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Abstract 1 

The raphid pennates (order Bacillariales) are a diverse group of diatoms easily recognized by 2 

having a slit in the siliceous cell wall, called the raphe, with functions in cell motility. It has 3 

been hypothesized that this morphological innovation contributed to the evolutionary success 4 

of this relatively young but species-rich group of diatoms. However, owing to the 5 

incompleteness of the fossil record this hypothesis remains untested. Using the 18S ribosomal 6 

RNA gene, fossil calibrations, and Bayesian phylogenetic and diversification frameworks, we 7 

detect a shift in the speciation rate of marine raphid pennate diatoms in the Cretaceous, not 8 

detected in other diatom lineages nor previously recognized in the microfossil record. Our 9 

results suggest a positive link between the speciation of raphid pennate diatoms and the benefits 10 

derived from evolving motility skills, which could account for their outstanding present-day 11 

global diversity. The coincidence between the advent of the raphe and the increase in the 12 

speciation rate of raphid pennates supports the idea that simple morphological novelties can 13 

have important consequences on the evolutionary history of eukaryotic microorganisms. 14 

Introduction 15 

Diatoms are silica-precipitating microalgae responsible for roughly one fifth of present day 16 

global primary production (i.e. ~20 Gt C per year), and contribute disproportionately to the 17 

maintenance of upper trophic levels and carbon sequestration through organic burial in 18 

sediments1,2. Diatoms are characterized by a peculiar diplontic life cycle involving gradual size 19 

reduction during asexual divisions followed by necessary size restitution via sexual 20 

reproduction3,4. Unlike the centric diatoms, which release flagellated microgametes to the 21 

extracellular medium, pennate diatoms normally produce non-flagellated amoeboid gametes of 22 

equal size in response to the pairing of vegetative cells of the opposite mating type. Another 23 

fundamental difference between centric and pennate diatoms lies in the mating system. 24 

Whereas the centrics are strictly homothallic and thus a single clone can produce both male and 25 

female compatible gametes, the pennates tend to be heterothallic, that is cross-fertilization must 26 

proceed from gametes produced by different clones or mating types5-7. The need for size 27 

restitution via sexual reproduction has confined pennate diatoms primarily into shallow benthic 28 

habitats, where sexual encounters among mating cells become more likely. Still some pennates 29 

have adapted successfully to planktonic habitats by maximizing sexual encounters during 30 

bloom events. The system of partner location works particularly well in raphid pennates, a 31 

lineage of pennate diatoms within the order Bacillariales, easily recognized by having a slit in 32 

the siliceous cell wall or frustule, the raphe, which confers the cells autonomous motility8,9. 33 

Indeed, in spite of their relatively short evolutionary history (i.e. raphid pennates are not known 34 

in the fossil record before the Palaeocene epoch), they are the most species-rich group of 35 

diatoms today9,10, which leads to the hypothesis that this morphological feature facilitated their 36 

diversification. 37 

The dynamics of diatom diversity through time has been usually investigated from the analysis 38 

of the microfossil record11-16. Two major geological projects, the Ocean Drilling Program 39 

(ODP) and the Deep Sea Drilling Project (DSDP), now integrated into the International Ocean 40 

Discovery Program (IODP) have been instrumental to add new fossil data and unify taxonomic 41 

criteria into a global microfossil database with enormous potential for paleoecological 42 
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research17,18. However, the fossil record of marine diatoms is incomplete and severely biased 43 

toward recent times for several reasons13,19-21. First, silica structures are prone to dissolution at 44 

early stages of diagenesis and only a minor percentage of the silica frustules that accumulate in 45 

the sediments become eventually preserved. Second, silica recrystallizes under pressure, and as 46 

a consequence early diatoms are only preserved through unusual processes such as early 47 

carbonate cementation, pyritization or shallow burial. Third, sampling probability decreases 48 

with increasing geologic age owing to a deeper position of ancient sediments and the loss of 49 

oceanic crust at subduction zones. As a consequence, detailed taxonomic catalogues of fossil 50 

diatom assemblages are limited to unconsolidated sedimentary deposits dating back as much as 51 

the mid Cenozoic (~40 million years ago, Ma) and thus the evolutionary rates of marine 52 

diatoms prior to this time are virtually unknown20,21. These preservation biases call into 53 

question the suitability of the marine microfossil record for studying the macroevolutionary 54 

patterns of eukaryotic microorganisms9,19. 55 

It is possible to estimate evolutionary rates (speciation and extinction) through time from 56 

molecular phylogenies based on extant species22. Distributions of time-calibrated phylogenetic 57 

trees are used to detect shifts in the speciation (and extinction) rate through time by simulating 58 

distinct evolutionary patterns and searching for the one(s) that best explain the dynamics of the 59 

clades within the phylogeny23-25. Here we infer a time-calibrated marine diatom phylogeny 60 

including available sequences of the 18S ribosomal RNA gene in GenBank and use a reversible 61 

jump Markov Chain Monte Carlo method26 to detect speciation rate shifts and estimate rate 62 

values in major diatom lineages. The method takes into account biases associated with 63 

incomplete taxon sampling by incorporating missing lineages at the tree inference stage once 64 

provided sampling probabilities. Our objective is to explore the timing and patterns of marine 65 

diatom speciation, test for differences among groups, and identify potential causes for their 66 

ecological success in the modern oceans. 67 

Results 68 

Sequence alignment and phylogenetic analyses 69 

An initial maximum length (without gaps) of 1645 base pairs (bp) resulted in a final alignment 70 

of 1157 bp after trimming for terminal regions. We detected that the trimmed sequences of 71 

Thalassiosira pacifica, Nitzschia closterium, Chaetoceros neogracile, Porosira 72 

pseudodenticulata and Attheya septentrionalis were equal to Thalassiosira aestivalis, 73 

Cylindrotheca fusiformis, Chaetoceros gracilis, Porosira glacialis and Attheya longicornis, 74 

respectively, so the first four sequences were deleted at the haplotypes collapsing step.  75 

Maximum-likelihood (ML) and Bayesian inferences (BI) resulted in similar estimates of the 76 

phylogenetic tree, with congruent well-supported relationships (Figure S1, Figure S2). In these 77 

"unconstrained" ML/BI searches, most relevant groups obtained high support in accordance 78 

with previous phylogenetic analyses27,28. Rhizosoleniales, Coscinodiscales, Chaetocerotales, 79 

Thalasiosirales and Bacillariales (except Attheya longicornis) were highly supported both in 80 

Bayesian inference (Posterior probability, PP = 1) and ML (Bootstrap support, BS > 900). The 81 

sister-relationship between Attheya longicornis and the other Bacillariales included in the 82 

analyses was the lowest supported relationship (PP = 0.79; BS =540), but this is in agreement 83 
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with previous studies showing the uncertain position of Attheya longicornis within diatoms 29. 84 

The remaining Bacillariales received maximum support for defining a monophyletic clade. 85 

Using the calibration points (Table S2), divergence time analyses estimated the root of the 86 

group at 193.32 Ma with a 95% highest posterior density (HPD = 121.98-274.74 Ma). This 87 

result is also consistent with other phylogenetic studies, which situate the origin of diatoms 88 

between the Triassic and lower Jurassic28,30. The mean age of the Thalassiosirales clade was 89 

113 Ma (HPD = 69-155), and both Coscinodiscales and Bacillariales (including Attheya 90 

longicornis) were estimated to have originated in the Cretaceous, 115 Ma (HPD = 62-168) and 91 

118 Ma (HPD = 62-180), respectively. Chaetocerotales and Rhizosoleniales seem to have a 92 

more recent origin, ~66 Ma (HPD = 56-86) and 91.5 Ma (HPD = 88-94), respectively (Figure 93 

1, see also information available through the following Figshare DOI: 94 

10.6084/m9.figshare.3795834). 95 

Diversification analyses 96 

The effective sample size for the number of shifts and log-likelihood was superior to 2000 in 97 

both cases, indicating the appropriate sampling of parameters from the posterior. The 95% of 98 

the most credible rate shift sets were sampled with the Bayesian Analysis of Macroevolutionary 99 

Mixture (BAMM) from which twelve shift configurations were generated (see Material and 100 

Methods, Table S3). We found strong evidence for the one rate shift macroevolutionary model 101 

compared with the zero rate shift model (BF = 19.95). The rate shift was positioned at the base 102 

of the raphid pennate diatoms core within the order Bacillariales ~78-80 Ma (Figure 1). The 103 

two rate shift macroevolutionary model (BF = 5.03) was discarded because the overall best 104 

shift configuration positioned the second shift in the same location as the first one with less 105 

significant statistical support (Figure S3, Table S3). This speciation rate shift is the first one 106 

detected with non-fossil techniques and is in agreement with the expansion of raphid pennate 107 

diatoms during the Cenozoic era. 108 

Phylorate plots showed that the maximum speciation rate of Bacillariales was as high as 0.2 109 

species My-1, while the maximum for other diatom groups such as Thalassiosirales never 110 

exceeded 0.1 species My-1 (Figure 2). All groups exhibited an increasing speciation rate 111 

through time. We found statistically significant differences in speciation rates between raphid 112 

pennate diatoms and centric diatoms (F = 191.96, P = 0.0097, significance level = 0.05). The 113 

low speciation rate of Thalassiosirales throughout the Cenozoic era is conspicuous because this 114 

order is particularly successful in the modern oceans.  115 

Discussion 116 

Using time-calibrated diatom phylogenies within a Bayesian framework we detected a shift in 117 

the speciation rate of raphid pennates 78-80 Ma. This speciation rate shift could not be 118 

previously recognized in the marine diatom fossil record, which is sparse for that time and 119 

strongly biased towards recent times13,18.  120 

The fossil record situates the origin of raphid pennate diatoms some 70.6-55.8 Ma19, yet, our 121 

results (Figure 1) and previous molecular analyses push back their origin earlier in the 122 
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Cretaceous. Analyses of the18S rRNA and ribulose bisphosphate carboxylase/oxygenase large 123 

chain genes have shown that the raphid pennates comprise a monophyletic group of diatoms 124 

within the order Bacillariales27,28,30. Regarding to Attheya longicornis, its phylogenetic position 125 

is largely uncertain29, and although phylogenetic analyses seem to indicate that it shares an 126 

ancestor with the raphid pennates, it is clearly a distant relative and lacks a raphe. The inferred 127 

speciation rate shift was located in the Bacillariales clade, excluding Attheya longicornis, which 128 

further suggests that the most probable shift detected in our phylogeny corresponds to the 129 

evolutionary expansion of the raphid pennates. 130 

The speciation rate shift reported here could result from i) a greater chance of sexual 131 

reproduction in raphid pennate diatoms with respect to other diatom lineages and ii) a tendency 132 

towards heterothallism in the pennate diatoms mating system, which may have contributed to 133 

erect hybridization barriers and reduce gene flow among sympatric populations.  134 

Meiotic recombination in sexually-reproducing eukaryotes represents a first order cause of 135 

genotypic variability within mating populations and hence the frequency of sexual reproduction 136 

potentially accelerates the rate of species evolution31,32. Sexual reproduction is an obligate stage 137 

in the life cycle of most diatoms. However, the success of sexual reproduction may differ 138 

among diatom lineages depending on their sexual strategy and lifestyle9,33. For instance, in 139 

centric diatoms, which have adopted primarily a planktonic lifestyle, environmental cues 140 

induce the formation of eggs and flagellated sperm, which is released to the extracellular 141 

medium. A suite of concurrent requirements including appropriate environmental cues, the 142 

occurrence of sexualized cells and bloom-forming conditions that increase the chance of egg 143 

fertilization must be met to succeed34,35. Conversely, in pennate diatoms, the production of 144 

gametes is preceded by the pairing of vegetative cells of the opposite mating type33,36, a process 145 

that seems to be facilitated by the release of regulatory pheromones37,38. The system of partner 146 

location works especially well in raphid pennates, which use their motility skills to search 147 

actively for a partner and join their gametes9. Though there is little information regarding the 148 

frequency of sex in diatoms, previous reports indicate that, overall, pennate diatoms tend to 149 

exhibit shorter temporal lags between sexual events than centric diatoms7. For instance, the cell 150 

size threshold for inducing sexual reproduction in the diatom Pseudo-nitzschia multiseries has 151 

been shown to be larger than previously thought39, expanding the window of opportunity for 152 

sexualization. 153 

Sexual reproduction favors adaptation to new habitats and is particularly advantageous in 154 

rapidly changing environments, where some genetic variants might be wiped out by new 155 

conditions while others might be better adapted and thrive. In addition to increasing the chance 156 

of sexual recombination, gliding motility potentially increases resource use efficiency by 157 

conferring individuals the ability to seek for optimal light environments and nutrient-rich 158 

conditions40-42. We recognize that the outstanding current diversity of raphid pennate diatoms 159 

could be explained in part as a result of a finer niche differentiation in benthic habitats 160 

compared to more homogeneous planktonic ecosystems. However, this argument on its own is 161 

unable to explain the lower diversity of araphid pennates today despite their primarily benthic 162 

lifestyles and comparable evolutionary origins. Furthermore, our analysis shows that the 163 

lineages of raphid pennate diatoms adapted to planktonic lifestyles (e.g. Pseudo-nitzschia, 164 
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Fragilaria) also attained higher speciation rates than other planktonic lineages such as the 165 

Thalasiosirales, Chaetocerotales, Rhizosoleniales and Coscinodiscales, supporting the idea that 166 

the benefits derived from evolving motility skills (the raphe) played a role. The timing of the 167 

raphid pennate diatoms speciation rate shift suggests that changes in the extent of continental 168 

flooding along with concurrent increases in continental nutrient weathering fluxes43 and 169 

sedimentary organic matter recycling44 provided ideal conditions for habitat expansion since 170 

the mid-Cretaceous19. 171 

The second critical control on evolutionary tempo deals with the fact that pennate diatoms 172 

show a tendency towards heterothallism35. It has been suggested that owing to their broad 173 

dispersal ranges and astronomical population numbers, microbial species cannot be 174 

geographically isolated45. Because geographic isolation is a necessary component of allopatric 175 

speciation models, global dispersal and the ensuing continuity of gene flow among sympatric 176 

populations are thought to lower the rate of speciation45. Ubiquitous dispersal is feasible in 177 

asexually reproducing microorganisms as long as global dispersal times do not exceed the pace 178 

of genetic variability. However, the mating system in heterothallic species is a fundamental 179 

control of syngamy, which increases the chance of geographic isolation and promotes the 180 

spatial structuring of genetic populations46. Our results support the idea that the advent of the 181 

raphe, a simple morphological feature involved in cell motility, facilitated sexual encounters 182 

among compatible mating types. The greater success of sexual reproduction in predominantly 183 

heterothallic taxa led to an increase in the speciation rate of raphid pennate diatoms. These 184 

results provide a feasible explanation for the outstanding current diversity of raphid pennates 185 

despite their relatively recent origin, and suggest that simple morphological novelties can have 186 

important consequences on the evolutionary history of eukaryotic microorganisms. While the 187 

signal seems strong in our data, it is important to recognize the limitations of single-gene-188 

phylogenies,47,48 and would be extremely valuable if future studies could employ more 189 

comprehensive sets of orthologs 27,49,50, as these expand in databases, or their sequencing 190 

becomes more feasible, to keep testing hypotheses concerning timing and rates of 191 

diversification. 192 

 193 

Materials and Methods 194 

Sequences and alignment 195 

All available sequences (102 sequences) of the 18S ribosomal RNA gene of major marine 196 

diatom orders (Thalassiosirales, Chaetocerotales, Rhizosoleniales, Coscinodiscales and 197 

Bacillariales) were downloaded from GenBank (Table S1). Sequences were aligned using 198 

MAFFT v7.058b51 and the G-INS-I algorithm52, trimmed using GBlocks automatic 199 

parameters53 and collapsed into haplotypes using ALTER54 resulting in a final alignment with 200 

97 sequences and 1157bp. The minimum number of sequences for defining a conserved 201 

position was 50 and 83 for a flanking position. The maximum number of contiguous non-202 

conserved position was 8 while the minimum length of a block allowed after gap cleaning was 203 

10. Alignments and haplotypes information are available through the following Figshare DOI: 204 

10.6084/m9.figshare.3795834. 205 
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Phylogenetic analyses 206 

To determine the best-fit model of sequence evolution for the dataset we used jModelTest 207 

v0.1.1 55,56 and the corrected Akaike Information Criterion (AICc)57. Maximum-likelihood 208 

(ML) and Bayesian (unconstrained) gene phylogenies were estimated using PhyML 3.058 and 209 

MrBayes v3.2.159. ML was performed with 100 heuristic searches and its support accessed 210 

through 1000 bootstrap replicates. Two Bayesian inference runs of 10 million generations were 211 

performed, with default heating parameters, sampled each 1000th sample, and checked for 212 

convergence (of node’s PP’s) and congruence (of runs) using AWTY60. Both runs were 213 

summarized on a 50% majority-rule consensus. All details and outputs are available at DOI: 214 

10.6084/m9.figshare.3795834. 215 

BEAST v2.1.361,62 was used for co-estimating divergence times and (constrained) gene 216 

phylogenies using relaxed molecular clock analyses. The nucleotide substitution model was 217 

implemented as estimated previously, with parameters to be co-estimated along the run. An 218 

uncorrelated lognormal model was used for the clock-rate and posterior estimates were 219 

obtained under both the Calibrated Yule and the Birth-Death models for the tree prior. Runs 220 

without data were also performed to evaluate prior and joint prior distributions. 221 

Calibrations in the phylogeny were implemented either as minimum or “fixed” (interval) ages. 222 

Using data from the marine diatom fossil record, we constrained the minimum ages of several 223 

clades in the tree corresponding to the oldest unequivocal fossil belonging to that clade. In all 224 

cases these clades were highly supported in the unconstrained phylogenies (PP=1; 225 

BS>900/1000). The single exception was Skeletonema grethae, where specimens from the 226 

Atlantic and Pacific were not inferred as sister-taxa. Because the relationships within the clade 227 

they belong were largely unresolved (see Figure S1, S2), with no support either for them not 228 

being sister taxa, and the distance between them was very low (<0.3%), similar to the one 229 

between the other Atlantic-Pacific pair (Thalassiosira weissflogii), and to other Atlantic-Pacific 230 

taxa pairs which divergence is assumed to have been initiated at the final closure of the Isthmus 231 

of Panama63, we constrained this node and still included this calibration in our analyses. 232 

The median age and the interval of probability were obtained from a lognormal distribution of 233 

the data (Table S2). Fixed age estimates were used for those clades whose divergence times 234 

occurred during a well-dated geologic event. In this case, the median and probability interval 235 

were calculated using a normal distribution (Table S2). 236 

Two independent analyses (under each tree prior) were run for 400 million generations, 237 

sampling every 400,000. The resulting distributions of parameters were checked for 238 

convergence using Tracer v 1.564 ensuring effective sample size values (ESS) to be greater than 239 

200. The posterior distributions of trees were summarized in a maximum clade credibility tree 240 

discarding 25% as burnin using median heights for node age estimates. 241 

Speciation rates and phylANOVA analyses 242 

We used the Bayesian Analysis of Macroevolutionary Mixture (BAMM, www.bamm-243 

project.org) to estimate marginal distributions of speciation and extinction rates for each branch 244 
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in a phylogenetic tree65. BAMM uses reversible jump Markov Chain Monte Carlo (rjMCMC) 245 

method to detect automatically rate shifts and sample distinct evolutionary dynamics 246 

(speciation and extinction) that best explain the whole diversification dynamics of the clade. 247 

The program is designed to work with datasets that contain large numbers of missing species. 248 

The method takes into account incomplete taxon sampling in phylogenetic trees by 249 

incorporating missing lineages at the tree inference stage once provided clade-specific 250 

sampling probabilities65,66. 251 

We provided BAMM with the proportion of species sampled per genus (i.e., 1/number of 252 

species in genus). Priors were estimated with BAMMTools26 using the function 253 

“setBAMMpriors”. We set a rjMCMC for 11∙106 generations and sampled every 1,000 254 

generations. We used ESS values to assess the convergence of the run, considering values 255 

above 200 as indicative of good convergence. To visualize where in the tree the shifts occurred, 256 

we generated mean phylorate plots which represent the mean speciation rate sampled from the 257 

posterior at any point in time along any branch of the phylogenetic tree26. BAMM identifies a 258 

set of most credible rate shifts ordering them by posterior probability. Here, we selected twelve 259 

credible rate shift sets based on a Bayes Factor (BF) considering a BF value between 3 and 12 260 

as positive evidence, BF > 12 as strong evidence and BF >150 as very strong evidence67. All 261 

details and outputs are available at DOI: 10.6084/m9.figshare.3795834. 262 

Phylogenetic analyses of variances were used to test differences in speciation rates among 263 

raphid pennate diatoms and centric diatoms using the function phylANOVA in the R-package 264 

phytools68. phylANOVA compares results based on raw phylogenetic data to those based on 265 

phylogenetic model simulations to create an appropriate null distribution69. 266 
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Figure legends 458 

Figure 1. Phylorate plot of the mean speciation rates of marine diatoms sampled from the 459 

posterior resulting from the BAMM output. Branches coloring (blue to red) indicates increasing 460 

speciation rates. The yellow dot marks the position of the speciation rate shift resulting from 461 

the overall best shift configuration. The red dots indicate the calibration points based on the 462 

sedimentary record (Table S2). Numbers at branches represent posterior probabilities (only 463 

values >0.5 are shown). The abbreviations over major clade branches denote the predominant 464 

sexual strategy and lifestyle within lineages: homothallism (hom), heterothallism (het), 465 

planktonic (p) and benthic (b). Also indicated is the time span for the presumed origin of the 466 

raphe. 467 

Figure 2. Speciation rate through time plot of the different groups of marine diatoms compared 468 

with the evolutionary rate of the entire phylogeny (black line). Bacillariales are the primary 469 

responsible for the speciation rate shift detected in the phylogeny. Bacillariales plot includes all 470 

the species of the order except Attheya longicornis. Colored areas represent the quantiles of the 471 

posterior distribution. Pictures were taken by Isabel Gomes Teixeira. 472 

473 
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Figures 474 

Figure 1 475 

 476 
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