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Abstract

Here, we investigate whether systems that minimize prediction er-
ror e.g. predictive coding, can also show creativity, or on the contrary,
prediction error minimization unqualifies for the design of systems that
respond in creative ways to non recurrent problems. We argue that
there is a key ingredient that has been overlooked by researchers that
needs to be incorporated to understand intelligent behavior in biolog-
ical and technical systems. This ingredient is boredom. We propose
a mathematical model based on the Black-Scholes-Merton equation
which provides mechanistic insights into the interplay between bore-
dom and prediction pleasure as the key drivers of behavior.

1 Introduction
The value in building artificial systems with optimal predictive power is be-
yond question. Robots in real world missions without the capacity to infer
the state of the world are unreliable and doomed to a short existence. In
biological systems, the idea that organisms organize sensory data into an in-
ternal model of the outside world, goes back to the early days of experimental
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psychology. In Helmholtz’s Handbook of Physiological Optics published in
1866, it is argued that the brain unconsciously adjusts itself to produce a
coherent experience. According to this view, our perceptions of external
objects are images or better said, symbols, that do not resemble the refer-
enced objects. Helmoltz’s view of perception as a process of probabilistic
inference, in which sensory causes need to be inferred based upon changes of
body states, has become a major tenet in a number of disciplines, including
computational neuroscience (Dayan and Abbott, 2002), cybernetics (Ashby,
2015), cognitive psychology (Neisser, 2014) and machine learning (Neal and
Hinton, 1998).

A recent incarnation of this theory of perception is the Helmholtz’s ma-
chine postulated by Dayan, Hinton and Zemel (Dayan et al., 1995), (Dayan
and Hinton, 1996). The brain is here conceptualized as a statistical infer-
ence engine whose function is to infer the causes of sensory input. Under
this scheme, the workings of the brain encode Bayesian principles. Due
in part to the ever increasing computational power of computers, Bayesian
approaches alike to the Helmholtz’s machine have become the workhorse
for studying how the nervous system operates in situations of uncertainty
(Rao and Ballard, 1999), (Knill and Pouget, 2004), (Friston, 2012). The
main rationale is that the nervous system maintains internal probabilistic
models which are continuously updated in the light of their performance in
predicting the upcoming suite of cues.

Predictive coding is a form of differential coding where the signal of
interest is the difference between the actual signal and its prediction. This
technique exploits the fact that under stationary and ergodic assumptions
1, the value of one data point e.g., a pixel, regularly predicts the value
of its nearest neighbors. Accordingly, the variance of the difference signal
is reduced compared to the original signal, making differential coding an
efficient way to compress information (Shi and Sun, 1999). In a general
sense, predictive coding is a Bayesian approach to brain function in which
the brain is conceived as a device trained to do error correction. Predictive
coding aims at reducing redundancy for signal transmission efficiency and it
is been proposed as a unifying mathematical framework for understanding
information processing in the nervous system (Friston, 2010), (Huang and
Rao, 2011). Predictive coding has been used to model spatial redundancy
in the visual system (Srinivasan et al., 1982), temporal redundancy in the

1A signal is stationary when its defining probabilities are fixed in time. A signal is
ergodic when can be constructed as a generalization of the law of large numbers (long
term averages can be closely approximated by averages across the probability space).
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auditory system (Baldeweg, 2006) and the mirror neuron system (Kilner
et al., 2007).

Predictive coding is a "neuronally plausible implementation scheme"
(Schwartenbeck et al., 2013) of the free energy minimization principle which
is a theoretical formulation that in essence states that biological systems
always behave under the imperative of minimizing surprise. In a series of
articles spanning over one decade, Friston and collaborators have proposed
a free energy principle as an unified account of brain function and behav-
ior. The free energy minimization principle buttresses Helmholtz’s theory
perception using modern-day statistical theories, namely, Bayesian filtering
(Friston, 2005), Maximum entropy principle (Jaynes, 2003) and variational
free energy (Hinton and van Camp, 1993) (Table 1).

The actual relevance and soundness of the free energy principle to explain
decision making in organisms is being contested. Critics argue that if bio-
logical systems behave in the way that free energy minimization prescribes
-minimizing surprises over the states visited- they will inevitably seek the
most predictable habitat, for example, a corner in a dark room, and they
will stay there ad infinitum. This mental experiment is being called the
"dark room problem" (Friston et al., 2012) and shows that the imperative of
organisms to minimize surprise, put forward by the free energy minimization
principle, is at odds with easily recognizable features of organisms such as
exploration or creativity.

Friston’s way out of the "dark-room problem" is as follows, probabili-
ties are always conditional to the system’s prior information, thus, a system
equipped with a generative model (priors and a likelihood function) that
dislikes dark rooms rather than being stuck in a corner minimizing its pre-
diction error, will walk away in order to sample the external world according
to its own priors. Crucially, surprise or surprisal 2over states (S) is always
conditional to a given specific generative model (m). The surprise over S
is always conditional to the model m, H(S|m), which is obviously different
to the marginal surprise over the states, H(S). Different systems acting in
identical environments might disagree in what is surprising and what is not
according to their priors. Therefore, organisms with a tendency to explore
and take risks will not necessarily purse a bland and uneventful existence as
the "dark-room problem" suggests.

But where the priors come from and how they are shaped by the envi-
ronment is never said in the predictive coding framework. This is indeed the

2See the S1 Appendix for the technical definition of surprisal and implications within
the free energy principle and the predictive coding framework.
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crux of the matter in Bayesian statistics. The translation of subjective prior
beliefs into mathematically formulated prior distributions is an ill-defined
problem (Gomez-Ramirez and Sanz, 2013). And yet, the minimization of
surprise is a sufficient condition for keeping the system within an admissible
set of states. A bacterium, a cockroach, a bird and a human being all have
in common that in order to persevere in their actual forms, they must limit
their physiological states, that is, organisms constrain their phenotype in
order to resist disorder. Homeostasis is the control mechanism in charge of
keeping the organism’s internal conditions stable and within bounds. Sur-
vival depends on the organism’s capacity to maintain its physiology within
an optimal homeostatic range (Damasio and Carvalho, 2013).

This is the conundrum that this paper addresses. On the one hand,
free energy minimization is conducive to achieving the homeostatic balance
necessary for the organism’s survival and well-being and on the other hand,
surprise minimization can not possibly be the unique modus-operandi of bi-
ological systems. Organisms that minimize the entropy of the sensory states
they sample would never engage in exploration, risk-taking or creativity, for
the simple reason that these behaviors might increase the prediction error.
In consequence, surprise 3 can not be used as the unique necessary factor to
explain choices under uncertainty conditions.

Here we argue that the actual quantity that is maximized is the difference
between prediction error and boredom. The crucial intuition behind our
model is strikingly simple. A system that minimizes prediction error is not
only attentive to homeostasis and the vital maintenance functions of the
body, but it also maximizes pleasure. For example, the reward effect in the
appreciation of aesthetic work might come from the transition from a state
of uncertainty to a state of increased predictability (Cruys and Wagemans,
2011). However, this is until the signal error becomes stationary, or in the
art work example, the art work has not anymore the potential of surprising
us, in that case boredom kicks in, reducing the overall value of the subjective
experience. Boredom is an aversive (negative valence) emotion (Goetz et al.,
2013), (Joffily and Coricelli, 2013). Thus, boredom creates the conditions
to start exploring new hypothesis by sampling the environment in new and
creative ways, or put in other words, boredom begets creativity. Until very
recently, the function of boredom has been considered of little or no interest
for understanding human functioning. This situation is rapidly changing,

3Note that surprise, (H(S)), here refers to the entropy of the sensory states. This
is not the same as surprisal, (H(S|m)), in which the probability of the observation S is
conditional on a model m. For a technical discussion of the term surprisal see the appendix
and the references wherein.
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recent studies in human psychology shows that the experience of boredom
might be accompanied by stress and increases levels of arousal to ready the
person for alternatives (Posner et al., 2009) (Bench and Lench, 2013).

The rest of the paper is structured as follows. Section 2 introduces a
mathematical model that extends and complements predictive coding. Sur-
prise minimization in any of its equivalent forms such as free energy min-
imization and marginal likelihood maximization is not a sufficient but a
necessary explanans of biological behavior. Section 3 presents the simula-
tions of the model to help have an intuitive grasping of the mathematical
model based on the Black-Scholes-Merton equation. This statistical model,
though conceived for a very different problem (financial options pricing) al-
lows us to elegantly capture the interplay between prediction and boredom.
In section 4 we discuss the limitations of free energy minimization and its
neuronal implementation, prediction coding, in relation with the previous
results.

2 Methods
In this section we build a mathematical model to explain intelligent behavior
as the maximization of the subjective experience. The subjective experience
consists of two terms with opposed valence, prediction pleasure and bore-
dom. Prediction pleasure is a positive or hedonic state and boredom is a
negative emotional state. In short, what organisms do is to maximize subjec-
tive experience, and in order to achieve that objective they tend to minimize
surprise as predictive coding correctly claims, while at the same time dimin-
ishing boredom, a negative emotion that arises during monotonous tasks
or in environments with low entropy. The rationale behind this is that or-
ganisms maximize subjective experience by making prediction pleasure as
large as possible while keeping boredom low 4. In this view, organisms do
not exclusively operate in prediction mode, sooner or later, depending on
the intrinsic agent’s motivations and how they match with the environment,
the marginal utility of prediction will decrease and the organism will switch
to exploration mode, that is, the organism will become less concerned with
predicting its current state, and will be prone to visit surprising states that
overall increase its well being. In line with this idea, Schmidhuber (Schmid-
huber, 2010) has proposed a general formal theory of fun and creativity
based on the discovery of novel or surprising patterns which according to the

4Note that prediction pleasure is the inverse of prediction error, therefore maximize
prediction pleasure is the same as minimize prediction error.
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Table 1: Definition of concepts.

Helmoltz machine A neural network that represents its in-
puts with a minimal-length description
using recognition connections, which run
from inputs to outputs, and generative
connections, which run from outputs back
to inputs. Helmoltz machines infers the
cause of its input using variational free en-
ergy as a proxy of surprise

Bayesian brain The brain tries to infer the causes of our
sensations based on a generative model of
the world. The Bayesian brain is a corol-
lary of the free-energy principle

Predictive coding A Bayesian approach to brain function in
which the brain is conceived as a device
trained to do error correction. It is a brain
inspired implementation of the free energy
minimization principle

Free energy minimization principle Mathematical framework of Helmoltz the-
ory of perception and action. The main
assumption is that adaptive systems resist
a natural tendency to disorder by mini-
mizing the free energy

model, maximizes intrinsic reward allowing for improved prediction. Kakade
and Dayan (Kakade and Dayan, 2002) have suggested that dopamine neu-
rons encode "reward bonuses", playing a fundamental role in explorative
behavior.

We start by defining the utility function 5 that agents maximize as

v = p− b (1)

where v is the subjective experience and p and b represent prediction plea-
sure and boredom, respectively. It seems clear from equation 1 that the
larger the prediction pleasure (p) the greater the value of the subjective ex-
perience (v), limited by the boredom (b) that prediction brings in. When the

5A utility function is a mathematical description of subjective value that is constructed
from choices under incomplete information conditions.
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prediction pleasure is greater than the boredom the subjective experience is
overall positive or pleasant, on the contrary, when the boredom exceeds the
prediction pleasure, experience is negative or "painful".

We need now to be more precise in the formulation of the terms included
in equation 1. Reinforcement learning is the problem faced by an agent that
must learn to predict the value of future events through the computation
of the difference between one’s rational expectations of future rewards and
any information that leads to a revision of expectations (Glimcher, 2011).
Prediction error is a function of prediction error and time, specifically pre-
diction pleasure is the inverse of prediction error. Thus, the instantaneous
subjective experience vt is calculated as the difference between the instan-
taneous pleasure pt and the boredom bt, which in our model is assumed
to be constant or bt = k. The boredom constant k represents the agent’s
disposition to get bored and is therefore an inherent property of the system
or causa sui. Prediction pleasure, on the other hand, is directly calculated
from the prediction error. Prediction pleasure at time t, pt, is the reciprocal
of prediction error at time t, εt, that is, pt = 1

εt
. Accordingly, the value of

the experience at time t is the difference between the prediction pleasure at
t minus the boredom component, that is,

vt = 1
εt
− k = pt − k (2)

A reasonable assumption is that the prediction error describes a gener-
alized Wiener process (Ross, 1996). A Wiener process is a particular type of
Markov process which is a stochastic process where only the current value
of a random variable is relevant for future prediction. Thus, we define the
prediction error ε as a generalized Wiener process

dε = adt+ bdz (3)

where ε is a random variable that represents the prediction error, a is the
drift or the mean change per unit time, b the variance per unit time and dz
is a Wiener process with zero drift and 1.0 variance rate. Since the drift is
equal to zero, the expected value of z is zero, that is, at any future time, z
is expected to be equal to its current value. The variance rate of 1.0 means
that the variance of the change in z in a time interval of length T is equal
to T i.e. the variance rate grows proportionally to the maturity time T .

If we additionally assume that the variability of the "return" of prediction
error in a short period of time is the same regardless of the actual value of
the prediction error ε, e.g. we are equally uncertain about having a gain of
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for example, 10% in prediction error when the prediction error is 1.6 and
when it is 5.5, then the prediction error percentage change is defined as

dε = µεdt+ σεdz

dε

ε
= µdt+ σdz

(4)

where µ is the expected rate of return, i.e. the percentage of change in
the prediction error for one time period and σ is the volatility of prediction
error. For example, µ = 0.1 means that prediction error is expected to
increment by a 10%. Following the assumption that the prediction error
follows a Wiener process, µ = 0 and σ = 1.0.

Remind that in equation 1 we defined the subjective experience v as
the difference between prediction pleasure p and boredom b. The prediction
pleasure p is a function of the underlying stochastic variable ε or prediction
error. The Itô lemma allows us to characterize a function of a variable that
follows a Itô process (Ito, 1951). Since the prediction error ε is a generalized
Wiener process, it can be modeled as a Itô process,

ε = a(ε, t)dt+ b(ε, t)dz (5)

where dz is a Wiener process whose drift a and variance rate b, rather than
constant, are functions of ε and t. The Itô lemma shows that a function (f)
of a Itô process (x) follows as well the Itô process described in equation 6.
The demonstration can be found elsewhere (Shreve, 2010).

df =
(
∂f

∂x
a+ ∂f

∂t
+ 1

2
∂2f

∂x2 b
2
)
dt+ ∂f

∂x
bdz (6)

Now, substituting f for p and x for ε in equation 6 gives the prediction
pleasure behavior p derived from the underlying prediction error ε. Since
both ε and p follow geometric Brownian motion, the prediction pleasure p
corresponds to the Itô process

dp =
(
− µ

ε2
+ σ2

ε

)
dt− σ

ε
dz (7)

Note that equation 7 is not a generalized Wiener process because the drift
rate and the variance rate are not constant. Using the Itô lemma, the process
followed by γ = lnε when ε follows the process described in equation 5 is

dγ =
(
µ− σ2

2

)
dt+ σdz (8)
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Since µ and σ are constant, γ = ln ε follows a general Wiener process
with drift rate µ − σ2

2 and variance rate σ2. The change in ln ε between 0
and the final time T is normally distributed, and therefore the prediction
error ε is lognormally distributed. The inverse of the prediction error or
the prediction pleasure is also lognormally distributed, see the S1 Appendix
for the demonstration. We use Monte-Carlo simulation to sampling random
outcomes of the Itô process.

ln ε ∼ N
(

(µ− σ2

2 )T, σ
√
T

)
ln p ∼ N

(
(σ

2

2 − µ)T, σ
√
T

) (9)

Consider now that we are interested in studying the behavior of a system
with a boredom constant k over a time period T . The expected experience
value at time t (vt) is its expected value at time T (vT ) discounted at the
rate r. This idea relies upon the method of asset valuation called discounted
cash flow. The money in the future and now have different values because in
order to correctly quantify value one needs to discount for the rate at which
the money grows. For example, 100$ value asset with an annual growth rate
of r = 10% and 5 years maturity is value today 67.3$ 6.

For the s, the discount factor r can be here understood as a prediction
rate, which in essence represents how much structure there is in the outside
world. For example, in an external world in which information is entirely
redundant, r will be zero. In the other extreme of the spectrum, a fairly
complex world contains a rich mosaic of patterns to be discovered by an agent
equipped with the adequate perceptual, motoric and cognitive capabilities.
The larger the prediction rate r, the more structure there is in the world.
Thus, the rate r can be seen as a proxy for the structure of the outside
world.

We define the value of the experience of an agent at time t, t < T , as
the expected experience value defined in equation 2, discounted at rate r.
Formally,

vt = e−r(T−t)Ê(pt − k)
= e−r(T−t)Ê(pt)− ke−r(T−t)

= e−r(T−t)pte
r(T−t) − ke−r(T−t)

= pt − ke−r(T−t)

(10)

6discpT =
∑t=T

t=1
pt

(1+r)t , where discpT is the present value of cash flow in year T , pt is
the cash flow, r the discount rate and T the number of years in the future
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where vt is the experience value at time t, pt is the prediction pleasure
at time t, k is the boredom constant and r is external world complexity.
According to equation 10 the subjective experience at time t, t < T, vt is
equal to the expected prediction pleasure minus the boredom at the final
time T discounted at rate r. If the final or maturity time T is very far in
the future, then the value of the subjective experience will be very similar to
the prediction pleasure, vt,T−t→∞ = pt. On the other hand, if the expiration
date is near, the subjective experience is equal to prediction pleasure minus
the boredom constant, vt,T−t→0 = pt−k. Importantly, equation 10 assumes
that both prediction and boredom mode are equally likely.

A more realistic model will weight the prediction and boredom terms by
their respective probabilities. In order to do so we use the Black-Scholes-
Merton model for option pricing. In a seemingly way as an option price is a
derivative of a stock price, a subjective experience value can be calculated
with the underlying prediction pleasure at a given time t within a time
horizon T, t < T . We thus, borrow from the Black-Scholes-Merton model
for option pricing (Black and Scholes, 1973) to model subjective experience
as a "derivative".

In finance, a derivative derives its value from the performance of an
underlying entity. In our model, the derivative of the subjective experience
is calculated from the underlying prediction pleasure and the pain-related
boredom. The Black-Scholes-Merton model will thus, help us establishing
a working analytical framework to study the interplay between prediction
and boredom. For a more in depth discussion on the Black-Scholes-Merton
model, the reader might want to consult the S1 Appendix together with the
seminal paper (Black and Scholes, 1973) and two excellent textbooks, (Hull,
2011) and (Duffie, 2001).

In the Black-Scholes-Merton option pricing model, the option is exercised
only when the payoff is positive, that is to say, the stock has more value than
the strike price stipulated in the contract, (St−K > 0). In case the stock has
less value than the strike price (St−K < 0), the holder of the option is not
obligated to buy the asset. In our model, on the other hand, the subjective
experience is always "exercised". This means that the experience is what
it is, positive when prediction is larger than boredom and negative when
the boredom exceeds the prediction pleasure. Taking this into account, we
define the value of the experience as the difference between prediction and
boredom, discounted and weighted by the probability of being in each mode.
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Formally,

vt = ptN(d1)− ke−r(T−t)N(d2)
vt = pt(1−N(d2))− ke−r(T−t)N(d2)

(11)

where the first term in the right side of equation 11 represents the prediction
pleasure factored by the probability of being in predictive mode, N(d1), and
the second term quantifies the pain or negative experience triggered by a
boring experience in a world with a prediction rate r discounted at time t and
factored by the probability of being in boredom mode, N(d2). The terms
N(d1) andN(d2) in equation 11 are as in the Black-Scholes-Merton equation,
cumulative probability distribution functions, i.e. N(di) = P (x > di) of the
variables d1 and d2.

Assuming that the agent at any give instant can be in one of the two
possible modes - prediction or boredom - we just need to define one of the
two terms, for example d2, to obtain both N(d2) and N(d1) = 1−N(d2)

d2 =
log k

pt
+ (σ2

2 − r)(T − t)
σ
√
T − t

(12)

If prediction pleasure is very large compared to boredom, pt/k >> 1, d2
will be very small and d1 very large, resulting N(d1)→ 1 and N(d2)→ 0. In
this situation, the overall experience will be positive. On the contrary, when
pt/k → 0 the overall experience will be negative or dominated by boredom,
i.e. N(d2)→ 1.

3 Results
Equation 11 captures boredom begets creativity in the sense that boredom
decreases the subjective value, possibly triggering corrective actions like ex-
ploring or wandering at the expense of reducing prediction pleasure but
incrementing the subjective experience value. We run simulations for the
different parameters of the model i.e. initial prediction pleasure (p0), ex-
pected rate of return (r̂), boredom (k) and the drift (µ) and the variance
per unit time (σ) of the prediction error. Since prediction error is assumed
to follow a Wiener process, µ = 1 and σ = 0. The initial prediction pleasure,
p0, and the boredom constant, k, can be seen as the priors. For example,
all things being equal, an agent with a large ratio k/p0 is likely to have a
predominantly boredom experience compared to another agent with a large
p0/k which, on the contrary, will likely have a positive experience dominated
by prediction pleasure.
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The priors p0 and k are useful to classify agents into two categories,
those with large p0/k enjoy predicting and can be referred to as "copiers",
while those with low p0/k tend to get bored and fall under the category
"explorers". In addition to the bias or predisposition of the agent to predict
or get bored and explore given by the priors p0 and k, the expected rate of
return r̂ represents the environment’s complexity. Thus, a world with large
r̂ has more structure or patterns to be decoded by the agent than a world
with low r̂. We normalize the value of r̂ to take values between 0 and 1. For
example, for two agents, a1 and a2 in their respective environments, r̂1 and
r̂2 with r̂1 > r̂2, agent a1 will need more time to get bored and eventually
go to explore (N(d2) > N(d1) in equation 12) than agent a2 because the
environment of a1 has more structure than the environment of a2.

Figure 1 shows a simulation of the model for a trivially predictable en-
vironment. We codify this situation with the parameter r̂ = 0. An example
of this environment is a dark room, the world here is assumed to have very
low informational complexity. In this scenario, when the agent does not
have any particular predisposition to predict versus to explore (p0 = k),
prediction pleasure decays linearly and boredom remains stationary. Since
the world is trivially predictable, the boredom term, which can be seen as a
signal to explore, remains constant. This is because there is no structure to
be discovered in the world and therefore it does not make sense to explore
it (Figure 1 a). If the environment is trivially predictable (r̂ = 0) and the
agent is an explorer, that is, has bias to get bored (p0/k < 1), boredom
will grow and prediction will decay, resulting in a negative experience value
at the end of the period 1 b). Finally, when the agent is a copier, that is,
has a predisposition to predict as opposed to explore (p0/k > 1), due to
this bias, the probability of being in prediction mode is initially larger than
being in boredom mode (N(d1) > N(d2)) and will continue growing to reach
a maximum at the end of the period (N(d1) = 1, N(d2) = 0). The bias for
predicting governs the overall experience which is always positive. (Figure
1 c)

Figure 2 shows simulations of the model when the world is rich on struc-
ture, that is, there are patterns to be discovered and possibly, surprising
events using the definition of surprise given in the Introduction section. We
codify this situation with the parameter r̂ = 1 to denote a rich world struc-
ture whose information can be compressed into meaningful patterns. When
the agent does not have any particular predisposition of being in prediction
or boredom mode (p0/k = 1), the probability of being in prediction mode,
N(d1), is at time 0 larger than the probability of being in boredom mode,
N(d2), because the external world is structured. At final time T , since the
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agent lacks any bias versus prediction or exploring, N(d1) = N(d2), the
experience value decreases as the boredom rises and the prediction pleasure
decays. The rationale behind this is that even though the agent is predicting
the world and therefore having prediction pleasure, being consistently suc-
cessful at predicting the world has the side effect of getting bored reducing
the overall experience value (Figure 2 a). If the agent in an eventful world
structure, r̂ = 1, has a predisposition to get bored (p0/k < 1), initially,
since the world is rich in structure, the agent will be in prediction mode
N(d1) > N(d2), but as the time goes on, the boredom component will ex-
ceed the prediction component and the overall experience will be negative.
Thus, if the agent is an explorer in a world rich in stimuli, the experience
value will become negative after some time e.g. t = 0.4 in figure 2 b and
therefore it will need to take action i.e. explore the world, in order to di-
minish the boredom-related pain. The rationale here is that since the world
has complexity (patterns to be identified by the agent), boredom will act
as a signal to explore the world that will keep the agent from predicting
when predicting has decreasing marginal utility. Metaphorically speaking,
the agent anticipates that the "low-hanging fruit" will not last for ever, in-
vesting in new ways of reward seeking behavior(Figure 2 b). An agent that is
a copier, (p0/k > 1) in an eventful world structure, r̂ = 1, resides in a world
that suits its own personality. The subjective experience, though slowly
decreasing, is always positive and importantly it will not get bored. The
rationale is that the agent will content himself copying the rich structure of
the world (Figure 1 c).

To capitulate, in both figures for either low and high world complex-
ity, when the agent has a bias to get bored (explorer agent) the boredom
component raises reducing the overall experience value (Figures 1 and 2 b).
When the agent has a predisposition to predict (copier agent), the subjec-
tive experience increases in the dark room like scenario because the agent’s
priors matches with the world easiness to predict (Figure 1 c), and when
the informational complexity of the world is high, the overall experience will
decrease but remains positive because the agent has a bias to predict and
there is structure, surprises and novel patterns to be predicted in the world
(Figure 2 c). When the agent has no priors (Figures 1 and 2 a), is neither a
copier nor an explorer and the subjective experience decreases. In the case
of a trivially predictable world (Figure 1 a), this is because the marginal
utility of prediction pleasure will necessarily decrease. In the complex world
(Figure 2 a), the subjective experience decreases because boredom will in-
crease to signal that there may be more in the world that can be easily
predicted.
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(a) (b)

(c)

Figure 1: The figure shows the evolution of the probabilities of being in
prediction mode, N(d1), boredom mode N(d2), the prediction pleasure (p),
the boredom-related pain (b) and the experience value (v) for a trivial world
with low complexity (r̂ → 0) e.g. a dark-room environment. In Figure 1-a
there is no initial bias, (p0 = k), in Figure 1-b there is a bias that favors
exploring triggered by boredom (p0/k < 1) and in Figure 1-c the bias is
versus prediction against boredom (p0/k > 1). With the exception of 1-c
prediction pleasure decreases driving the experience to 0 or negative values.
In Figure 1-c, the agent is a copier in a world that is easy to copy, thus by
copying the world the agent maximizes his experience. Translating these
results in the dark room Gedankenexperiment, the agent will get out of
the room to explore and hopefully increment the experience value that is
otherwise decreasing. This occurs when either the agent has no bias (p0 = k,
Figure 1-a) and when it has a bias to explore (p0/k < 1, Figure 1-b). When
the agent is a copier, p0/k > 1, Figure 1-c) shows that it will stay in the
dark room since it has no incentive to explore outside, boredom decreases
and the overall experience driven by prediction pleasure increases.
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(a) (b)

(c)

Figure 2: The figure shows the evolution of the probabilities of being in
prediction mode, N(d1), boredom mode N(d2), the prediction pleasure (p),
the boredom-related pain (b) and the experience value v for a world with
high normalized complexity (r̂ = 1). In Figure 2-a there is no initial bias,
(p0 = k), in Figure 2-b there is a bias that favors exploring triggered by
boredom (p0/k < 1) and in Figure 2-c the bias is versus prediction against
boredom (p0/k > 1). Figure 2-a shows boredom increasing to reach the
same value as prediction error, bringing the experience to 0. The boredom
component can be understood as a signal to explore the world, which here
has a rich structure. Figure 2-b shows that the overall experience is negative
because the agent has a bias for exploring and the world is rich in structure
and it is therefore worth exploring the world rather than copy it. In Figure
2-c the experience remains positive because the agent has a bias to predict.
However, the final experience value will be less than the experience value at
0, this is because the world may contain surprises or unpredictable events.
Note that this is different from the dark room situation depicted in Figure
1-c, where the agent is a copier in a world that is easy to copy and therefore
it will increment his experience by just doing that.
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4 Discussion
In the predictive coding framework the brain tries to infer the causes of the
body sensations based on a generative model of the world. This inverse
problem is famously formalized by the Bayes rule. The idea behind this
model is that somewhere in the brain there is a decision signal that encodes
hypothesis about the sensorial information that is being processed. When
incoming sensorial data fully agree with beliefs, prediction error signal be-
comes stationary. Thus, the system reaches an equilibrium characterized by
sampling data from the environment in such a way that the system is never
surprised.

A recurring critic of predictive coding is that agents that minimize sur-
prise as the free energy principle mandates, could not possibly engage in
explorative behavior or creativity. In a recent update of the theory 7, the
utility function that would explain agent decision making is defined as the
relative entropy or Kullback-Leibler divergence between the probability dis-
tributions of likely states and desired states (Schwartenbeck et al., 2013).
Both distributions are conditional, the former on empirical priors and the
last on priors that represent desired states which are fixed and do not de-
pend on sensory input. In this schema agents will always try to visit the
desired states in order to minimize the distance between the desired and
likely outcomes.

However, the two major limitations of the free energy principle are still
standing. First, the problem of arbitrariness in assigning prior probabilities
is never considered. Jaynes’ (Jaynes, 1968) principle of maximum entropy
was conceived to specifically addressed the subjectivity problem in assigning
prior probabilities. In (Schwartenbeck et al., 2013) this principle is used
to convey the idea that the agents that minimize surprise can also have
explorative behavior. In a situation such that the agent has not preferred
states i.e. the distribution of the desired states is flat, the agent would
explore new states since the decision making is unconstrained (flat desired
states distribution). However, in the free energy principle, the priors are
fixed and do not depend on the sensorial information. This is problematic
because an agent with a flat distribution of prior desired states will tend

7In truth, the relative entropy or KL distance between the recognition distribution and
the generative distribution is included in the seminal paper by Dayan, Hinton and Zemel of
the Helmoltz machine (Dayan et al., 1995) which is also used by Friston and collaborators
in the free energy principle. The Kullback-Leibler divergence which is always non negative
is an upper bound of the quantity that needs to be minimized in the model, namely, the
free energy.
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to maximize the entropy over outcomes which is a suboptimal strategy of
survival in a world containing a big deal of predictable patterns. Second, if
the agent favors specific goal-states, for example, prefers dark and narrow
habitats versus wide open spaces, explorative behavior will never occur.
Thus, free energy minimization can explain exploration (no goal-state is
preferred over other states) and exploitation (goal states are preferred over
other states) separately. The interplay between exploration and exploitation
can be derived from changes on the precision of the prior over outcome states.
However, a mechanistic understanding of the coupling between exploration
and exploitaion can not be deducted from the Kullback-Leibler Divergence.
The model presented here extends and complements predictive coding by
explicitly taking into account the priors and more importantly by adjusting
the boredom with the interestingness of the world as it dwindles over time
(See Appendix for an example on the evolution of boredom).

Let us illustrate this point with an example. A camper is sitting in front
of a bonfire in the woods. It is a chilly and windy night. He hears a noise
whose source can not recognize. The camper has two hypothesis to explain
the noise, i) the noise is just the breeze moving the leaves or ii) the noise is
caused by a Grizzly bear approaching the camp. Let A be the breeze signal
and B the bear signal. Initially, since there are only a few bears in those
woods and it is a particularly windy night, the camper gives more weight
to the hypothesis A -the noise is caused by the wind- than to hypothesis
B -it is a bear. Furthermore, the camper enjoys life in general and has a
preference to avoid dangerous situations that could put his life at risk. The
course of action -stay or go- is given by the divergence between the likely
outcomes (the noise is caused by the breeze) and the desired outcomes (it
is preferable to be caress by the breeze than eaten by a Grizzly bear).

But let us imagine now that after a long uneventful period of time and
the consequent boredom, the camper would like to take the risk of getting
into the woods to explore the surrounding area. How can surprisal minimiza-
tion explains this new behavior? It would need to be possible to readjust
the priors (goal-states) in such a way that the agent responds differently to
the same stimulus, for example, leaving base camp to explore, rather than
staying as the minimization of surprise mandates. More importantly, when
the camper decides to explore the woods after being consistently good at
predicting the sensory input, it does so because the pleasure of prediction is
being overweight by the pain of boredom, resulting in a negative subjective
experience that needs to be rebalanced by seeking new states that may bring
boredom to lower levels. Crucially, the exhaustion of prediction disrupts the
homeostatic balance, which can be counteract by boredom which leads to
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variety seeking to restore the homeostatic balance. This idea exists in popu-
lar parlance in the idiom "die of success", minimizing prediction error would
make the organism to seek for easily predictable environments, neglecting
exploration and over valuing risk, which would hinder the system’s capacity
to prosper and survive in informational complex environments.

From an evolutionary perspective, subjective experience exists to facili-
tate the learning of conditions responsible for homeostatic imbalances and
of their corrective responses. There is an evolutionary advantage in doing
surprising actions. For example, in a prey-predator game, both the prey and
the predator will have a better change to succeed if they behave surprisingly
rather than in predictable ways. Furthermore, if agents always react in the
same way to common stimuli e.g. staying if the noise is caused by the breeze,
life will be boring and there would be no incentive to explore and discover.

The homeostatic control mechanism that keeps the organism’s internal
conditions within admissible bounds reflects the interplay between pleasure
associated with prediction and boredom-related pain. Biological systems do
not just minimize free energy, rather free energy or surprise is one depen-
dent variable, the other is boredom, and the interplay between both pleasure
(prediction) and pain (boredom) defines the independent variable, subjec-
tive experience, which is the quantity that systems, all things being equal,
maximize.

The importance of boredom needs still to be recognized by researchers.
Boredom signals the mismanagement of scarce resources and therefore a bet-
ter understanding of boredom will have a major impact in economics and
behavioral science. We are only just starting to understand the physiolog-
ical signatures of boredom. Boredom compared with sadness shows rising
heart rate, decreased skin conductance level, and increased cortisol levels
(Merrifield and Danckert, 2014). Boring environments can generate stress,
impulsivity, lowered levels of positive affect and risky behavior. Further-
more, in people with addiction, episodes of boredom are one of the most
common predictors of relapse or risky behavior (Blaszczynski et al., 1990).
A recent study with humans have shown that a statistically significant num-
ber of individuals prefer to administer electric shocks to themselves instead
being left alone in an empty room with nothing to do but to think (Wilson
et al., 2014). In our model, boredom has a negative effect in the value of
the subjective experience, which acts as a catalyzer to explore new states,
preventing the organism from "dying of success" by visiting the most likely
states in a self fulfilling loop.

The mathematical model here defined conveys the idea that boredom
begets creativity. The quantity that organisms maximized is the difference
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between prediction pleasure and boredom-related pain, and it is through the
interplay pleasure and pain, how homeostatic balances and their corrective
responses can be acquired and exploited.

We now discuss discuss the implications of our model in relation with
reward and valuation systems in the brain. Mobile organisms operate in lim-
ited resources environments and therefore need to perform economic eval-
uations to asses the costs and payoffs of their decisions. Living systems
depends for survival on their ability to extract resources to compensate for
continuous diffusion of those same resources (Chen, 2012). How they value
their internal states (trigger by external cues) to choose a proper course of
action is not entirely known.

The midbrain dopaminergic system encode errors in reward predictions.
Activity changes in the ventral tegmental area and the substantia negra
encode prediction error, more precisely, changes in spike rate encode an on-
going difference between the experience reward and the long term predicted
reward (Schultz et al., 1997), (Kakade and Dayan, 2002). In particular,
an increase in spike rate represents better than predicted outcomes and de-
crease denotes worse than predicted (McClure et al., 2003). Thus, activity
change in dopaminergic neurons conveys information about prediction er-
ror in future reward. The computational model that captures this idea is
the temporal differences (TD) learning (Sutton and Barto, 1998),(Markram
et al., 2012). That the dopamine system implements TD learning (time
discounted sum of expected rewards that can be earned in the future) is
uncontroversial.

Montague and colleagues (Montague and Berns, 2002) have suggested
that there may exist a generalized valuation function (currency) that goes
beyond the expectation violation predicated in TD learning. The orbital
frontal stratium would be in charge of providing a common valuation scale or
currency. This is the Predictor-Valuation model which is an extension of the
reward prediction-error model. Its mathematical formulation is analogous
to the Black-Scholes-Merton model including both diffusion and discounting
processes. The Predictor-Valuation model, in essence, allows to quantify the
expected opportunity costs of being in one state rather than another and
preparing one motor action rather than another.

Crucially, opportunity costs require an underlying utility function (Kin-
caid and Ross, 2009). Our model provides a valuation of the current state
discounted by the uncertainty of the environment and the passing of time,
that is, taking into account the future states that the agent may visit. The
question of which system e.g. a group of neurons in the frontal cortex,
dopaminergic pathways, the entire brain, the body etc., we should associate
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with this utility function is an important question for which we or anybody
may have a definitive answer. For an insightful discussion on the conceptual
implications of attributing a utility function to a reward system, see (Ross,
2009).

The important point to retain is that although the neurochemistry and
neurophysiology of the brain constrain the way in which the reward system
is implemented, other aspects can only be explained by reference external
to, for example, ecological generalizations about the environment in which
the organism evolves and develops. This is taken into account in our model
with the discount rate. The model explains why a system that is prone
to get bored as much as K, in a world with an informational complexity r
will reach its final state. The model is, however, agnostic about the specific
policy that the system should carry on. What our model does is to fit the
function v of the overall subjective experience (Equation 11). Crucially, if
the true optimal could be estimated by the system, then it could use this
estimate to update its internal state. This gives the system a way to simulate
possible future actions with an overall positive value.
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Supporting Information

S1 Appendix

The S1 Appendix file contains the technical definition of Surprisal, a brief
introduction to the Free Energy minimization principle and its relevance for
predictive coding, discusses the Black-Scholes-Merton equation and provides
a demonstration that the variable p (prediction pleasure) in the main text
follows a lognormal distribution.
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