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Abstract

Working memory (WM) and decision making (DM) are fundamental cognitive functions

involving a distributed interacting network of brain areas, with the posterior parietal and

prefrontal cortices (PPC and PFC) at the core. However, the shared and distinct roles of

these areas and the nature of their coordination in cognitive function remain poorly un-

derstood. Biophysically-based computational models of cortical circuits have provided

insights into the mechanisms supporting these functions, yet they have primarily focused

on the local microcircuit level, raising questions about the principles for distributed cogni-

tive computation in multi-regional networks. To examine these issues, we developed a dis-

tributed circuit model of two reciprocally interacting modules representing PPC and PFC

circuits. The circuit architecture includes hierarchical differences in local recurrent struc-

ture and implements reciprocal long-range projections. This parsimonious model captures

a range of behavioral and neuronal features of fronto-parietal circuits across multiple WM

and DM paradigms. In the context of WM, both areas exhibit persistent activity, but in re-

sponse to intervening distractors, PPC transiently encodes distractors, while PFC filters

distractors and supports WM robustness. With regards to DM, the PPC module gener-

ates graded representations of accumulated evidence supporting target selection, while

the PFC module generates more categorical responses related to action or choice. These

findings suggest computational principles for distributed, hierarchical processing in cor-

tex during cognitive function, and provide a framework for extension to multi-regional

models.
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Introduction

Cognitive functions engage distributed networks of areas in the primate brain, with pre-

frontal cortex (PFC) and posterior parietal cortex (PPC) as key nodes (Duncan, 2010;

Mitchell et al., 2016; Domenech et al., 2017). Working memory (WM) and decision mak-

ing (DM) are fundamental building blocks of cognition that recruit a common prefrontal-

parietal network, with WM- and DM- signals partially overlapping at the neuronal level

(Meister et al., 2013). Both PPC and PFC exhibit characteristic neural activity of WM and

DM. WM is associated with stimulus-selective persistent activity that spans the mnemonic

delay (Goldman-Rakic, 1995; Constantinidis and Procyk, 2004). DM is associated with

ramping dynamics reflecting the accumulation of evidence and target selection (Schall,

2001; Gold and Shadlen, 2007). The general similarity of neural activity of PPC and PFC

during WM and DM has supported the view that they make comparable contributions to

these functions.

Important open questions are to identify how PPC and PFC interact during WM

and DM and what their specialized roles may be. For instance, WM-related persistent ac-

tivity in these areas may be a locally generated phenomenon or, alternatively, the result of

distributed inter-areal interactions (Christophel et al., 2017). Despite general similarities

between neural responses in PPC and PFC, important differences, including in distractor

processing and evidence accumulation, have been found that provide insight into their

unique contributions to WM and DM (Katsuki and Constantinidis, 2012b; Suzuki and

Gottlieb, 2013; Hanks et al., 2015). It is unclear to what degree function specialization

of areas may be due to intrinsic differences in local microcircuitry (Murray et al., 2014b;

Katsuki et al., 2014). In addition to differences between areas, single-neuron recordings

have revealed a diversity of functionally-defined cell types within fronto-parietal circuits,

across both WM and DM (Schall and Thompson, 1999; Ferraina et al., 2002; Lawrence

et al., 2005). These findings raise questions of the division of labor among brain areas, or

functional cell types, within distributed cortical circuits during cognition.

Biophysically-based computational models of cortical circuits have characterized

neural circuit mechanisms for WM and DM functions. A class of models called attrac-

tor networks can perform these functions through strong recurrent synaptic interactions

(Wang, 2008). In the attractor network framework, strong synaptic connections among

neurons can provide reverberatory excitation, potentially mediated by slow NMDA re-

ceptors (Wang, 1999), that maintains a stimulus-selective persistent activity pattern for

WM (Amit and Brunel, 1997; Wang, 2001; Machens et al., 2005). Strong lateral inhibi-
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tion, mediated by GABAergic interneurons, can enforce selectivity of the WM representa-

tion, preventing an unstructured spread of excitatory activity (Compte et al., 2000; Brunel

and Wang, 2001). Attractor networks can also perform slow integration and categorical,

winner-take-all competition for perceptual DM (Wang, 2002; Wong and Wang, 2006).

Indeed, strong recurrent excitation and lateral inhibition are required for winner-take-all

DM in these models. Attractor networks therefore constitute a flexible type of ‘cognitive

circuit’ capable of performing both WM and DM (Wang, 2013). In contrast to these theo-

retical advances in characterizing how local microcircuits can support cognitive process-

ing, the computational principles for distributed cognitive processing in multi-regional

cortical networks remain poorly understood.

To address these issues, we developed a biophysically-based computational model

of two reciprocally connected modules, potentially representing circuits in PPC and PFC.

We found that a single local circuit faces a tradeoff between optimization for WM vs. DM

function. This performance tradeoff can be ameliorated in the distributed circuit, whose

network properties are functionally desirable for both WM and DM. With a single set

of network parameters, the distributed model can capture salient empirical observations

from single-neuron recordings in PPC and PFC during WM and DM. In the context of

WM, the model captures the relative roles of the two areas in distractor filtering. With

regards to DM, the model captures key properties of functional cell types and the timing

of their activity during visual search tasks. We propose that this cortical circuit model can

provide insight into canonical features of distributed cognitive processing.
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Materials and Methods

Model architecture

We constructed a distributed circuit model that is able to perform WM and DM com-

putations. The model is comprised of two reciprocally interacting modules (Figs. 1 and

3A). Each module contains two selective, excitatory populations, labeled A and B (Wong

and Wang, 2006; Wong et al., 2007). Within a module, the two populations have self-

excitation and interact through a local inhibitory population that allows for cross-inhibition

between the two excitatory populations. Each recurrently-connected excitatory population

receives inhibition from a common pool of interneurons. Inhibition is linearized so that

projections between the two excitatory populations A and B are effectively represented

by negative weights (Wong and Wang, 2006). The two modules interact through long-

range projections that are structured according to the stimulus selectivity of populations

within each module. Long-range projections between modules are structured so that pop-

ulations with the same selectivity are connected through excitatory projections whereas

populations with different selectivity are connected via net inhibitory projections. The two

modules are labeled 1 and 2 and external input related to the stimulus enters into Module

1 (Fig. 3A).

Dynamics and stimuli

We constructed a population firing-rate model for each population i = A,B in the two

modules. The firing-rate dynamics of the population i in Module n = 1, 2 are dominated

by the dynamics of the average NMDA synaptic gating variable Sni . This approximation

is based on the fact that the dynamics of the NMDA synaptic gating variable is slower

than other time scales in the system (Wang, 2002; Wong and Wang, 2006; Wong et al.,

2007). The gating variable Sni is described by:

dSni
dt

= −S
n
i

τ
+ γ (1− Sni ) r(Ini ) (1)

where the NMDA time constant τ = 60 ms, γ = 0.641 controls the rate of saturation of

S, and r(Ini ) is the firing rate of the population i as a function of the input current Ini .

The firing rate as a function of input current is given by the F-I curve relation (Abbott and

Chance, 2005):

r(I) = F (I) =
aI − b

1− exp[−c(aI − b)]
(2)
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with a = 270 spikes/s
nA

, b = 108 spikes/s, and c = 0.154 s. The input current to population

i = A,B in Module n = 1, 2 is given by:

Ini =
∑
m,j

Smj J
(m→n)
ij + I0 + Inapp,i + Innoise,i (3)

where J (m→n)
ij is the connection weight from population j in Module m to population

i in Module n, I0 = 0.3347 nA is the background current, Inapp,i is the applied current

to population i in Module n from external sources, and Innoise,i is the noise current to

population i in Module n.

In this study, the external current Iapp is specified for three different task contexts:

(1) WM with distractors, (2) perceptual DM with stochastic discrete input, and (3) per-

ceptual DM or target selection in visual search. These currents will be specified below

when we discuss the contexts and tasks.

The noise current to each population follows Ornstein-Uhlenbeck dynamics with

the time constant of AMPA synapses:

τAMPA
dInoise,i(t)

dt
= −Inoise,i(t) + ηi(t)

√
τAMPAσ2

noise (4)

where τAMPA = 2 ms, η is Gaussian white noise with zero mean and unit variance, and

σnoise sets the strength of noise. As in Wong et al. (2007), we set σnoise = 0.009 nA.

Connectivity

The connectivity in our model is specified by the sign and magnitude of the connection

weights between the selective excitatory populations, and whether the connections are

local (within a module) or long-range (across modules). To this end, it is useful to express

the connection weights with the terms:

JkS ≡ Jk(same) − Jk(diff) (5)

JkT ≡ Jk(same) + Jk(diff) (6)

where J(same) denotes the positive connection weight between same-selectivity popula-

tions, e.g. from population A in Module 1 to population A in Module 1 or 2. J(diff) denotes

the negative connection weight between different-selectivity populations, e.g. from popu-

lation A in Module 1 to population B in Module 1 or 2, and k = 1→ 1, 1→ 2, 2→ 1, 2→ 2

defines whether the connection is local or long range. We define JS as the structure of

the network, since it reflects the magnitude of same-selectivity excitation and different-

selectivity cross-inhibition and thus the total recurrent strength. Analogously, we define
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Figure 1: Circuit schematic of the firing-rate model. A module is defined as a set of two excitatory
populations where each population is selective to one of two spatial, directional, or ob-
ject stimuli (left). Each excitatory population is recurrently connected and also receives
inhibition from a common pool of interneurons. The effects of inhibition and recurrent
excitation are to generate bistability for WM and winner-take-all dynamics and ramp-
ing activity through slow reverberation for DM. Population A (B) receives input either
from spatially-selective stimulus A’ (B’) or from another population A (B) in another
module. The circuit dynamics can be simplified (right) by linearizing inhibition, so that
effectively inhibition is represented by negative weights. Thus, the effect of the pool
of interneurons is implicit in the inhibitory connections between the excitatory popula-
tions. In general, synaptic weights J can connect two selective populations of either the
same (Jsame > 0) or opposite (Jdiff < 0) stimulus-selectivity and can be either local
or long-range. The structure JS = Jsame − Jdiff denotes the total recurrent strength
while the tone JT = Jsame + Jdiff denotes the net input onto a population. Synapses
labeled with triangles and circles denote net-excitatory and net-inhibitory connections,
respectively.

JT as the tone of the network, which reflects the net input onto a particular population.

Local connectivity for Module 1 is set by: J (1→1)
S = 0.35 nA and J (1→1)

T = 0.28387 nA.

Local connectivity for Module 2 is set by: J (2→2)
S = 0.4182 nA and J (2→2)

T = 0.28387

nA. The only difference in local network properties between modules is that Module 2

has an enhanced structure as compared to Module 1: J (2→2)
S > J

(1→1)
S .

The decomposition of connectivity in terms of structure JS and tone JT is useful

for capturing the impact of changes in activity that are symmetric or asymmetric between

the populations of a module. The input current I to a given population from Module m to

Module n can be written as (see first term in right-hand side of Eq.3)

I(m→n) =
1

2
(J

(m→n)
S SmS + J

(m→n)
T SmT ) (7)

where S is similarly redefined through SmS ≡ Sm(same) − Sm(diff) and SmT ≡ Sm(same) + Sm(diff).

When activity in a module is equal in the two populations (i.e., SmS = 0), the net input

from that module is determined only by the tone JT and not by structure JS .
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For both long-range projections between modules, we constrain them to have

pathway-specific excitation/inhibition (E/I) balance:

J
(1→2)
T = 0 nA (8)

J
(2→1)
T = 0 nA (9)

so that the excitatory weight to a given population is counteracted by inhibition of equal

magnitude but opposite sign. If a pathway from one module to another exhibits balance

(JT = 0), the impact of one module to another is only nonzero when the populations have

unequal activity, i.e., SmS 6= 0 (see also Vogels and Abbott (2009)). The structure of the

projection from Module 1 to Module 2 is set by: J (1→2)
S = 0.15 nA. The structure of the

projection from Module 2 to Module 1 is set by: J (2→1)
S = 0.04 nA. We can easily trans-

late the structure JS and tone JT into individual synaptic weights. For example, J (1→2)
AB

denotes the feedforward projection between the population A in the first module onto the

population B in the second module and is given by:

J
(1→2)
AB =

J
(1→2)
T − J (1→2)

S

2
= −0.075 nA

For the results in this study, we associate Module 1 with the PPC and Module 2 with the

PFC.

Working memory and decision-making in a local network

To characterize WM, we studied the generation of stimulus-selective persistent activity

states and their robustness against intervening distractor inputs. In Fig. 2C,D, we char-

acterized the robustness of WM against distractors in a local one-module circuit, over

a two-dimensional parameter space of structure JS and applied current Iapp. For these

results, bifurcations and continuations were calculated using PyDSTool, a Python-based

platform developed for the analysis of dynamical systems (Clewley, 2012). In Fig. 2H

we defined the discrimination threshold xdisc as the minimum contrast to achieve 81.6%

accuracy in a simulated two-alternative forced choice task. This number follows from the

equation commonly used to fit psychometric curves

P (x) = 1− 0.5 · exp(−x/xdisc)
β, (10)

where P is the accuracy in the task, x is the contrast, xdisc is the discrimination threshold,

and β determines the slope of the psychometric curve. We varied the recurrent structure

JS from JS = 0.35 to JS = 0.42 nA in steps of 0.01 nA and used Eq. 10 to fit the behavior

of our simulated model and determine the discrimination threshold.
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In Fig. 3, to understand how the dynamics of the distributed two-module circuit

depends on the structure, we parametrically varied the Module 1 (PPC) local structure

J
(1→1)
S from 0.15 to 0.45 nA and the PFC→PPC feedback structure J (2→1)

S from 0 to 0.08

nA, in steps of 0.02 nA, while keeping all other parameters constant.

Working memory and distractors in the PPC-PFC circuit

For Figs. 4 and 5, we simulated a WM task with distractors, based on a primate electro-

physiology study using an visuospatial WM task in which a subject must hold in WM

the position of a target, and filter intervening distractor stimuli appearing at other posi-

tions during the delay period (Suzuki and Gottlieb, 2013). We implemented a discrete

version of this task with selectivity to two stimuli. A flash of 100 ms appears on one of

two positions of a screen indicating the target position. The target to be held in WM,

is the first stimulus presented. We set the target as a current Iapp,A = Itarget of 100-ms

duration that is applied to population A in the PPC module. Distractors are defined as in-

puts Iapp,B = Idistractor of equal duration applied to population B arriving after the target

and at an opposite location of the visual field. Similar to (Suzuki and Gottlieb, 2013), we

considered four times of distractor onset asynchrony (TDOA) defined as the onset of the

distractor relative to onset of the target: 100, 150, 200, and 300 ms. Targets and distractor

amplitudes were sampled randomly and independently from a Gaussian distribution with

mean 0.09 nA and standard deviation 0.04 nA.

In Fig. 4B, we calculated the differences between the two modules in terms of

how distractors are suppressed. For this we fitted the time courses of the firing rates r(t)

of the populations selective to the distractor for each of the modules with an exponential

function:

r(t) = a · exp

[
−(t− ttarget)

τsup

]
+ b (11)

where ttarget marks the time of target onset and also suppression of the distractor, τsup is

the time scale of suppression, and a and b are parameters of the fit.

In Fig. 4 C, we performed an autocorrelation on the firing rate to reveal the in-

trinsic or fluctuation time scales of spontaneous activity. The firing rate was first filtered

with a Gaussian function with window σfilter = 20 ms. To compute the autocorrelation of

the firing rate, we substracted the mean from the firing rate and then normalized. We then

used Equation 11 to fit the normalized firing-rate autocorrelation and extract the respective

time scales τfluct.
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We plotted error rates vs. time of distractor presentation relative to the target in

Fig. 5 C, where an error was recorded when the population selective to the distractor is at

the high memory state at t > 3000 ms.

Evidence accumulation in the PPC-PFC circuit

As shown in Fig. 6, we simulated a simple version of a discrete evidence accumulation

task based on a two-alternative forced choice task with perceptual decisions that rely on

evidence accumulation from discrete auditory stimuli (Brunton et al., 2013). The auditory

input consists of a sequence of clicks on both sides (left and right), parametrized by click

frequency in units of clicks per second. For example, 10:24 constitutes a trial where 10

represents the click frequency for the left side, and 24 constitutes the click frequency for

the right side. In the task the subject is rewarded for reporting which side (left vs. right)

had the higher frequency signal. This task can be solved by integrating evidence, where

each click represents a unit (quantum) of evidence (Hanks et al., 2015).

In our model, clicks are represented by a set of Poisson-distributed times, parametrized

by rate and side of origin, either left or right. The rates for each side are such that they add

to 34 clicks/s in total. For example, a difficult trial is 18 clicks/s:16 clicks/s while an easy

trial is 30:4. The click times ti for each side are convolved with a current pulse kernel Π

of amplitude 0.0118 nA and pulse duration 50 ms, so that the current IL,R is:

IL,R(t) =
∑
i

Π(t− ti) (12)

These currents, corresponding to left and right clicks, are fed onto the corresponding

selective populations (left or right) of PPC, as well as to the accumulator which we now

define. The accumulator is an implementation of a drift-diffusion model (Ratcliff, 1978),

with parameters for drift, noise, and input stimulus (Brunton et al., 2013). Time evolution

of the accumulator value a at time t is given by:

da

dt
= λa+ IL(t)− IR(t) + ξ(t) (13)

where λ is the drift and ξ(t) is Gaussian white noise with zero mean and standard deviation

0.1. We set λ = 0, corresponding to leak-free integration, for the simulations in Fig. 6,

but small values of |λ| did not significantly alter these plots.

To obtain the relationship between an accumulator and PPC/PFC firing rates, we

selected four time points relative to response onset in the PPC/PFC (t = 200, 250, 300, 350

ms) and obtained the distribution of firing rates and accumulator values for each of those
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time points (Hanks et al., 2015). For each of the time points, we binned the accumula-

tor values from -7 to 7, with bin size of 2 and calculated the mean firing rate for each

bin. Applying this procedure to the four selected time points, we obtain Fig. 6C, where

normalized firing rate is shown as a function of time, and color coded as a function of

accumulator value. Finally, to obtain the relationship between firing rate and accumu-

lator value for the PPC and PFC, we averaged the firing rate over time for each of the

accumulator values (Fig. 6B).

Inputs and neural measures for a visual search task

In Figs. 7 and 8 we simulated a perceptual DM task analogous to target selection in visual

search (Sato et al., 2001). Each module contains two populations that are selective to a

target and a distractor, respectively. As in the WM paradigm, external stimuli enter as

currents into the PPC module. These applied currents reflect the external stimulus as:

Iapp,i = C (Atarget − Imotion) ·
[
exp

(
−(t− ttarget)

τdecay

)
− exp

(
−(t− ttarget)

τrise

)]
+ Imotion

(14)

where Imotion = Ie
(
1± c′

100%

)
, Ie = 0.0118 nA scales the overall strength of the input

and c′, referred to as the contrast, sets the bias of the input for one population over the

other (equivalent to the coherence in Wong and Wang (2006)), Atarget and ttarget deter-

mine the amplitude and the onset of the target, respectively, the time constants τdecay and

τrise determine approximately the decay and rise of the target-induced transient response

and C is a normalization factor. A zero-contrast stimulus applies equal input Ie to each

population in Module 1 (PPC, also denoted as Selection cells). In all of the simulations

and when c′ > 0, the target-selective population receives the greater biased input. Due to

noise, however, this does not guarantee that the target population will win, especially for

low-contrast values.

Because our model provides instantaneous firing rates for a population, we can

define measures of neural activity directly for individual trials. For DM simulations (Figs.

7 and 8), we define and calculate the reaction time as the time at which the firing rate of

a population in Module 2 (PFC, also denoted as Action cells) crosses a threshold (Hanes

and Schall, 1996). We measure the discrimination time for Selection cells in Module 1

(PPC) through a threshold on the absolute difference between firing rates between the two

populations. We measure the onset time for Action cells in Module 2 through a threshold

on firing rate for the winning population. The thresholds for reaction time, discrimination

time, and onset time at 40, 12, and 7 spikes/s, respectively. Reaction times are divided into
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quintiles for each of the contrast conditions. This is analogous to the division into short,

intermediate, and long reaction time groups (Sato et al., 2001).

Disruption of pathway-specific excitation-inhibition balance

In Fig. 8 we examined the effects of pathway-specific excitation-inhibition balance in

inter-Module projections. To this end, we systematically decreased the inhibitory weights

of the projections from Module 1 to Module 2 as to alter the E/I ratio. The altered in-

hibitory weights J∗(diff) are

J∗(diff) = cinh · J1→2
(diff) (15)

where J1→2
(diff) is the original, i.e., unaltered, inhibitory synaptic weight between population

A (B) in Module 1 and population B (A) in Module 2 and cinh ∈ {0.2, 0.4, 0.8, 1}. Ac-

cording to Eq. 15, cinh = 1 corresponds to balanced excitation and inhibition onto both

populations in Module 2 while cinh < 1 corresponds to imbalance, i.e., a net positive

weight onto the populations (see Eqs. 6 and 8).

We fit the reaction time vs contrast relation in Fig. 8A, top, using an exponential

function

R(x) = a+ b · exp(−c · (x− d))

where R is reaction time, x is the contrast and a, b, c and d are free parameters of the fit.

Similarly, we fit the fraction of correct trials vs contrast relation in Fig. 8A, bottom, with

a sigmoid

F (x) = a+
b

1 + exp(−c · (x− d))

where F is the fraction of correct trials, x is the contrast and a, b, c and d are free param-

eters of the fit.
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Results

We have designed and characterized a distributed circuit model that supports persistent

activity for WM and slow integration over time and winner-take-all competition for DM.

The model is comprised of two reciprocally connected modules that model the posterior

parietal cortex (PPC) and pre-frontal cortex (PFC). Each module consists of two popula-

tions of excitatory neurons and each population is selective to one of two spatial, direc-

tional, or object stimuli (see Fig. 1 and Materials and Methods). Local connectivity, i.e.,

connectivity within a module, is specified by recurrent excitation and cross-inhibition.

Long-range connectivity, i.e., connectivity across modules, is specified by feedforward

and feedback projections that are net-excitatory between same-selectivity populations and

net-inhibitory between different-selectivity populations. Model parameters were chosen

so that the same architecture and parameter set could capture several important neuro-

physiological dynamics observed in both WM and DM.

Tradeoffs in working memory and decision making for a local circuit

We first characterized WM and DM function in a local, one-module network. Prior studies

have shown that a local attractor network can perform both WM and DM (Wang, 2002;

Wong and Wang, 2006). However, it has been less studied how well the same network

can perform both functions, or what tradeoffs exist between optimization of local circuit

properties for WM vs. DM (Standage and Paré, 2011). Of particular interest is the role

of the local recurrent structure, parameterized by JS , here defined as the total recurrent

strength including self-excitation within a population and cross-inhibition between popu-

lations (see Eq.5 in Materials and Methods).

Working memory and robustness against distractors. In the attractor network frame-

work, the key requirement for WM function is multistability, i.e., the coexistence of mul-

tiple stable fixed points (attractor states) in the absence of a stimulus (Wang, 1999; Brunel

and Wang, 2001). In the absence of a stimulus, the simplified two-population network

studied here supports three stable states: one symmetric baseline state and two asym-

metric memory states (Wong and Wang, 2006). Before stimulus onset, the network is in

the symmetric baseline state with both populations, A and B, at low activity (Fig. 2A,B).

After one population is sufficiently activated, it is able to remain persistently in a stimulus-

selective, high-activity state in the absence of a stimulus.

In addition to maintenance over time, robust WM requires shielding internal rep-
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resentations from interference by both internal noise and external distraction. There is

evidence that PPC and PFC have different susceptibilities for distractors to disrupt persis-

tent activity. In general, PFC exhibits persistent activity that is robust against distractors,

whereas posterior association areas in the temporal and parietal lobes exhibit persistent ac-

tivity that is disrupted by distractors (Miller et al., 1993, 1996; Constantinidis and Wang,

2004; Qi et al., 2010; Suzuki and Gottlieb, 2013). Motivated by these findings, we ex-

plored the mechanisms of robustness against distraction and how they depend on network

structure. In our model, distractors can be modeled as an intervening input during the WM

delay to a different population than the one activated by the WM target. For instance, if

population A is active in the memory state, a distractor is modeled as a subsequent input

to population B.

We found that recurrent structure JS , i.e., the total self-excitation and cross-inhibition

within the one-module network, plays a crucial role in determining the robustness against

distractors in the local network (Fig. 2A–D). With moderate structure, the network gen-

erates WM-related persistent activity, but it is distractible. As shown in Fig. 2A, the dis-

tractor input switches the network to representing the distractor (red) instead of the target

(blue). With high structure, in contrast, the distractor is filtered out and the target repre-

sentation is robustly maintained (Fig. 2B). The network mechanism for robustness results

from the combined effects of lateral inhibition and recurrent excitation set by JS (Brunel

and Wang, 2001). When population A is in the high-activity state, distraction requires

both activation of population B and deactivation of population A. Activation of popula-

tion B by the distractor input is counteracted by lateral inhibition. Recurrent excitation

within population A counteracts the ability of inhibition from population B to deactivate

it.

A dynamical systems analysis can formally characterize robustness of WM to dis-

tractors, through the bifurcation diagram defining how the system’s fixed points change

as a function of input current to one population Iapp. The bifurcation diagram gives the

range of input current strengths in which WM is robust against distractors. We can exam-

ine how this range varies as a function of recurrent structure JS . Fig. 2C,D shows how

this robustness range of Iapp changes with JS . We found that the distractibility threshold

(boundary between green and orange regions) increases with JS . The memory induction

threshold (boundary between purple and green regions) decreases as JS increases, widen-

ing the robustness range further. The net effect is that the robust stimulus range increases

with higher recurrent structure JS (Fig. 2D). This analysis suggests that increased robust-

ness against distractors in PFC, compared to PPC, may be due to higher network structure
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(Brunel and Wang, 2001).

Decision making and slow integration of evidence. We now consider the ability

of the attractor network to perform perceptual DM functions. In the attractor network

framework, two key requirements for DM are slow accumulation of evidence over time

and winner-take-all competition (Wang, 2002; Wong and Wang, 2006). For a zero-contrast

stimulus, the two populations receive equal input, differing only through the noise term.

The network nevertheless performs categorical selection through one population going to

a high-activity state and the other to a low-activity state.

To subserve perceptual DM, the network should be able to integrate evidence over

time when the signal-to-noise ratio is low (Gold and Shadlen, 2007). In the model, a

decision is made when the corresponding neural population reaches a threshold firing rate.

As shown in Fig. 2E,F, the recurrent structure JS plays a crucial role in determining the

timescale of integration as reflected in ramping neural activity, here with a zero-contrast

stimulus. With moderate structure, the network ramps relatively slowly (median decision

time∼ 560 ms), indicating the network implements slow integration of sensory evidence.

With higher recurrent structure, the network ramps substantially faster (median decision

time ∼ 430 ms), indicating a more limited duration over which the network integrates

sensory evidence.

A dynamical systems analysis can formally characterize the integration timescale.

In response to a zero-contrast stimulus, the network’s symmetric state is a saddle point in

the (S1, S2) phase plane (Wong and Wang, 2006). The timescales associated with this sad-

dle point, along with the strength of noise, largely determine the timescales of integration.

The antisymmetric mode, whose positive eigenvalue indicates that it is the unstable mode,

is the direction in which integration occurs and which leads to categorical choice. The in-

tegration timescale τint can be defined as the inverse of this eigenvalue. Fig. 2G shows

the dependence of τint on network structure JS and stimulus current strength Ie, for zero-

contrast stimulus. As the system approaches the bifurcations that form the boundaries

of the winner-take-all regime, the integration timescale increases toward infinity. For a

fixed Ie in a winner-take-all DM regime (Fig.2G), increasing JS decreases the integration

timescale, which limits the duration over which perceptual integration can occur. If less

evidence is integrated, we expect to have more errors for a fixed contrast (coherence in

Wong et al. (2007); Gold and Shadlen (2007)) value. This degradation in performance is

measured by the increase of the discrimination threshold, defined as the contrast necessary

to achieve a predefined performance level, here 81.6 % correct (see Eq. 10 in Materials

and Methods). Indeed, the shortened integration timescale degrades DM performance, as
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Figure 2: Tradeoffs between WM and DM function in a local attractor network model. A, Neural
activity for a single WM trial. The colored bars mark presentation of input current to
the population A (blue) and B (red), with strength Iapp = 0.0295 nA. For a recurrent
structure JS = 0.35 nA, the circuit generates a stimulus-selective persistent memory
state, but it is vulnerable to intervening distractors. B, At increased recurrent structure
JS , WM activity in the circuit is robust against distractors. C, Robustness of WM as a
function of recurrent structure JS and stimulus strength Iapp. In the purple lower region,
the stimulus is too weak for the target to induce a transition from the baseline state to the
memory state. In the green middle region, the network can perform WM that is robust
against intervening distractors. In the orange upper region, the stimulus current is strong
enough for a distractor to disrupt target-related memory. D, WM robustness increases
with increasing recurrent structure JS . The robust stimulus range is defined as the range
of stimulus strength Iapp in which persistent activity is robust against distractors, i.e.
by the height of the green region in C. E, Neural activity during DM for zero-contrast
stimulus (i.e., equal-strength input to both populations), for 100 trials in which the blue
population first reached threshold. The colored bar marks stimulus presentation, with
strength Ie = 0.0118 nA. The black trace marks the firing rate of the winning population
for the trial with median reaction time. F, At increased recurrent structure JS , integration
is shorter, limiting evidence accumulation, and ramping to threshold occurs sooner. G,
Integration time constant as a function of recurrent structure JS and stimulus strength
Ie for a zero-contrast signal. The integration time constant is defined as the absolute
value of the inverse eigenvalue of the unstable mode of the saddle point in the system
(Wong and Wang, 2006). The inverse of the integration time constant is plotted. The
white region marks where the symmetric state is stable, and therefore the network is
not in a winner-take-all regime. H, DM performance degrades with increasing recurrent
structure. For a fixed stimulus strength (here with Ie = 0.0118 nA), the integration time
constant decreases with JS . Correspondingly, the discrimination threshold increases,
indicating degraded performance.

reflected in the discrimination threshold from the psychometric function (see Fig. 2H).

Therefore, although recurrent structure must be above a threshold value in order for the

network to perform winner-take-all selection, further increasing recurrent structure limits

the gradual accumulation of sensory evidence.

These findings illustrate a tension between WM and DM function in a local attrac-

tor network. There is a tradeoff between the two as recurrent structure JS is varied: higher

structure increases robustness against distractors for WM (Fig. 2D), but at the expense of

shortening the integration timescale which degrades DM performance (Fig. 2H). As we

show and discuss below, this performance tradeoff may be ameliorated in a distributed

circuit in which local modules have different strengths of recurrent structure.
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Persistent activity in a circuit model with local and long-range connec-
tions

Visual WM recruits persistent activations that are distributed across PPC and PFC (Chafee

and Goldman-Rakic, 1998), which are mediated by PPC-PFC interactions (Chafee and

Goldman-Rakic, 2000; Ferraina et al., 2002; Salazar et al., 2012; Dotson et al., 2014).

The distributed circuit model we developed is composed of two reciprocally connected

modules that can support persistent activity independently (Fig. 2A,B). What are the roles

of local (within-module) vs. long-range (across-module) connections in supporting per-

sistent WM states in this distributed circuit model? We model visual stimuli as inputs to

PPC (Module 1, Fig. 3A), following the dorsal visual pathway (Felleman and Van Essen,

1991) and the ordering of activations during bottom-up visual processing as well as dur-

ing target selection (Buschman and Miller, 2007; Ibos et al., 2013; Siegel et al., 2015),

although some experiments suggest that input can also rapidly reach PFC through other

pathways (Katsuki and Constantinidis, 2012a). Fig. 3B shows the model circuit response

to a stimulus input to one PPC population for different values of the recurrent structure

JS (Fig. 3C). PPC responds vigorously to the stimulus, and propagates this signal to PFC.

Following the offset of the stimulus, i.e., during the WM delay, both PPC and PFC encode

the stimulus through selective persistent activity. On the basis of WM delay activity alone,

PPC and PFC therefore have similar WM activity, as observed experimentally (Chafee and

Goldman-Rakic, 1998; Qi et al., 2010; Suzuki and Gottlieb, 2013).

We examined the roles of local and long-range structure in determining persistent

activity. Figure 3B,C show how different combinations of local and long range parameters

can give rise to similar delay activity in the PPC and PFC modules. A transient stimulus

input can switch the state of the circuit from a low-activity baseline state to a persistent

and selective high-activity memory state. The stable and persistent delay activity is a

reflection of the attractor dynamics in the combined PPC-PFC circuit. Interestingly, these

attractor dynamics are present in the combined circuit even if the individual modules

are not attractor networks independently (Fig.3C). This demonstrates that in a distributed

network, the observation of persistent activity in a local area does not necessarily imply

that the area is independently capable of multistability. We then examined the relationship

between the firing rate, memory states, and structure in the distributed circuit. In Fig. 3D,

the tradeoff in local and long-range structure is made explicit for the PPC firing rate in a

high memory state. In conclusion, persistent activity in the PPC-PFC circuit is supported

by both local and long-range structure, with the persistent activity states determined by

the total, i.e., combined local and long-range, structure.
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Figure 3: A distributed cortical model reproduces spatially selective persistent activity through
local and long-range connections. A, The circuit is composed of two reciprocally con-
nected modules, PPC and PFC, and each module consists of two excitatory neural popu-
lations selective to a stimulus A and B, respectively. The circuit model is endowed with
self-excitation and cross-inhibition. Neurons in the PPC receive the sensory stimulus
and convey the information to the PFC via long-range net-excitatory and net-inhibitory
projections, as in Fig. 1. B-D, Local and long-range structure jointly contribute to persis-
tent activity. B, PPC and PFC populations reach the same level of persistent activity in
the steady state across the three scenarios depicted in C, demonstrating the joint contri-
butions of long-range and local connectivity. Gold bar denotes stimulus presentation. C,
Structure values reflecting local (within-module) and long-range (across-module) con-
nectivity for three scenarios are shown: 1) PPC and PFC both independently support
persistent activity (green, top), 2) neither PPC nor PFC is capable of persistent activ-
ity independently (purple, middle), and 3) only PFC independently supports persistent
activity (bottom, red). Black horizontal line denotes the threshold for a local module
to support persistent activity independently (i.e., multiple stimulus-selective attractor
states). D, Steady-state firing rate for the activated population of the PPC module in the
memory state, as a function of PPC local structure and PFC→PPC feedback. The PFC
local and feedforward PPC→PFC structure are fixed. In the region in the upper-right
corner, the baseline state is unstable. In the region to the right of the white dashed line,
the PPC is an independent attractor. The white asterisk marks the parameter values used
for the WM and DM simulations in Figs. 4–8.
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Working memory with distractors in the parietal-prefrontal circuit

The ability for a WM circuit to encode and maintain information robustly while filtering

out distractors is crucial for WM function (Sakai et al., 2002; Suzuki and Gottlieb, 2013).

Our distributed cortical model is able to selectively encode a target stimulus in WM in the

presence of distractors (Figures 4 and 5). Within the PPC and PFC modules, one neural

population is selective to the target, and the other to the distractor. Fig. 4A shows how the

distributed circuit responds to target and distractor stimuli during WM. Presentation of

the target stimulus activates the selective population in PPC, which transmits this infor-

mation to the PFC module via the feedforward long-range projections. Following stimulus

withdrawal, the target is encoded in PPC and PFC in persistent activity. An intervening

distractor, presented during the delay, competes with the mnemonic target representation

in the network activity (Fig. 4A). If WM is robust, the distractor’s response is transient

and target-coding persistent activity is maintained.

Several notable observations of distractor processing in the model are in line with

single-neuron recordings from PPC and PFC during visuospatial WM. First, distractor

responses are weaker than the target response (Suzuki and Gottlieb, 2013; Falkner et al.,

2010; Zhang et al., 2017). This surround suppression is mainly due to the cross-inhibition

from the active target population to the distractor population. Second, the peak distractor

amplitude also decreases as the time of distractor presentation relative to target increases

(Suzuki and Gottlieb, 2013). This results from the network dynamics of the synaptic gat-

ing variables. At shorter distractor onset times, the synaptic gating variables of the target

and distractor populations have not reached their steady-state levels, i.e., a high value for

the target population and a low value for the distractor population. Therefore, the suppres-

sive effect from the target population on the distractor responses will slightly increase over

time. Finally, and most strikingly, distractor responses are markedly different in PFC as

compared to PPC: PPC represents the distractor strongly during its presentation (Suzuki

and Gottlieb, 2013; Powell and Goldberg, 2000; Falkner et al., 2010), while PFC strongly

filters distractors (Suzuki and Gottlieb, 2013; Everling et al., 2002). This is because the

PFC module has a higher local structure JS and thus stronger recurrent dynamics than the

PPC. The stronger recurrence makes target encoding in PFC more robust against transient

distractor inputs, which are effectively filtered. From the dynamical systems perspective,

the PFC module has a wider basin of attraction than the PPC (Fig. 2) (Brunel and Wang,

2001; Wong and Wang, 2006). To summarize, the transient encoding of distractors is

weaker than target encoding, and weaker in PFC than in the PPC.
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Figure 4: Firing-rate dynamics in the PPC-PFC circuit during a WM task. A, Top, the blue trace
shows the response of the target-selective neural population in the PPC in response to
a target presented at t = 0 ms, with no distractors. Red, orange, light orange, and pink
traces show the response of the distractor-selective population to distractors presented
at t = 100, 150, 200, 300 ms, respectively. Bottom, the cyan trace shows activity of
the target-selective population in the PFC that receives the stimulus indirectly through
the long-range projections from the PPC, in the no-distractor condition. The other traces
show the distractor-selective population in response to distractors, as for PPC. However,
these responses are not visible due to the strong filtering by surround suppression within
PFC. B, Temporal dynamics of the two suppressed populations in PPC and PFC around
the time of stimulus presentation (asterisks in A). C, Autocorrelation of the spontaneous
firing rate shows the difference in fluctuation time scales τfluct between the PPC and
PFC. Firing rate traces were smoothed with Gaussian window of width 20 ms before
calculating the autocorrelation.

Single-neuron recordings have found that WM activity in PPC and PFC generates

surround suppression even on baseline activity, in the absence of distractors (Suzuki and

Gottlieb, 2013; Falkner et al., 2010; Funahashi et al., 1989). We analyzed differences

between the PPC and PFC modules in terms of the dynamics of this surround suppression

during target encoding (Fig. 4B). Relative to PPC, in PFC surround suppression of the

distractor population is (1) stronger, i.e., towards a lower baseline activity, and (2) more

rapid, i.e., with lower time constant. These features are non-trivial, given that the stimulus

directly drives PPC, whereas PFC is activated via projections from PPC. They result from

the higher structure in PFC relative to PPC. Both of these features are in line with single-

neuron features of distractor suppression (Suzuki and Gottlieb, 2013).

The timescale of surround suppression can be contrasted to the intrinsic timescale

of activity fluctuations in the baseline state. Primate cortex shows a hierarchical orga-
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nization of this dynamical feature, with intrinsic timescales increasing along the corti-

cal hierarchy, with dorsolateral PFC exhibiting a longer timescale than posterior parietal

area LIP (lateral intraparietal area) (Murray et al., 2014a). We examined whether this hi-

erarchical organization was consistent with the distributed circuit model we developed.

To this end, we calculated the autocorrelation of spontaneous fluctuations in the PPC

and PFC, and found that PFC has a longer time constant indicating a slower decay (Fig.

4C), in line with empirical findings (Murray et al., 2014a). Notably, this ordering of in-

trinsic timescale (longer in PFC than PPC) is opposite to the ordering of the surround-

suppression timescale (shorter in PFC than PPC). These contrasting time-scale orderings

suggest that the difference between PPC and PFC is not simply that one area is more

sluggish than the other one, but rather that these dynamics arise from interactions in the

distributed circuit.

Distractor-induced errors in working memory

We now examine the circuit’s dynamics in relation to behavioral performance on a WM

task with distractors (Fig. 5). An example of a correct trial is shown in Fig. 5A. The PPC

first encodes the target presented at t = 0 ms which is subsequently encoded in persis-

tent activity in both PPC and PFC, and after 1300 ms a distractor is presented to another

population in the PPC. During distractor presentation, the distractor-selective population

in PPC encodes the distractor strongly in its firing rate, while persistent activity in the

target-selective population is transiently and mildly perturbed. PPC’s strong distractor re-

sponse is due to two features of the model: stimulus input into PPC is strong and PPC is

a weak attractor network, so that the target-selective population, while in the high mem-

ory state, does not strongly suppress distractor cells. When the distractor population has

higher activity than target cells in PPC, the locus of attention is transiently shifted to the

distractor location (Bisley and Goldberg, 2003, 2006). Representation of the distractor in

PPC is thought to be functionally desirable, as it allows the PPC to flexibly function as a

saliency map (Bisley and Goldberg, 2010).

After the distractor stimulus is withdrawn, an interesting dynamic occurs in PPC:

feedback from the PFC switches the PPC back to encoding the target. This switch back

to encoding the target in PPC is a feature of distributed processing in the fronto-parietal

circuit. In an isolated local attractor network, a strong distractor response would switch

the state of the network from encoding the target to encoding the distractor even after

withdrawal of the distractor stimulus (Fig. 2A) (Brunel and Wang, 2001; Compte et al.,
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2000). In the distributed circuit model, this switch back to encoding the target in PPC

is accomplished by feedback projections from PFC. The target cells in PFC send exci-

tation to the target population in PPC and inhibition to the distractor population in PPC.

Because PPC is a weak attractor network, this combination of same-selectivity excitation

and cross-selectivity inhibition from PFC can effectively switch PPC back to the target

memory state. Single-neuron recordings in LIP have shown that PPC networks can switch

back to encoding the target in memory after transiently but strongly encoding the distrac-

tor (Bisley and Goldberg, 2003; Falkner et al., 2010; Suzuki and Gottlieb, 2013). Fur-

thermore, and consistent with the model, there is experimental evidence that long-range

projections between PFC and PPC produce both enhancement and suppression of activity

of the recipient cells (Chafee and Goldman-Rakic, 2000).

The PFC exhibits markedly different activity than the PPC in response to distrac-

tors. The PFC is activated indirectly, via the PPC’s response to the stimulus. As with the

PPC, information about the target is maintained in the PFC by persistent activity in the

target-selective population. Subsequent distractor presentation causes a transient suppres-

sion of delay activity the PFC. The transient suppression of the target population in PFC

is primarily attributable to feedforward different-selectivity inhibition from PPC, rather

than local lateral inhibition from the distractor population in PFC. This is consistent with

the finding of Suzuki and Gottlieb (2013) that target-selective neurons in the PFC can

show suppression by the distractor stimulus without distractor-selective PFC neurons be-

ing strongly activated. In contrast to the PPC, the distractor is not represented strongly

in the PFC (see also Fig. 4A, bottom). This is because the PFC module is modeled as

a strong attractor network, with increased local structure relative to the PPC. This local

structure, combining self-excitation and cross-inhibition, allows the target population in

the memory state to maintain higher activity than the distractor population throughout the

delay. This is the mechanism for the robustness of WM against distraction in the circuit.

We investigated the behavior of the PPC-PFC circuit during error trials. An er-

ror trial occurs when the PFC module fails to represent the target at the time of decision

or readout, following the delay period (at t > 3000 ms). During an error trial, the dis-

tractor population fires at a higher rates than the target population (Fig. 5 B). This also

corresponds to the locus of attention being shifted to the distractor location (Bisley and

Goldberg, 2003, 2006). Fig. 5C shows that the proportion of errors, and thus distractibility,

decreases with greater time separation between target and distractor onset, a behavioral

feature that is in line with experimental findings (Suzuki and Gottlieb, 2013). As with the

timing dependence of the distractor amplitude in the PPC (Fig. 4A), this time course of
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Figure 5: Relationship between neural dynamics and behavioral performance during a WM task
with distractors (colors correspond to the schematic in Fig. 3A) . A, Example of a cor-
rect, not distracted, trial. The target-selective population in PPC encodes the target in
WM following stimulus onset at t = 0 ms (top, blue), while the distractor-selective PPC
population transiently but strongly encodes the distractor following its presentation at
t = 1300 ms (top, red). After distractor offset, feedback from the PFC switches the PPC
back to encoding the target, enabling a correct response at the end of the trial. The PFC
(bottom) is activated by the PPC’s response to the target, which is maintained in WM
by the target-selective population in the PFC as well. Distractor presentation causes a
transient suppression of the delay activity in the neurons encoding the target (cyan), but
the distractor is not represented strongly (magenta) as it is in the PPC. B, Example of
an error, distracted, trial. If the target precedes the distractor by a short interval (100 ms
in this example), there is an increased probability of the distractor representation over-
riding the target representation, so that the distractor is encoded in persistent activity
in both PPC and PFC (top, red; and bottom, purple). C, Simulated behavioral perfor-
mance as a function of time of distractor onset relative to target (target-distractor onset
asynchrony, TDOA). Distractibility decreases with longer TDOA (blue). Simulated le-
sion of PFC greatly increases distractibility (red). D, Effects of removal of PFC→PPC
feedback. Absence of PFC feedback onto the PPC forces the PPC to encode the last
presented stimulus, leaving it vulnerable to distractors.

distractibility is due to the transient dynamics of synaptic gating variables as they evolve

toward a steady-state attractor state encoding the target.
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Prefrontal inactivation impairs robustness against distractors

In our model, we simulated inactivation or lesion of the PFC by removing the PFC→PPC

feedback inputs to the PPC, and characterized its effects on neural activity and robustness

of WM against distractors (Fig. 5 C,D). As shown in Fig. 5D, PFC inactivation renders

the system vulnerable to distractors. Since the PPC exhibits attractor dynamics as an in-

dependent local network, the PPC can still encode the target into the delay period through

persistent activity, providing some capacity for WM with only PPC engagement. How-

ever, without feedback from PFC, the distractor stimulus switches the network to encod-

ing the distractor, which it continues to encode through the subsequent delay. This is in

line with experiments finding that PFC inactivation induces error responses to the distrac-

tor location (Suzuki and Gottlieb, 2013). This demonstrates the key role of PFC→PPC

feedback projections, in the intact circuit, in switching the PPC network back to encoding

the target following distractor withdrawal (Fig. 5A). The resulting behavioral vulnerability

to distractors is exemplified by an increase in the error rate with respect to control (Fig.

5C). That PFC is not essential for simple WM maintenance — but plays a key role in

robustness of WM and filtering of distractors — is in line with conclusions from a range

of experimental findings, both in monkeys (Suzuki and Gottlieb, 2013) and in humans

(Sakai et al., 2002; Feredoes et al., 2011).

The model findings suggest two modes of operation during WM. When PFC is

engaged, the network can operate in a ‘remember first’ regime, storing the initial stimulus

and filtering subsequent stimuli. When PFC is not engaged, PPC on its own operates in

a ‘remember last’ regime, storing the location of the most recent stimulus, which may

also be functionally desirable for a saliency map (Bisley and Goldberg, 2010). As previ-

ously mentioned, the amplitude of the transient response to the distractor in PPC is lower

compared to that of the target. When the PFC is engaged, the peak distractor response is

suppressed (Fig. 5 A, top) as compared to when the PFC is inactivated (Fig. 5 D). Along

these lines, we suggest that the effective strength of lateral inhibition in PPC is not a purely

local property and can be flexibly controlled by top-down, i.e., feedback, prefrontal en-

gagement (Falkner et al., 2010, 2013). Our WM modeling results relate to the tradeoff

introduced previously (Fig. 2) in that it is possible to have two modules with different

recurrent strengths with the capability of filtering out distractors as a unified system.
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Evidence accumulation during perceptual decision making

Having characterized differential roles in WM for the two modules of our distributed

circuit, we now examine how it performs in perceptual DM tasks. As shown above in

Fig. 2, the recurrent structure JS of a local network shapes how it accumulates perceptual

evidence over time to guide a decision, which suggests the PPC and PFC modules will

show differential responses to accumulated evidence during perceptual DM. To probe

this issue, we adapted a task paradigm used to study perceptual integration in the mouse

(Hanks et al., 2015; Brunton et al., 2013). Hanks et al. (2015) found that in the mouse

cortex, frontal and parietal areas differ in their representations of accumulated evidence:

parietal neurons encoded the accumulator value in a graded fashion, whereas prefrontal

neurons encoded the accumulator value more categorically.

In the two-alternative forced choice paradigm of Hanks et al. (2015), the subject

receives auditory input consisting of a sequence of Poisson-distributed clicks each emitted

from the left and from the right side, and the subject is rewarded for reporting which

side (left vs. right) had the higher frequency signal (Brunton et al., 2013; Hanks et al.,

2015). We model clicks as current pulses whose onset is represented by a set of Poisson-

distributed times for each trial, where each trial is characterized by a rate pair sorted

according to difficulty. For instance, a 18 clicks/s (left) : 16 clicks/s (right) trial is “hard”

whereas a 30:4 trial is “easy”. The click-triggered current pulses define the inputs to a

theoretical accumulator as well as to the circuit model via the first module, the PPC (see

Materials and Methods for details).

Fig. 6A, top, shows the accumulator value as a function of time, for example tri-

als of varying difficulty. Positive accumulator values correspond to the preferred tuning

direction of a neuron, and negative values correspond to the non-preferred direction. The

difficulty of the trials is reflected on the slope of the accumulator vs. time plot, where a

higher or lower slope in absolute value corresponds to an easy or hard trial, respectively.

The trial-averaged firing rates of the PPC and PFC as a function of time and difficulty are

shown in Figures 6A, middle, and bottom, respectively. The difficulty of the trials is also

reflected in the instantaneous slopes of the firing rate, but due to the attractor dynamics

and the coupling between the modules, the firing rates in the PPC and PFC are not as

linear as a perfect accumulator.

To examine how the theoretical accumulator value is represented in the firing ac-

tivity of a neural population, we obtained an explicit relationship between accumulator

value and firing rate, following the approach of Hanks et al. (2015) (see Materials and
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Figure 6: PPC and PFC differentially encode accumulated evidence during perceptual DM. A,
The theoretical accumulator (top), PPC (middle), and PFC (bottom) integrate sensory
evidence as a function of time and trial difficulty. Thick traces show the average over
60 trials for each difficulty condition while thin traces in the accumulator show single
trials. B, The firing rate vs. accumulator relationship is more categorical, with a steeper
slope at zero accumulator value, in the PFC than in the PPC, which has a more graded
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also Hanks et al. (2015)). C, The relationship between firing rate in PPC and PFC and
accumulator value as a function of time is stable. The eight accumulator values (from
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Methods). The relationship between firing rate and accumulator value as a function of

time is relatively stable for both the PPC and PFC (Fig. 6C, top and bottom), similar to

empirical findings (Hanks et al., 2015). Importantly, the spacing between different accu-

mulator values is more uniform in the PPC, reflecting a more quasi-linear encoding of the

accumulator value as compared to the PFC. We obtained the global relationship between

firing rate in the PPC and PFC and accumulator by averaging the plots in Fig. 6C with

respect to time and scaling the ranges from 0 to 1 (Fig. 6 B). We found that, although the

accumulator value is encoded in the firing rate for both the PPC and PFC, the encoding is

more categorical in PFC versus PPC, as found empirically by Hanks et al. (2015). Indeed,

trajectories in the phase plane for a strong attractor (PFC) are shorter than for a weak at-

tractor (PPC). This dynamical difference manifests itself as a steeper slope for the PFC’s

firing rate as a function of both time and the hypothetical accumulator which scales lin-

early with time. These results suggest that the differences in recurrent structure between

parietal and prefrontal circuits may contribute to the differences in accumulator encoding

between these cortical regions.

Perceptual decision making across functional cell types

In the primate, the PPC and PFC are key cortical areas engaged in perceptual DM tasks

such as visual search and target selection (Schall and Thompson, 1999; Thomas and Paré,

2007; Purcell et al., 2010). Within fronto-parietal circuits, saccadic target selection in-

volves at least two stages of processing: selection or discrimination of the relevant target

among potential distractors, and preparation of an action or response following that se-

lection (Schall and Thompson, 1999; Woodman et al., 2008). Single-neuron recordings

have found that signals related to these two stages are represented heterogeneously across

different functional cell types which are distributed across PFC and PPC circuits. Within

the frontal eye field (FEF) and other areas, two broad types of neurons — visual cells and

movement cells — show distinct dynamics during visual target selection tasks.

The dynamics of visual and movement cells appears to reflect the processes per-

ceptual selection and action preparation, respectively (Schall, 2015). Visual cells respond

strongly at stimulus onset. After the initial visual transient, they distinguish target from

distractor through higher firing rates. Visual selection cells have been characterized in LIP

(Thomas and Paré, 2007; Ipata et al., 2006), FEF (Thompson et al., 1996; Sato et al., 2001;

Sato and Schall, 2003) and the subcortical superior colliculus (McPeek and Keller, 2002;

White and Munoz, 2011). In contrast, movement cells are not activated by stimulus on-
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set, but their response is tied to saccade onset. Their activity ramps in motor preparation,

with an apparent firing-rate threshold that drives a saccade to their associated movement

field (Hanes and Schall, 1996; Woodman et al., 2008). Movement cells are also found in

FEF Hanes and Schall (1996); Hanes et al. (1998); Woodman et al. (2008) (McPeek and

Keller, 2002) and superior colliculus, but appear to be much more sparse in LIP (Ferraina

et al., 2002).

We sought to test whether our distributed circuit model could capture these differ-

ences between visual and movement functional cells in fronto-parietal circuits. In the con-

text of saccadic target selection, we associate Module 1 with Selection (visual) cells and

Module 2 with Action (movement) cells, and these functional cell types may be differen-

tially distributed across PPC and PFC. Sensory input enters into Selection cells (Module

1), as proposed for a sensorimotor cascade (Schall, 2013; Purcell et al., 2010). Choice

and reaction time is set by a firing-rate threshold on Action cells (Module 2) (Hanes and

Schall, 1996; Woodman et al., 2008). The goal of the visual target selection task is to

make a saccade towards a target in the presence of distractors. The difficulty of the task

is dictated by the contrast, which reflects the salience of the target with respect to that of

distractors (Thomas and Paré, 2007; Sato et al., 2001). High or low contrast corresponds

to low or high target-distractor similarity, respectively.

In the model, stimulus input activates Selection cells (Fig. 7A). When the stim-

ulus appears, there is a pronounced visual transient in the firing rate of both target and

distractor populations in the Selection module. The target-selective population receives

more input than the distractor population (the amount depending on the contrast, see Eq.

14), and the activity of the two populations diverge due to competitive dynamics (Wong

and Wang, 2006), resulting in a discrimination of the target from the distractor. Due to

the feedforward projection from the Selection module to the Action module, Action cells

receive stimulus signals indirectly. In a correct trial, the target population reaches the

response threshold and a reaction time is recorded. In a high-contrast condition, the re-

action time is lower because there is a larger difference in input current to the target

and distractor populations of the Selection module (Wong and Wang, 2006). Thus, the

contrast-dependent differences in input current to the populations in the Selection module

along with the amplification of those differences due to the recurrent dynamics of both

modules eventually leads to a categorical choice in the Action cells.

The high-activity population, corresponding to the choice, is consistent in both

Selection and Action modules, but there are two important differences in the dynamics

between the modules. First, the competitive dynamics in the Action module, as compared
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Figure 7: Dynamics of the distributed circuit model during a visuo-spatial DM task. A, (Top) Tar-
get and distractor cells in the Selection module receive stimulus inputs, integrate per-
ceptual evidence, and discriminate the inputs (marked by target discrimination time).
(Bottom) Following target discrimination in the Selection module, the corresponding
population of Action cells is activated and begins ramping (marked by onset time).
When one of the Action populations reaches a threshold of 40 spikes/s (black dashed
lines), an overt response is triggered and a reaction time is registered. Green (orange)
traces correspond to easy (hard) trials. Target and distractor cells are shown in thick
and thin lines, respectively. Dashed lines mark the target-discrimination time in Selec-
tion cells defined as the time when the difference in firing rate of the two populations
has reached 12 spikes/s. Dotted lines mark the onset time in Action cells defined as the
time when the firing rate of one of the populations has reached 7 spikes/s. B, Target
discrimination times in the Selection module (top) and onset times in the Action mod-
ule (bottom) correlate with reaction times, both across and within contrast conditions.
Reaction times were split into quintiles for each contrast level. Only correct trials are
shown.

to the Selection module, result in a steeper firing-rate ramping as a function of time (Fig.

7A). This is because the Action module has a higher recurrent structure JS , and stronger

attractor dynamics, than the Selection module. Weaker structure in the Selection module

enables better integration of perceptual evidence for target selection, as shown in Fig. 2.
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Second, the pronounced transient activation of Selection cells, due to the appearance of

the target, is not represented in the Action module (Fig. 7A). This is due to the pathway-

specific excitation-inhibition (E/I) balance in the feedforward Selection→Action projec-

tion (Eq. 8). Therefore net inputs to the Action module reflect the difference of activity

between the populations in the Selection module. Thus, an Action-cell response above

baseline will only be observed when the activities in the Selection module have diverged,

in line with theories and evidence of “discrete flow” between selection- and action-related

stages in perceptual DM (Woodman et al., 2008). These results suggest that the functional

distinction between Selection and Action cells arises from a difference in structure in the

respective modules and the existence of pathway-specific E/I balance onto Action cells.

Single-neuron recordings during visual search have characterized how dynamics

of functional cell types relate to reaction times, through the target-distractor discrimina-

tion time in visual cells, and onset time in movement cells (see Materials and Methods).

For visual cells, the target-distractor discrimination time correlates with reaction time,

across and within search difficulty conditions (Sato et al., 2001; Thomas and Paré, 2007;

Ipata et al., 2006; McPeek and Keller, 2002; White and Munoz, 2011). For movement

cells, the onset time correlates with reaction time (Woodman et al., 2008; McPeek and

Keller, 2002; White and Munoz, 2011). We computed analogous measures for Selection

and Action cells in our model. In line with experimental findings, we found that reaction

time correlates with discrimination time in Selection cells and with onset time in Action

cells, across different contrast conditions as well as across reaction-time variability within

a contrast condition (Fig. 7B). This implies that although selection and action are distinct

stages in perceptual DM, they are consistent and reflect the feedforward nature of the

two-module circuit architecture.

Pathway-specific E/I balance and speed-accuracy tradeoff

We have shown that Action cells are activated only after the Selection cells have di-

verged to select an option, because the projection from Selection to Action cells exhibits

pathway-specific E/I balance. To further characterize the role of pathway-specific E/I bal-

ance in the feedforward projection from Selection to Action cells, we parametrically re-

duced the strength of feedforward inhibition while holding constant the strength of feed-

forward excitation (Eq. 15). For each level of inhibition, we computed a chronometric

and a psychometric plot: reaction time as a function of contrast and accuracy as a func-

tion of contrast (Fig. 8A). As feedforward inhibition decreases, reaction times decrease,
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Figure 8: Pathway-specific excitation-inhibition balance disruption and speed-accuracy tradeoff.
The degree of balance disruption is quantified by the percentage of the total inhibition
required to balance excitation to a cell (100% corresponds to full balance). A, Speed-
accuracy tradeoff. Reaction times decrease both as a function of contrast and degree of
balance disruption (top). The fraction of correct trials increases as a function of contrast
but decreases as a function of the degree of balance disruption (bottom). B, Error tri-
als with (left) and without (right) pathway-specific balance. For balanced trials (100%
inhibition), errors are due to mis-selection from cells in the Selection module and subse-
quent ramping of a population of cells in the Action module (top). For imbalanced trials,
i.e., with excitatory bias (40% inhibition), errors can be due to early ramping in cells in
the action module before any divergence has begun in the Selection module (bottom).
Dashed black lines mark the target-discrimination time in the Selection module, and
dotted black lines mark the onset time in the Action module.

but so does accuracy. Both of these effects are more pronounced at lower contrast values.

Therefore, perturbing pathway-specific E/I balance implements a speed-accuracy tradeoff

during target selection.

We then examined how errors arise in the model under control balanced and

reduced-inhibition conditions. Fig. 8B shows representative single trials from the two

conditions. In the control balanced condition, all errors arise due to mis-selection of the

distractor instead of the target in Selection cells (Fig. 8B, left), which is in line with single-

neuron recordings finding mis-selection in visual cells during search tasks (Thompson et

al., 2005; Trageser et al., 2008; Shen and Paré, 2007). In contrast, under reduced inhibi-
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tion a new type of error trial can occur (Fig. 8B, right). Action cells prematurely select a

response before target selection has completed within the Selection cells, causing errors

because the Action module makes a decision for target or distractor in a quasi-random

manner. Under reduced inhibition, when the target and distractor Selection cells are acti-

vated, but not yet diverged, the Action module receives a non-specific net-excitatory input.

This net-excitatory input can induce quasi-random winner-take-all DM (Wong and Wang,

2006), giving rise to an imbalance-dependent type of error. Our findings suggest that in a

healthy physiological state, the projection from Module-1 cells to Module-2 cells should

be in a state near E/I balance, because this configuration produces errors consistent with

electrophysiological recordings (Thompson et al., 2005; Trageser et al., 2008; Shen and

Paré, 2007).
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Discussion

In this study, we propose a parsimonious circuit model for distributed computation sub-

serving WM and DM, two core cognitive functions that recruit overlapping fronto-parietal

circuits. We highlight the tradeoff that exists when optimizing recurrent structure for ro-

bustness against distractors in WM versus slow integration of evidence in DM; the model

developed here ameliorates this tradeoff by extending the local circuit to two modules. We

found that across both WM and DM paradigms, the circuit model captures a wide range

of salient, empirically observed features of neural activity in fronto-parietal circuits. We

summarize the model’s findings with respect to the circuit architecture and its relationship

to WM and DM computations.

First, Module 1 (PPC or Selection cells), which receives sensory input (Felleman

and Van Essen, 1991; Buschman and Miller, 2007; Ibos et al., 2013; Siegel et al., 2015),

is a weak attractor network. This property is beneficial so that PPC can transiently encode

distractors and function as a saliency map, and so that its memory state can be effec-

tively controlled by weak feedback projections from PFC (e.g., to switch the state back to

encoding the target following distractor presentation). In the context of perceptual DM,

Module 1 (Selection cells) should be a weak attractor network to support integration of

perceptual evidence with a long timescale to improve accuracy.

Second, Module 2 (PFC or Action cells) is a strong attractor network. In the con-

text of WM, this property is functionally beneficial because PFC can thereby provide

robustness against distractors, filtering out the effects of strong distractor responses in

PPC. In the context of DM, it is functionally beneficial for Action cells to be a strong

attractor network because this enables them to ramp quickly to threshold to drive choice,

following the upstream target selection. This difference in recurrent structure also predicts

a difference in the representation of accumulated value, which is more graded in Module

1 and more categorical in Module 2.

Third, the modules are interconnected via reciprocal projections that are struc-

tured: net-excitatory between same-selectivity populations and net-inhibitory between

different-selectivity populations. The feedforward Module 1→Module 2 projection should

be structured to propagate signals for both WM and DM. The feedback Module 2→Module

1 projection is especially important in the context of WM. This projection being structured

allows PFC to switch PPC back to encoding the target following distractor presentation.
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Differential roles for PPC and PFC in working memory

Although PPC and PFC are both involved in active WM maintenance, converging ev-

idence from a range of methodologies suggests differential roles, with PPC associated

with attentional saliency and selection (Wardak et al., 2012, 2002), and PFC associated

with robustness of WM and filtering of distractors (Suzuki and Gottlieb, 2013; Sakai et

al., 2002; Feredoes et al., 2011). Our distributed WM circuit model captures multiple key

features from these studies and suggests that the different roles of PPC and PFC may in

part be due to distinct dynamical behaviors arising from their recurrent microcircuitry

(Chaudhuri et al., 2015), as suggested by electrophysiological recordings (Murray et al.,

2014b; Katsuki et al., 2014).

The model also proposes a key role for feedback from PFC to PPC during distrac-

tor processing, namely to strengthen target representations via feedback excitation and fil-

ter distractor representations via feedback inhibition (Figs. 4,5). In line with this proposal,

Feredoes et al. (2011) performed combined stimulation-imaging experiments in humans

and found a key role for feedback from PFC to posterior areas during distractor filtering

to enhance target representations (see also Edin et al. (2009) for PFC-mediated enhance-

ment of WM capacity in PPC). Recording in LIP during visuospatial WM, Falkner et al.

(2010, 2013) found that surround suppression of distractors, and target representation, are

strengthened by top-down cognitive modulation (e.g., by motivation). Our model predicts

that PFC inactivation should disrupt this modulation of surround suppression in PPC.

Furthermore, if PFC is inactivated or the PFC-PFC feedback projection is very weak, the

system operates in a ‘remember-last’ regime (Fig. 5D) whereas if PFC is engaged the

system operates in a ‘remember-first’ regime (Fig. 5A).

Evidence accumulation in the fronto-parietal network

Gradual accumulation of perceptual evidence is reflected in DM-related neuronal activ-

ity in fronto-parietal circuits (Gold and Shadlen, 2007; Schall, 2013; Brody and Hanks,

2016). Drift-diffusion models (Purcell et al., 2010; Bogacz et al., 2006; Usher and Mc-

Clelland, 2001) as well as recurrent circuit models (Wang, 2002; Wong and Wang, 2006)

can account for the accumulation process and subsequent ramping behavior in the neu-

ral dynamics, including more discrete “jumping” modes (Miller and Katz, 2010; Wang,

2012; Lo et al., 2015; Latimer et al., 2015). Our model predicts that, due to the inter-areal

differences in local recurrent structure, representations of accumulated evidence are more

graded in PPC and more categorical in PFC, as supported by single-neuron recordings
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(Hanks et al., 2015). Recent inactivation studies found that even though PPC shows DM-

related signals, it does not play a causal role in perceptual DM (Erlich et al., 2015; Katz

et al., 2016). It is unclear whether these results can be accounted for via compensatory

mechanisms and/or distributed processing within a broader region in PPC that includes

LIP. In rats, inactivation of PPC disrupts accumulation of visual but not auditory evidence

(Raposo et al., 2014). In monkeys, inactivation of LIP disrupts saccadic selection of vi-

suospatial targets during visual search tasks (Wardak et al., 2002, 2004), which are more

similar to the DM paradigm we have modeled.

Dynamics and localization of visual and movement cells

In the context of perceptual DM, the Selection (Module 1) and Action (Module 2) cells

in our model capture key dynamical features of visual and movement cells, respectively,

which have been characterized in single-neuron recordings from LIP, FEF, and SC (Schall,

2015; Sato et al., 2001; Thompson et al., 1996; Thomas and Paré, 2007; Ipata et al.,

2006; Hanes et al., 1998; Woodman et al., 2008; McPeek and Keller, 2002). Visual and

movement cells in cortex may have distinct biophysical properties (Cohen et al., 2009b),

laminar distributions (Pouget et al., 2009), and long-range projections (Gregoriou et al.,

2012). Our results suggest that both modules could represent neural populations that are

distributed across multiple areas (e.g., visual cells in LIP/FEF/SC, movement cells in

FEF/SC).

An important feature of our distributed circuit model is the pathway-specific E/I

balance in the feedforward projection from Selection to Action cells. This E/I balance

regulates a cascade of activations across functional cell types and can be characterized

as “discrete flow,” since response preparation in Action cells only begins after target se-

lection is completed in Selection cells (Woodman et al., 2008). Pathway-specific balance

thereby provides a mechanism for discrete flow without requiring direct gating of neu-

ronal responses (Purcell et al., 2010; Wang et al., 2004; Yang et al., 2016). The sensitiv-

ity of Action cells to differences in upstream Selection cells is related to a geometrical

characterization of neural dynamics, whereby some directions in neural state space elicit

responses while those in the null-space do not (Vogels and Abbott, 2009; Li et al., 2016;

Kaufman et al., 2014).

We disrupted pathway-specific E/I balance by systematically decreasing the strength

of feedforward inhibition onto the Action cells. A strongly imbalanced circuit produced

a distinct type of error: Action cells started ramping before the populations of Selection
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cells had diverged in activity, i.e., before selection was accomplished. The imbalanced

condition may capture dynamics recorded from visual and movement cells in FEF under

speed-demanding compelled response paradigms (Stanford et al., 2010). The modulation

of feedforward inhibition in our model resulted in a smooth tradeoff between speed and

accuracy, a plausible mechanism among others (Heitz and Schall, 2012; Bogacz et al.,

2010; Standage et al., 2014; Hanks et al., 2015; Stanford et al., 2010).

Limitations and future directions

Future studies can build upon and extend the present model to address a number of im-

portant questions. One direction is to extend the two-population discrete network studied

here to a quasi-continuous network in which neurons exhibit smoothly varying tuning of

a parametric stimulus variable (Compte et al., 2000; Furman and Wang, 2008) to explore

effects that depend on the similarity and distance between distractors and targets held in

WM (Suzuki and Gottlieb, 2013; Murray et al., 2014a). Generalization to more than two

populations would enable modeling of set-size effects in visual search tasks, whereby the

number of stimuli affects behavior and visual- and movement-cell activity (Cohen et al.,

2009a; Balan et al., 2008; Woodman et al., 2008). Extension to a spiking circuit model

would enable modeling the neural signatures of synchronization between PPC and PFC

during cognitive processing (Ardid et al., 2010; Pesaran et al., 2008; Salazar et al., 2012;

Dotson et al., 2014).

This study suggests important design principles for constructing multi-regional

neural circuit models of distributed cognitive function, such as the interplay between

long-range and local connectivity in recurrent dynamics and computation, the roles of

specialized microcircuit properties across the cortical hierarchy, and the implications of

balanced excitation and inhibition in long-range interactions. The parsimonious model

studied here may therefore instantiate features of a canonical cognitive circuit useful for

studying distributed computation in the brain.
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