse cell UMI counts from a 96-well sci-RNA-seq experiment. This 882 
96-well experiment included multiple different mixtures of cells (see Methods), but only cells 883 
originating from a mixture of human (HEK293T) and mouse (NIH/3T3) are plotted here. 884 
Inferred mouse cells are colored in blue; inferred human cells are colored in red, and “collisions” 885 
are colored in grey. b.-c.) Boxplots showing the number of UMIs (b) and genes (c) detected per 886 
cell in interspecies mixing experiments. d.) tSNE plot of human cell line (HEK293T and HeLa 887 
S3) mixtures and pure populations. Cells originating in wells containing pure HEK293T (red), 888 
pure HeLa S3 (yellow) or a mixture of the two (pink) were all clustered together with tSNE. e.) 889 
Correlation between gene expression measurements from aggregated sci-RNA-seq data vs. bulk 890 
RNA-seq data, together with a linear regression line (red) and y=x line (black). 891 
 892 
Figure 3: sci-RNA-seq is compatible with isolated nuclei as starting material. a.) Scatter plot 893 
of unique human and mouse nuclei UMI counts from a 96-well sci-RNA-seq experiment. This 894 
96-well experiment included multiple different mixtures of cells (see Methods), but only cells 895 
originating from a mixture of human (HEK293T) and mouse (NIH/3T3) nuclei are plotted here. 896 
Inferred murine cells are colored in blue; inferred human cells are colored in red, and “collisions” 897 
are colored in grey. b.-c.) Boxplots showing the number of UMIs (b) and genes (c) detected per 898 
cell in nuclear sci-RNA-seq experiments. d.) Correlation between gene expression measurements 899 
in aggregated sci-RNA-seq profiles of NIH/3T3 cells vs. NIH/3T3 nuclei, together with a linear 900 
regression line (red) and y=x line (black). 901 
 902 
Figure 4: A single sciRNA-seq experiment provides a near-comprehensive view of the 903 
single cell transcriptomes comprising the C. elegans larva. a) t-SNE visualization of the high-904 
level cell types identified. b) t-SNE visualization of neuronal subtypes. Dimensionality reduction 905 
and clustering was applied to cells in neuronal clusters shown in (a). c) Bar plot showing the 906 
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proportion of somatic cells profiled with sci-RNA-seq that could be identified as belonging to 907 
each cell type compared to the proportion of cells from that type present in an L2 C. elegans 908 
individual. d) Scatter plot showing the log-scaled transcripts per million (TPM) of genes in the 909 
aggregation of all sci-RNA-seq reads (x axis) or in bulk RNA-seq (y axis; geometric mean of 3 910 
experiments), e) Heatmap showing the relative expression of genes in consensus transcriptomes 911 
for each cell type estimated by sci-RNA-seq. Genes are included if they have a size-factor-912 
normalized mean expression of ³ 0.05 in at least one cell type (8,318 genes in total). The raw 913 
expression data (UMI count matrix) is log-transformed, column centered and scaled (using the R 914 
function scale), and the resulting values are clamped to the interval [-2, 2].  915 
 916 
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Figure S1 | Combinatorial indexing with increasing numbers of reverse-transcription bar-
codes enables sublinear scaling of cost per cell. Plot showing how detection capacity (i.e. the 
number of cells detected in a sci-RNA-seq experiment, red) and cost per cell (blue) vary as a 
function of the number of cellular indices used, assuming a collision rate of 5%.
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 941 
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Figure S2 | Metagene plot for unique intronic and exonic sci-RNA-seq reads. A.) 
Sci-RNA-seq on fixed cells demonstrates 3’-biased exonic coverage along gene body (intronic 
region exluded). B.) Density plot for the intronic reads number mapping to different percentiles 
of transcript body (intronic region included). y-axis is scaled to the ratio of max.
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Figure S3 | Quality control for sci-RNA-seq experiments using synthetic mixtures of HeLa 
S3 and HEK293T cell lines. A.) tSNE plot (as in Figure 2d), with cells colored by fraction of 
reads harboring HeLa S3 specific SNVs relative to hg19 assembly. B.) tSNE using digital gene 
expression matrices constructed from intronic reads only. Cells are colored by the population of 
cells from which they derived, with pure HEK293T in red, pure HeLa S3
in yellow, and mixed HEK293T+HeLa S3 in pink
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Figure S4 | Quality control metrics for C. elegans sci-RNA-seq experiments. A.) Distribution 
of number of protein coding genes and UMI counts (mapping to protein coding genes) detected 
per C. elegans cell. B.) Scatter plot of unique human and C. elegans cell UMI counts from a 
sci-RNA-seq experiment performed on mixture of HEK293T (human) and C. elegans cells. 
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Table S1. Summary of experiments 951 
 952 

Experiment 
ID 

Technique 
version 

# of first 
round 

barcodes 

Cell populations barcoded 
(# of wells during first round 

of barcoding) 

# of 
second 
round 

barcodes 

cells sorted 
per well 

1 Initial 
protocol 384 

Pure HEK293T cells (32) 
Pure HeLa S3 cells (32) 
Pure NIH/3T3 cells (32) 

HEK293T & NIH/3T3 cells (96) 
HeLa S3 & NIH/3T3 cells (96) 
HEK293T & HeLa S3 cells (96) 

384 50 

2 Optimized 
protocol 96 

Pure HEK293T cells (8) 
Pure HeLa S3 cells (8) 

HEK293T & NIH/3T3 cells (24) 
HEK293T & HeLa S3 cells (24) 

HEK293T & NIH/3T3 nuclei 
(24) 

96 12 

3 Optimized 
protocol 576 C. elegans & HEK293T cells 

(576) 960 

96% of 
wells: 140 
C. elegans 

cells 
 

4% of 
wells: 
140 C. 
elegans 

cells + 10 
HEK293T 

cells  
 953 
 954 
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Table S2: Marker genes for cell types identified in sci-RNA-seq C. elegans data. A cell is 955 
assigned to a cell type (i.e. used when constructing a consensus expression profile for that cell 956 
type) if it is in a  t-SNE cluster enriched for expression of marker genes listed for that cell type 957 
and the individual cell expresses at least one of those marker genes (or ≥ 2 from a set of marker 958 
genes where listed). 959 

Cell type # cells 
assigned 

# genes 
expressed 

(>2% of cells) 

Marker genes References 

Body wall muscle 11,389 4,321 ≥ 2 of lev-11, myo-3, 
ttn-1, unc-54 

(42) 

Intestinal/rectal muscle 165 4,561 exp-1, glb-26 (43, 44) 
Pharyngeal muscle 451 3,332 myo-2, myo-1, 

myo-5, tnt-4 
(45) 

Pharyngeal/buccal epithelia 678 2,781 ajm-1, dlg-1, 
sma-1, agr-1 + absence 
of myo-1/2/5 and tnt-4 

(46–49) 

Pharyngeal gland 238 3,472 phat-4, phat-2, phat-6  (50) 
Hypodermis (hyp1-12) 2,646 4,428 dpy-4, dpy-5, dpy-13 (51) 

Seam cells 1,231 4,842 grd-13, grd-10, 
grd-3 and absence of 

dpy-4/5/13 

(52) 

Cholinergic neurons 1,038 2,265 unc-17, cho-1, cha-1, 
acr-18, acr-15 

(53) 

Ciliated sensory neurons 
(excluding dopaminergic 

neurons) 

587 2,308 R102.2, dyf-2, che-3, 
nphp-4 

 (54) 

GABAergic neurons 435 1,810 unc-25 (55) 
Touch receptor neurons 321 1,703 mec-17, mec-7 (56) 

Other interneurons 
(excluding flp-1(+) 

interneurons) 

263 2,499 glr-3 (RIA), 
nlp-12 (DVA), 

Both des-2 and deg-3 
(PVC/PVD), or 

tbh-1 (RIC) 

(57–61) 

flp-1(+) interneurons 211 1,484 flp-1 (62) 
Canal associated neurons 187 2,241 ≥ 2 of acy-2, ace-3, 

mig-6, cwn-1 
(63–66)  

Pharyngeal neurons 173 1,975 ser-7, eya-1, flr-2, pha-4 (67–69) 
Oxygen sensory neurons 173 2,043 Both mec-1, lad-2 (70–74) 
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(ALN/PLN/SDQ), or 
gcy-32, gcy-36, 

gcy-37 
(AQR/PQR/URX), or 

flp-17 (BAG) 
Dopaminergic neurons 70 1,821 dat-1, cat-2 (75, 76) 
Unclassified neurons 2690 1,895 egl-21, sbt-1, ida-1, 

casy-1, unc-104, unc-41 
(77–82) 

Amphid/phasmid sheath 
cells 

338 4,143 vap-1, fig-1 (83) 

Socket cells 236 3,192 grl-1, grl-2, grd-15 (52) 
Unclassified glia 394 2,983 kcc-3, ram-5, daf-6 (84–86) 

Somatic gonad precursors 
(excluding distal tip cells) 

376 5,827 ≥ 2 of lin-12, 
inx-9, cle-1, dgn-1 

(87–90) 

Distal tip cells 128 5,030 Both mig-6, nid-1  (91, 92) 
Vulval precursor cells 377 5,069 ≥ 2 of lin-12, osm-11, 

let-23 
(87, 93, 94) 

Sex myoblasts 311 4,466 egl-15 (95) 
Germline 4301 5,086 ≥ 2 of pgl-1, cgh-1, 

gld-1, iff-1 
(96–99) 

Rectal epithelial cells 168 4,490 grd-1, grd-12 (52, 100) 
Excretory canal cell 37 5,057 Both of: nhr-31, ifa-4 (101, 102) 

Coelomocytes 1232 1,991 cup-4, lgc-26, unc-122 (103, 104) 
Unassigned 11192 NA NA NA 

 960 
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